JP2011178625A - Metal-supporting fibrous activated carbon and method for producing the same, and desulfurizing unit using the same and method for desulfurizing hydrocarbon oil - Google Patents

Metal-supporting fibrous activated carbon and method for producing the same, and desulfurizing unit using the same and method for desulfurizing hydrocarbon oil Download PDF

Info

Publication number
JP2011178625A
JP2011178625A JP2010045424A JP2010045424A JP2011178625A JP 2011178625 A JP2011178625 A JP 2011178625A JP 2010045424 A JP2010045424 A JP 2010045424A JP 2010045424 A JP2010045424 A JP 2010045424A JP 2011178625 A JP2011178625 A JP 2011178625A
Authority
JP
Japan
Prior art keywords
activated carbon
fibrous activated
metal
hydrocarbon oil
desulfurizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010045424A
Other languages
Japanese (ja)
Other versions
JP5530756B2 (en
Inventor
Yasuhiro Toida
康宏 戸井田
Masataka Torai
正孝 戸来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010045424A priority Critical patent/JP5530756B2/en
Publication of JP2011178625A publication Critical patent/JP2011178625A/en
Application granted granted Critical
Publication of JP5530756B2 publication Critical patent/JP5530756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing metal-supporting fibrous activated carbon reducing occurrence of irregularities caused in the stream of hydrocarbon oil such as kerosene and also effectively using a space in a desulfurizing unit. <P>SOLUTION: The method for producing metal-supporting fibrous activated carbon includes: a process of causing an immersing liquid containing a metal component to permeate into the fibrous activated carbon of which the specific surface area is 800 to 4,000 m<SP>2</SP>/g and the total micropore volume is 0.5 to 1.5 cm<SP>3</SP>/g; a process of leaving the fibrous activated carbon in which the immersion liquid is permeated as it is at a temperature of 0 to 40°C for 12 to 36 h; and a subsequent process of firing the fibrous activated carbon in which the metal component is permeated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属担持繊維状活性炭及び該金属担持繊維状活性炭の製造方法、並びに該金属担持繊維状活性炭を用いた脱硫器及び該脱硫器を用いた炭化水素油の脱硫方法に関し、特には、金属担持繊維状活性炭を吸着脱硫剤の一部又は全体として用いて、例えば灯油等の炭化水素油から硫黄化合物を吸着除去することが可能な脱硫器に関するものである。   The present invention relates to a metal-supported fibrous activated carbon, a method for producing the metal-supported fibrous activated carbon, a desulfurizer using the metal-supported fibrous activated carbon, and a hydrocarbon oil desulfurization method using the desulfurizer, The present invention relates to a desulfurizer that can adsorb and remove sulfur compounds from hydrocarbon oils such as kerosene using metal-supported fibrous activated carbon as part or all of the adsorbing desulfurizing agent.

地球温暖化ガスであるCOガスや、NO等の自動車排出ガスの排出量を削減する観点から、燃料内に含まれる硫黄分の一層の低減が、社会から強く望まれている。我が国では既に、軽油は2007年から、ガソリンは2008年から硫黄分が10質量ppm以下に規制されている。一方、昨今の燃料電池の技術革新には目を見張るものがある。水素源を石油系燃料に求めた場合、燃料油中に含まれる硫黄分をppbレベルまで低減しなければ、燃料電池の改質器及び電極部の触媒が硫黄分により被毒され、燃料電池システムの機能が低下し、所望する寿命が得られない。このような背景から、超低硫黄分の石油系燃料油を得る脱硫技術が盛んに研究されている。 And CO 2 gas as a greenhouse gas, from the viewpoint of reducing the emissions of automotive exhaust gases, such as NO X, further reduction of sulfur content in the fuel, he is strongly desired by society. In Japan, sulfur has already been regulated to 10 mass ppm or less since 2007 for diesel and gasoline since 2008. On the other hand, recent technological innovations in fuel cells are remarkable. When the hydrogen source is determined for petroleum-based fuel, if the sulfur content in the fuel oil is not reduced to the ppb level, the fuel cell reformer and the electrode catalyst are poisoned by the sulfur content, and the fuel cell system Thus, the desired life is not obtained. Against this background, desulfurization technology for obtaining ultra-low sulfur petroleum fuel oil has been actively researched.

従来の水素化脱硫方法で除去が難しい難脱硫化合物の大部分は、チオフェン類、ベンゾチオフェン類及びジベンゾチオフェン類である。灯油の場合、特にチオフェン類及びベンゾチオフェン類の割合が大きく、全硫黄化合物に対するチオフェン類及びベンゾチオフェン類の割合は、硫黄分として70%以上であることが多い。しかしながら、含有量の少ないジベンゾチオフェン類の方が除去は困難であり、特にアルキル基を多く有するアルキルジベンゾチオフェン類の除去が非常に困難である。一方で、簡単な操作で、容易に効率的に脱硫できる方法が求められており、例えば、還元処理や水素を必要とせず、また、加圧を必要としないで、かつ室温から150℃程度までの比較的低い温度下で、ジベンゾチオフェン類を効率的に除去できる脱硫剤が熱望されている。   Most of the difficult desulfurization compounds that are difficult to remove by conventional hydrodesulfurization methods are thiophenes, benzothiophenes, and dibenzothiophenes. In the case of kerosene, the ratio of thiophenes and benzothiophenes is particularly large, and the ratio of thiophenes and benzothiophenes to the total sulfur compounds is often 70% or more as the sulfur content. However, dibenzothiophenes with a low content are more difficult to remove, and in particular, alkyl dibenzothiophenes having a large number of alkyl groups are very difficult to remove. On the other hand, there is a demand for a method that can be easily and efficiently desulfurized by a simple operation. For example, no reduction treatment or hydrogen is required, no pressure is required, and room temperature to about 150 ° C. Therefore, a desulfurization agent that can efficiently remove dibenzothiophenes at a relatively low temperature is desired.

特定の細孔構造を有する活性炭、特に繊維状活性炭は、軽油や灯油に含まれるジベンゾチオフェン類に対して高い除去性能を有することが報告されている(特許文献1参照)。しかしながら、繊維状活性炭は綿状であるために充填密度を高くできないため、単位容積当たりの吸着性能が高くないという課題や、製造工程が複雑で製造コストが極めて高く経済的ではないという課題が存在する。   Activated carbon having a specific pore structure, particularly fibrous activated carbon, has been reported to have high removal performance with respect to dibenzothiophenes contained in light oil and kerosene (see Patent Document 1). However, since fibrous activated carbon is cotton-like, the packing density cannot be increased, so there are problems that the adsorption performance per unit volume is not high, and that the manufacturing process is complicated and the manufacturing cost is extremely high and not economical. To do.

また、銅成分及び銀成分を含有する炭化水素油脱硫剤は、室温から150℃程度までの温度で、チオフェン類やベンゾチオフェン類を効率的に除去することができることも報告されている(特許文献2参照)。しかしながら、ジベンゾチオフェン類の吸着除去性能は限定的であるという課題が存在する。   It has also been reported that hydrocarbon oil desulfurization agents containing a copper component and a silver component can efficiently remove thiophenes and benzothiophenes at temperatures from room temperature to about 150 ° C. (Patent Literature) 2). However, there is a problem that the adsorption removal performance of dibenzothiophenes is limited.

更に、チオフェン類、ベンゾチオフェン類及びジベンゾチオフェン類よりなる群から選ばれる少なくとも1つの硫黄化合物を含む炭化水素油と、或いは更に芳香族炭化水素を含む炭化水素油と、固体酸及び/又は遷移金属酸化物が担持された活性炭とを接触して脱硫する炭化水素油の脱硫方法(特許文献3参照)、並びにベンゾチオフェン類とジベンゾチオフェン類を含む炭化水素油を、固体酸系脱硫剤と活性炭系脱硫剤とを組み合わせて脱硫処理する炭化水素油の脱硫方法(特許文献4参照)も報告されている。しかしながら、家庭用等の定置式燃料電池システムにおける灯油の脱硫器として適用しようとすると、1年程度の寿命を確保するために必要な脱硫剤の体積が大きくなり過ぎることから、流通する灯油の線速度は小さくなり、灯油の流れにムラが生じるという課題が存在する。   Furthermore, a hydrocarbon oil containing at least one sulfur compound selected from the group consisting of thiophenes, benzothiophenes and dibenzothiophenes, or a hydrocarbon oil further containing an aromatic hydrocarbon, and a solid acid and / or transition metal Hydrocarbon oil desulfurization method for desulfurization by contacting activated carbon carrying oxide (see Patent Document 3), and hydrocarbon oil containing benzothiophenes and dibenzothiophenes as solid acid desulfurization agent and activated carbon system A hydrocarbon oil desulfurization method (see Patent Document 4) in which a desulfurization treatment is performed in combination with a desulfurization agent is also reported. However, if it is intended to be applied as a kerosene desulfurizer in a stationary fuel cell system for home use or the like, the volume of desulfurization agent necessary to ensure a life of about one year becomes too large. There is a problem that the speed is reduced and the flow of kerosene is uneven.

国際公開第2003/097771号International Publication No. 2003/097771 国際公開第2007/020800号International Publication No. 2007/020800 国際公開第2005/073348号International Publication No. 2005/073348 国際公開第2007/015391号International Publication No. 2007/015391

そこで、本発明は、家庭用等の定置式燃料電池システムにおける炭化水素油の脱硫器に好適で、灯油等の炭化水素油の流れに生じるムラの発生を低減でき、また脱硫器内の空間を有効利用することも可能な金属担持繊維状活性炭及び該金属担持繊維状活性炭の製造方法を提供することを課題とする。また、本発明は、該金属担持繊維状活性炭を用いた、灯油等の炭化水素油中の硫黄化合物を効率的に吸着除去することが可能な脱硫器、例えば、家庭用等の定置式燃料電池システムに好適な脱硫器、及び該脱硫器を用いた炭化水素油の脱硫方法を提供することを課題とする。   Therefore, the present invention is suitable for a hydrocarbon oil desulfurizer in a stationary fuel cell system for home use and the like, and can reduce the occurrence of unevenness in the flow of hydrocarbon oil such as kerosene, and can also save space in the desulfurizer. It is an object of the present invention to provide a metal-supported fibrous activated carbon that can be effectively used and a method for producing the metal-supported fibrous activated carbon. The present invention also provides a desulfurizer that can efficiently adsorb and remove sulfur compounds in hydrocarbon oil such as kerosene using the metal-supported fibrous activated carbon, such as a stationary fuel cell for home use. It is an object of the present invention to provide a desulfurizer suitable for a system and a hydrocarbon oil desulfurization method using the desulfurizer.

本発明者らは、上記目的を達成するために鋭意検討した結果、繊維状活性炭を容器に入れ、金属成分を含む含浸液を散布し、常温で12〜36時間放置した後に、乾燥、焼成することで、金属成分が均一に担持された金属担持繊維状活性炭が得られることを見出し、更には、脱硫器の炭化水素油流入口近傍に該金属担持繊維状活性炭を充填することで、炭化水素油の流れに生じるムラの発生を低減でき、脱硫器内の空間を有効利用できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors put fibrous activated carbon in a container, sprayed with an impregnating liquid containing a metal component, left at room temperature for 12 to 36 hours, and then dried and fired. Thus, it has been found that a metal-supported fibrous activated carbon in which a metal component is uniformly supported can be obtained, and further, the hydrocarbon supported by filling the metal-supported fibrous activated carbon in the vicinity of the hydrocarbon oil inlet of the desulfurizer. It has been found that the occurrence of unevenness in the oil flow can be reduced and the space in the desulfurizer can be used effectively, and the present invention has been completed.

即ち、本発明は、以下の発明を包含する。
(1) 比表面積が800〜4,000m/gで且つ全細孔容積が0.5〜1.5cm/gである繊維状活性炭に、金属成分を含む含浸液を浸透させ、0〜40℃で12〜36時間放置し、その後に該金属成分が浸透した繊維状活性炭を焼成することを特徴とする金属担持繊維状活性炭の製造方法。
(2) 前記繊維状活性炭は、比表面積が2,000〜3,000m/gで、全細孔容積が1.0〜1.3cm/gで、平均太さが5〜30μmで、且つ、平均長さが0.1〜200mmであることを特徴とする上記(1)に記載の金属担持繊維状活性炭の製造方法。
(3) 前記金属成分を含む含浸液が、該含浸液1kg当たり0.1〜50gの金属成分を含有する水溶液であることを特徴とする上記(1)又は(2)に記載の金属担持繊維状活性炭の製造方法。
(4) 前記金属成分が、銅であることを特徴とする上記(1)〜(3)のいずれかに記載の金属担持繊維状活性炭の製造方法。
(5) 上記(1)〜(4)のいずれかに記載の製造方法により得たことを特徴とする金属担持繊維状活性炭。
(6) 内部に炭化水素油を流して該炭化水素油を脱硫する脱硫器であって、該脱硫器の内部に上記(5)に記載の金属担持繊維状活性炭が充填されていることを特徴とする脱硫器。
(7) 前記金属担持繊維状活性炭が、少なくとも前記炭化水素油の流入口近傍に配置されていることを特徴とする上記(6)に記載の脱硫器。
(8) 前記炭化水素油が、灯油又は軽油であることを特徴とする上記(6)に記載の脱硫器。
(9) 更に、固体酸系吸着剤が充填された脱硫器であって、前記炭化水素油を前記金属担持繊維状活性炭と接触させ、その後に前記固体酸系吸着剤と接触させることで、該炭化水素油から硫黄化合物を吸着除去することを特徴とする上記(6)に記載の脱硫器。
(10) 上記(6)〜(9)のいずれかに記載の脱硫器を用いた炭化水素油の脱硫方法であって、前記炭化水素油が該脱硫器内を流通する温度が−30〜100℃の範囲であることを特徴とする炭化水素油の脱硫方法。
That is, the present invention includes the following inventions.
(1) A fibrous activated carbon having a specific surface area of 800 to 4,000 m 2 / g and a total pore volume of 0.5 to 1.5 cm 3 / g is impregnated with an impregnating solution containing a metal component, and 0 to A method for producing a metal-supported fibrous activated carbon, wherein the activated carbon is allowed to stand at 40 ° C. for 12 to 36 hours, and then the fibrous activated carbon infiltrated with the metal component is baked.
(2) The fibrous activated carbon has a specific surface area of 2,000 to 3,000 m 2 / g, a total pore volume of 1.0 to 1.3 cm 3 / g, and an average thickness of 5 to 30 μm. And the average length is 0.1-200 mm, The manufacturing method of the metal carrying | support fibrous activated carbon as described in said (1) characterized by the above-mentioned.
(3) The metal-carrying fiber according to (1) or (2), wherein the impregnating liquid containing the metal component is an aqueous solution containing 0.1 to 50 g of metal component per kg of the impregnating liquid. A method for producing activated carbon.
(4) The method for producing a metal-supported fibrous activated carbon according to any one of (1) to (3), wherein the metal component is copper.
(5) A metal-supported fibrous activated carbon obtained by the production method according to any one of (1) to (4) above.
(6) A desulfurizer for desulfurizing the hydrocarbon oil by flowing a hydrocarbon oil therein, wherein the metal-supported fibrous activated carbon described in the above (5) is filled in the desulfurizer. Desulfurizer.
(7) The desulfurizer according to (6), wherein the metal-supported fibrous activated carbon is disposed at least in the vicinity of an inlet of the hydrocarbon oil.
(8) The desulfurizer according to (6), wherein the hydrocarbon oil is kerosene or light oil.
(9) Further, a desulfurizer filled with a solid acid adsorbent, wherein the hydrocarbon oil is brought into contact with the metal-supported fibrous activated carbon, and then contacted with the solid acid adsorbent, The desulfurizer according to (6) above, wherein the sulfur compound is adsorbed and removed from the hydrocarbon oil.
(10) A hydrocarbon oil desulfurization method using the desulfurizer according to any one of (6) to (9) above, wherein a temperature at which the hydrocarbon oil flows through the desulfurizer is −30 to 100. A method for desulfurizing a hydrocarbon oil, characterized by being in the range of ° C.

本発明の金属担持繊維状活性炭の製造方法によれば、繊維状活性炭が担持する金属成分のムラが少なく、均一に担持されるため、灯油等の炭化水素油の流れに生じるムラの発生を低減でき、また脱硫器内の空間を有効利用することが可能な金属担持繊維状活性炭を提供することができる。また、かかる金属担持繊維状活性炭を用いた、灯油等の炭化水素油中の硫黄化合物を効率的に吸着除去することが可能な脱硫器、例えば、家庭用等の定置式燃料電池システムに好適な脱硫器、及び該脱硫器を用いた炭化水素油の脱硫方法を提供することができる。   According to the method for producing a metal-supported fibrous activated carbon of the present invention, the unevenness of the metal component supported by the fibrous activated carbon is small and uniformly supported, thereby reducing the occurrence of unevenness in the flow of hydrocarbon oil such as kerosene. Further, it is possible to provide a metal-supported fibrous activated carbon that can effectively use the space in the desulfurizer. Also, using such metal-supported fibrous activated carbon, it is suitable for desulfurizers that can efficiently adsorb and remove sulfur compounds in hydrocarbon oils such as kerosene, for example, stationary fuel cell systems for home use, etc. A desulfurizer and a hydrocarbon oil desulfurization method using the desulfurizer can be provided.

従来の脱硫器の一例の断面図である。It is sectional drawing of an example of the conventional desulfurizer. 従来の脱硫器の他の例の断面図である。It is sectional drawing of the other example of the conventional desulfurizer. 本発明の脱硫器の一例の断面図である。It is sectional drawing of an example of the desulfurizer of this invention. 本発明の脱硫器の他の例の断面図である。It is sectional drawing of the other example of the desulfurizer of this invention. 銅含有率と度数割合の関係を示すグラフである。It is a graph which shows the relationship between a copper content rate and a frequency ratio.

〔繊維状活性炭〕
繊維状活性炭は、PAN(ポリアクリロニトリル)繊維、強力レーヨン、石油ピッチ、石炭ピッチ等を溶融紡糸したピッチ繊維等の炭素繊維を活性炭原料として用いることで得られるものであり、粒状活性炭と比較した場合、吸着速度が非常に大きく、布状やフェルト状等の多様な形状に加工可能である等の利点を有する。繊維状活性炭は、10μm前後の細い繊維である上に、脱硫器に充填した場合、その充填密度が0.05〜0.3g/ml程度となり、粒状活性炭と比べて充填密度が低いため、脱硫器内を通過する炭化水素油の流れのムラを低減することができる。また、繊維状活性炭は、それ自身でもジベンゾチオフェン類に対する吸着脱硫性能を有するが、金属を担持すると、ジベンゾチオフェン類に対する吸着脱硫性能が更に向上できる上、メルカプタン類、チオフェン類、ベンゾチオフェン類に対する吸着脱硫性能を追加することも可能となる。
[Fibrous activated carbon]
Fibrous activated carbon is obtained by using carbon fibers such as PAN (polyacrylonitrile) fiber, strong rayon, petroleum pitch, pitch fiber melt-spun pitch fiber, etc. as the activated carbon raw material, compared with granular activated carbon The adsorbing speed is very high, and it can be processed into various shapes such as cloth and felt. Fibrous activated carbon is a thin fiber of about 10 μm, and when filled in a desulfurizer, the packing density is about 0.05 to 0.3 g / ml, and the packing density is lower than granular activated carbon. Unevenness in the flow of hydrocarbon oil passing through the vessel can be reduced. In addition, fibrous activated carbon itself has adsorptive desulfurization performance for dibenzothiophenes, but if it carries a metal, the adsorptive desulfurization performance for dibenzothiophenes can be further improved, and adsorption to mercaptans, thiophenes, and benzothiophenes. It is also possible to add desulfurization performance.

本発明で用いる繊維状活性炭は、吸着脱硫剤としての高い性能を確保するため、比表面積が800〜4,000m/gであり、特に好ましくは2,000〜3,000m/gである。ここで、比表面積が800m/g未満では、硫黄化合物の吸着サイトが著しく少ないため、繊維状活性炭の吸着脱硫性能を十分に確保できない。一方、比表面積が4,000m/gを超えると、密度が著しく低いため、飛散等によりその取扱いが容易でない。また、本発明で用いる繊維状活性炭は、全細孔容積が0.5〜1.5cm/gであり、特に好ましくは1.0〜1.3cm/gである。ここで、全細孔容積が0.5cm/g未満では、炭化水素油中の硫黄化合物が吸着サイトまで拡散する経路が狭くなり、吸着速度が低下する。一方、全細孔容積が1.5cm/gを超えると、密度が著しく低いため、飛散等によりその取扱いが容易でない。 The fibrous activated carbon used in the present invention has a specific surface area of 800 to 4,000 m 2 / g, particularly preferably 2,000 to 3,000 m 2 / g, in order to ensure high performance as an adsorptive desulfurization agent. . Here, when the specific surface area is less than 800 m 2 / g, the adsorption site of the sulfur is not sufficiently ensured because the adsorption site of the sulfur compound is remarkably small. On the other hand, when the specific surface area exceeds 4,000 m 2 / g, the density is remarkably low and the handling is not easy due to scattering or the like. The fibrous activated carbon used in the present invention has a total pore volume of 0.5 to 1.5 cm 3 / g, particularly preferably 1.0 to 1.3 cm 3 / g. Here, if the total pore volume is less than 0.5 cm 3 / g, the route through which the sulfur compound in the hydrocarbon oil diffuses to the adsorption site becomes narrow, and the adsorption rate decreases. On the other hand, when the total pore volume exceeds 1.5 cm 3 / g, the density is remarkably low and the handling is not easy due to scattering or the like.

本発明で用いる繊維状活性炭において、平均太さは5〜30μmが好ましく、特に6〜15μmが好ましい。ここで、平均太さが5μmよりも細いと、充填時の弾力性が高すぎるため、充填部分が脱硫器内を移動する可能性が高くなる。一方、平均太さが30μmよりも太いと、活性炭表面から中心部までの距離が長くなるため、硫黄化合物が中心部まで拡散するのに時間を要し、吸着速度が低下する場合がある。また、本発明で用いる繊維状活性炭において、平均長さは0.1〜200mmが好ましく、特に1〜20mmが好ましい。ここで、平均長さが0.1mm未満では、活性炭が脱硫器の下流側へ移動し、差圧上昇が発生する原因となり得る。一方、平均長さが200mmを超えると、活性炭同士が絡み合って、単一での取扱いが容易でなく、布状等に成形することが必要となり得る。特に、短繊維(平均長さが0.1〜200mmの繊維状活性炭)は、金属を担持させる工程において取扱い易く、また、脱硫器への均一充填が容易であるので好ましい。布状やフェルト状に成形された繊維状活性炭は、脱硫器の直径に合わせて円形に切断して充填するか、又は脱硫器の直径と同じ太さに丸めて使用することができる。   In the fibrous activated carbon used in the present invention, the average thickness is preferably 5 to 30 μm, particularly preferably 6 to 15 μm. Here, if the average thickness is thinner than 5 μm, the elasticity at the time of filling is too high, so that the possibility that the filled portion moves in the desulfurizer increases. On the other hand, if the average thickness is larger than 30 μm, the distance from the activated carbon surface to the center becomes longer, so it takes time for the sulfur compound to diffuse to the center, and the adsorption rate may decrease. In the fibrous activated carbon used in the present invention, the average length is preferably from 0.1 to 200 mm, particularly preferably from 1 to 20 mm. Here, if the average length is less than 0.1 mm, the activated carbon moves to the downstream side of the desulfurizer and may cause a differential pressure increase. On the other hand, when the average length exceeds 200 mm, the activated carbons are entangled with each other, and handling by a single unit is not easy, and it may be necessary to form a cloth or the like. In particular, short fibers (fibrous activated carbon having an average length of 0.1 to 200 mm) are preferable because they are easy to handle in the process of supporting a metal and are easy to uniformly fill the desulfurizer. The fibrous activated carbon formed into a cloth shape or felt shape can be cut and filled in a circle according to the diameter of the desulfurizer, or can be used after being rounded to the same thickness as the diameter of the desulfurizer.

なお、比表面積及び全細孔容積は、通常、窒素吸着法により測定される。窒素吸着法は、簡便で、一般に用いられており、様々な文献に解説されている。かかる文献としては、例えば、鷲尾一裕,島津評論,48(1),35-49(1991)、ASTM(American Society for Testing and Materials)Standard Test Method D 4365−95等が挙げられる。また、平均太さは、例えば、走査型電子顕微鏡(Scanning Electron Microscope、SEM)等で観察することにより測定され、平均長さは、例えば、任意に100本を採取して長さを測り、平均値を求めることにより測定される。   The specific surface area and the total pore volume are usually measured by a nitrogen adsorption method. The nitrogen adsorption method is simple and commonly used, and is described in various documents. Examples of such documents include Kazuhiro Hagio, Shimazu review, 48 (1), 35-49 (1991), ASTM (American Society for Testing and Materials) Standard Test Method D 4365-95, and the like. The average thickness is measured, for example, by observing with a scanning electron microscope (SEM) or the like, and the average length is measured, for example, by arbitrarily collecting 100 samples. Measured by determining the value.

〔含浸液〕
本発明で用いる含浸液は、金属成分を含み、上記繊維状活性炭に該金属成分を浸透させることを特徴とする。なお、金属成分は、含浸液中に溶解していてもよいし、分散していてもよい。また、本発明において、金属成分を含む含浸液は、該含浸液1kg当たり、好ましくは0.1〜50g、更に好ましくは0.5〜20gの金属成分を含有する水溶液であることが好ましい。ここで、含浸液1kg当たりの金属成分の含有量が0.1g未満では、金属担持繊維状活性炭としての金属担持量が少なすぎるため、金属担持による吸着脱硫性能の改善効果が十分に得られない場合がある。また、繊維状活性炭は吸水率が高いため、含浸液1kg当たりの金属成分の含有量が50gを超えると、含浸液の使用量が高すぎる場合、繊維状活性炭の金属担持量が多くなり過ぎ、細孔が閉塞して、硫黄化合物の拡散を阻害し、吸着脱硫性能の改善効果が十分に得られない場合がある。一方で、含浸液の使用量が少ない場合には、含浸ムラによって、金属が担持されている部分と担持されていない部分が生じることがあり、この場合、均一な吸着脱硫性能が得られない。
(Impregnating liquid)
The impregnating liquid used in the present invention contains a metal component and is characterized in that the metal component is infiltrated into the fibrous activated carbon. The metal component may be dissolved or dispersed in the impregnation liquid. In the present invention, the impregnating liquid containing a metal component is preferably an aqueous solution containing 0.1 to 50 g, more preferably 0.5 to 20 g of a metal component per 1 kg of the impregnating liquid. Here, when the content of the metal component per 1 kg of the impregnating liquid is less than 0.1 g, the amount of metal supported as the metal-supported fibrous activated carbon is too small, so that the effect of improving the adsorptive desulfurization performance by the metal support cannot be obtained sufficiently. There is a case. In addition, since the fibrous activated carbon has a high water absorption rate, when the content of the metal component per 1 kg of the impregnating liquid exceeds 50 g, if the amount of the impregnating liquid used is too high, the amount of metal supported on the fibrous activated carbon is too large. The pores may be blocked to inhibit the diffusion of the sulfur compound, and the effect of improving the adsorptive desulfurization performance may not be sufficiently obtained. On the other hand, when the amount of the impregnation liquid used is small, a portion where the metal is supported and a portion where the metal is not supported may be generated due to uneven impregnation. In this case, uniform adsorptive desulfurization performance cannot be obtained.

上記含浸液に含まれる金属成分としては、銅、銀、マンガン、亜鉛、ニッケル等が挙げられ、特に銅が好ましい。また、これらの金属成分は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、銅は、安価で比較的安全性が高い上、常温付近から300℃程度の広い温度範囲で、また該銅が一価又は二価の酸化状態、例えば、酸化銅(CuO)又は亜酸化銅(CuO)である場合でも還元処理を行わずに該酸化状態のままで、更には水素非存在下であっても、硫黄化合物の吸着に優れた性能を示す。該銅としては、酸化銅(CuO)又は亜酸化銅(CuO)が好ましい。また、上記含浸剤に含まれる金属成分は、単体金属や酸化物の他、金属塩類の形態で使用することもでき、該金属塩としては、水溶性塩類であれば特に限定されず、硝酸塩、硫酸塩、塩化物、有機酸塩類等が挙げられる。残留成分の影響が少ないことから、硝酸塩の水溶液が好ましい。 Examples of the metal component contained in the impregnating liquid include copper, silver, manganese, zinc, nickel and the like, and copper is particularly preferable. Moreover, these metal components may be used individually by 1 type, and may be used in combination of 2 or more type. Copper is inexpensive and relatively high in safety, and in a wide temperature range from near room temperature to about 300 ° C., and the copper is in a monovalent or divalent oxidation state, such as copper oxide (CuO) or sub-oxidation. Even in the case of copper (Cu 2 O), it exhibits excellent performance in adsorption of sulfur compounds even in the oxidized state without performing a reduction treatment, and even in the absence of hydrogen. The copper is preferably copper oxide (CuO) or cuprous oxide (Cu 2 O). Further, the metal component contained in the impregnating agent can be used in the form of a metal salt in addition to a simple metal or an oxide, and the metal salt is not particularly limited as long as it is a water-soluble salt, such as nitrate, Examples thereof include sulfates, chlorides, and organic acid salts. An aqueous solution of nitrate is preferred because it is less affected by residual components.

また、上記金属成分を含浸液中に溶解又は分散させる成分としては、特に限定されず、水、メタノール等が挙げられる。安全であることや取扱いが容易であることから、水が好ましい。   Moreover, it does not specifically limit as a component which dissolves or disperse | distributes the said metal component in an impregnation liquid, Water, methanol, etc. are mentioned. Water is preferred because it is safe and easy to handle.

〔金属担持繊維状活性炭の製造方法〕
本発明の金属担持繊維状活性炭の製造方法は、上記繊維状活性炭に、上記金属成分を含む含浸液を浸透させ、0〜40℃で12〜36時間放置し、その後に該金属成分が浸透した繊維状活性炭を焼成することを特徴とし、これにより、金属成分が均一に担持された繊維状活性炭(即ち、金属担持繊維状活性炭)が得られる。なお、本発明において、常温とは、0〜40℃の範囲の温度を意味しており、0〜40℃での放置は、常温での放置と同義である。また、含浸液を繊維状活性炭に均一に浸透させるための放置時間は、12〜36時間であるが、16〜24時間が好ましい。ここで、放置時間が12時間より短いと、金属成分が均一に浸透しないので、担持ムラが生じる。一方、放置時間を36時間より長くしても、金属成分を均一に浸透させる効果が少ない上、製造に要する時間が長くなり効率的ではない。本発明の金属担持繊維状活性炭の製造方法において、含浸液の浸透手段は、特に限定されるものではないが、例えば、繊維状活性炭に含浸液を散布させる手法が好適であり、具体的には、繊維状活性炭を容器に入れ、含浸液を均一に滴下する手法が挙げられる。また、本発明の製造方法においては、金属成分を繊維状活性炭に強固に付着させるため、該繊維状活性炭を焼成することが必要である。ここで、焼成は、既知の方法により行うことができるが、窒素ガス雰囲気下で行うことが好ましく、また、焼成温度は、300〜500℃が好ましく、350〜450℃が更に好ましく、焼成時間は、0.5〜3時間が好ましく、0.7〜2時間が更に好ましい。なお、本発明の製造方法においては、金属成分を含浸液中に溶解又は分散させる成分を除去するため、焼成工程の前に、金属成分が浸透した繊維状活性炭を乾燥させてもよい。ここで、乾燥温度は、100〜150℃が好ましく、120〜140℃が更に好ましく、乾燥時間は、12〜36時間が好ましく、16〜30時間が更に好ましい。
[Method for producing metal-supported fibrous activated carbon]
In the method for producing a metal-supported fibrous activated carbon according to the present invention, the fibrous activated carbon is impregnated with an impregnating solution containing the metal component and left at 0 to 40 ° C. for 12 to 36 hours, after which the metal component has penetrated. Fibrous activated carbon is calcined, whereby a fibrous activated carbon in which a metal component is uniformly supported (that is, a metal-supported fibrous activated carbon) is obtained. In addition, in this invention, normal temperature means the temperature of the range of 0-40 degreeC, and leaving at 0-40 degreeC is synonymous with leaving at normal temperature. The standing time for allowing the impregnating solution to uniformly penetrate into the fibrous activated carbon is 12 to 36 hours, but preferably 16 to 24 hours. Here, if the standing time is shorter than 12 hours, the metal component does not permeate uniformly, resulting in uneven support. On the other hand, even if the standing time is longer than 36 hours, the effect of uniformly infiltrating the metal component is small and the time required for production becomes long and is not efficient. In the method for producing a metal-supported fibrous activated carbon of the present invention, the means for impregnating the impregnating liquid is not particularly limited, but for example, a method of spraying the impregnating liquid on the fibrous activated carbon is preferable. A method in which fibrous activated carbon is put in a container and the impregnating solution is uniformly dropped is exemplified. Moreover, in the manufacturing method of this invention, in order to make a metal component adhere firmly to fibrous activated carbon, it is necessary to bake this fibrous activated carbon. Here, the firing can be performed by a known method, but it is preferably performed in a nitrogen gas atmosphere, and the firing temperature is preferably 300 to 500 ° C, more preferably 350 to 450 ° C, and the firing time is 0.5 to 3 hours are preferable, and 0.7 to 2 hours are more preferable. In addition, in the manufacturing method of this invention, in order to remove the component which melt | dissolves or disperse | distributes a metal component in an impregnation liquid, you may dry the fibrous activated carbon which the metal component osmose | permeated before the baking process. Here, the drying temperature is preferably 100 to 150 ° C, more preferably 120 to 140 ° C, and the drying time is preferably 12 to 36 hours, and more preferably 16 to 30 hours.

〔金属担持繊維状活性炭〕
本発明の金属担持繊維状活性炭は、上述の製造方法により得られることを特徴とし、金属成分が均一に担持されているため、炭化水素油の流れに生じるムラの発生を低減し、優れた吸着脱硫性能を発揮することが可能である。本発明において、金属担持繊維状活性炭に担持されている金属成分の量は、特に限定されるものではなく、金属成分の種類によっても異なるが、仕上がりの金属担持繊維状活性炭に対する金属元素基準で、0.1〜10質量%が好ましく、特に0.3〜5質量%が好ましい。該金属の担持量が0.1質量%未満では、担持効果が十分に得られず、一方、10質量%を超えると、担体である活性炭との結合が弱い金属が多くなることから、金属成分が脱離する可能性がある。なお、金属担持繊維状活性炭の金属担持量は、試料をアルカリ融解したものを酸性溶液中に溶解し、ICP−AES(誘導結合プラズマ発光分光分析装置)によって測定できる。また、上記金属担持繊維状活性炭の比表面積、全細孔溶液、平均太さ、平均長さ等の物性については、原料である上記繊維状活性炭と同様のことがいえるが、本発明の製造方法により得た金属担持繊維状活性炭であれば、原料である繊維状活性炭と同程度の物性を有している。
[Metal-supported fibrous activated carbon]
The metal-supported fibrous activated carbon of the present invention is obtained by the above-described production method, and since the metal component is uniformly supported, the occurrence of unevenness in the flow of hydrocarbon oil is reduced, and excellent adsorption It is possible to exert desulfurization performance. In the present invention, the amount of the metal component supported on the metal-supported fibrous activated carbon is not particularly limited, and varies depending on the type of metal component, but on the basis of the metal element relative to the finished metal-supported fibrous activated carbon, 0.1-10 mass% is preferable, and 0.3-5 mass% is especially preferable. If the loading amount of the metal is less than 0.1% by mass, the loading effect is not sufficiently obtained. On the other hand, if the loading amount exceeds 10% by mass, the amount of the metal having a weak bond with the activated carbon as the carrier increases. May be detached. The amount of metal supported on the metal-supported fibrous activated carbon can be measured with an ICP-AES (inductively coupled plasma emission spectrometer) after dissolving the sample in an alkali solution in an acidic solution. The physical properties of the metal-supported fibrous activated carbon such as the specific surface area, total pore solution, average thickness, average length, etc. can be said to be the same as those of the fibrous activated carbon as a raw material, but the production method of the present invention The metal-supported fibrous activated carbon obtained by the above has the same physical properties as the fibrous activated carbon that is the raw material.

〔脱硫器〕
本発明の脱硫器は、内部に炭化水素油を流して該炭化水素油を脱硫する脱硫器であり、該脱硫器の内部に上述の金属担持繊維状活性炭が充填されていることを特徴とする。ここで、本発明の脱硫器によれば、炭化水素油の流れに生じるムラの発生を低減しつつ、優れた吸着脱硫性能を示す金属担持繊維状活性炭が充填されているため、炭化水素油中の硫黄化合物を効率的に吸着除去することが可能であり、家庭用等の定置式燃料電池システムに好適である。
[Desulfurizer]
The desulfurizer of the present invention is a desulfurizer that desulfurizes the hydrocarbon oil by flowing hydrocarbon oil therein, and the desulfurizer is filled with the above-mentioned metal-supported fibrous activated carbon. . Here, according to the desulfurizer of the present invention, the metal-supported fibrous activated carbon exhibiting excellent adsorptive desulfurization performance is reduced while reducing the occurrence of unevenness in the flow of hydrocarbon oil. The sulfur compound can be efficiently adsorbed and removed, and is suitable for a stationary fuel cell system for home use or the like.

〔脱硫器への金属担持繊維状活性炭の充填位置〕
一般に、脱硫器内に充填された吸着脱硫剤を通過する炭化水素油の流れを均一にするためには、図1に示されるように、脱硫器1における炭化水素油の流入口2近傍に吸着脱硫剤3を充填しない部分4を設けたり、また図2に示されるように、脱硫器1の角を丸めて炭化水素油の流入口2近傍を狭めた部分5を設けたりすることで、脱硫器流入時の炭化水素油を脱硫器の長さ方向と垂直な方向へ分散させる手法が知られている。しかしながら、家庭用等の定置式燃料電池システムは、極限までコンパクト化させることが要求されており、従来型の脱硫器のように、吸着脱硫剤3を充填しない部分4を設けたり、脱硫器1の角を丸めて狭めた部分5を設けたりすることは、脱硫器内(延いては、燃料電池システム内)の体積を無駄に使用することになり、燃料電池システムのコンパクト化を阻害するおそれもある。そこで、本発明の脱硫器の好適な実施態様においては、上述の金属担持繊維状活性炭が、少なくとも炭化水素油の流入口近傍に配置されている。上述のように、本発明の金属担持繊維状活性炭は、炭化水素油中の硫黄化合物を吸着除去できることに加えて、炭化水素油の流れに生じるムラの発生を低減できるため、該金属担持繊維状活性炭を通過する炭化水素油の流れを均一に維持することも可能であり、上述のような無駄な体積を省き、脱硫器内の空間を有効利用することができる。即ち、本発明の脱硫器としては、図3に示されるように、炭化水素油供給ライン6を介して炭化水素油を内部に流して該炭化水素油を脱硫する脱硫器1であって、少なくとも炭化水素油の流入口2近傍に金属担持繊維状活性炭7が配置されている脱硫器1が好ましい。また、図3に示す脱硫器1は、金属担持繊維状活性炭7より炭化水素油の流れ方向からみて下流側に充填された該金属担持繊維状活性炭以外の吸着脱硫剤8が配置されている。なお、本発明において、炭化水素油の流入口近傍とは、炭化水素油の流入口2から流出口9までの距離をDとした場合、炭化水素油の流入口からの距離が(1/4)Dまでの領域を意味する。
[Filling position of metal-supported fibrous activated carbon in desulfurizer]
Generally, in order to make the flow of hydrocarbon oil passing through the adsorbing desulfurizing agent filled in the desulfurizer uniform, as shown in FIG. 1, the adsorbed near the hydrocarbon oil inlet 2 in the desulfurizer 1. By providing a portion 4 not filled with the desulfurizing agent 3, or by providing a portion 5 in which the vicinity of the hydrocarbon oil inlet 2 is narrowed by rounding the corner of the desulfurizer 1, as shown in FIG. There is known a method of dispersing hydrocarbon oil at the time of inflow in the direction perpendicular to the length direction of the desulfurizer. However, stationary fuel cell systems for home use and the like are required to be made as compact as possible. As in conventional desulfurizers, a portion 4 not filled with the adsorbent desulfurizing agent 3 is provided, or the desulfurizer 1 The provision of the narrowed portion 5 by rounding off the corners of the fuel cell wastes the volume in the desulfurizer (and thus in the fuel cell system), which may hinder the compactness of the fuel cell system. There is also. Therefore, in a preferred embodiment of the desulfurizer of the present invention, the above-described metal-supported fibrous activated carbon is disposed in the vicinity of at least the hydrocarbon oil inlet. As described above, the metal-supported fibrous activated carbon of the present invention can reduce the occurrence of unevenness in the flow of hydrocarbon oil, in addition to being able to adsorb and remove sulfur compounds in hydrocarbon oil. It is also possible to maintain a uniform flow of hydrocarbon oil passing through the activated carbon, thus eliminating the above-mentioned useless volume and making effective use of the space in the desulfurizer. That is, as shown in FIG. 3, the desulfurizer of the present invention is a desulfurizer 1 for desulfurizing hydrocarbon oil by flowing the hydrocarbon oil through a hydrocarbon oil supply line 6. The desulfurizer 1 in which the metal-supported fibrous activated carbon 7 is disposed in the vicinity of the hydrocarbon oil inlet 2 is preferable. Further, in the desulfurizer 1 shown in FIG. 3, an adsorbing desulfurizing agent 8 other than the metal-supported fibrous activated carbon charged downstream from the metal-supported fibrous activated carbon 7 as viewed in the flow direction of the hydrocarbon oil is disposed. In the present invention, the vicinity of the hydrocarbon oil inlet means that the distance from the hydrocarbon oil inlet 2 is (1/4) when the distance from the hydrocarbon oil inlet 2 to the outlet 9 is D. ) It means the area up to D.

また、本発明の脱硫器において、金属担持繊維状活性炭層(金属担持繊維状活性炭を充填する部分)の高さは、炭化水素油の1秒間当たりの移動距離の500〜50,000倍が好ましく、特に1,000〜10,000倍が好ましい。なお、炭化水素油の1秒間当たりの移動距離は、(見掛けの)線速度[m/秒]と呼ばれ、流量[m/秒]を流れに垂直な断面積[m]で割った値で表される。 In the desulfurizer of the present invention, the height of the metal-supported fibrous activated carbon layer (portion filled with the metal-supported fibrous activated carbon) is preferably 500 to 50,000 times the moving distance of hydrocarbon oil per second. In particular, 1,000 to 10,000 times are preferable. The moving distance per second of the hydrocarbon oil is called (apparent) linear velocity [m / sec], and the flow rate [m 3 / sec] is divided by the cross-sectional area [m 2 ] perpendicular to the flow. Represented by value.

本発明の脱硫器の形状は、炭化水素油の分散を考慮して角を丸める必要が無く、円柱や四角柱などで良い。また、脱硫器内の炭化水素油の流れ方向は、均一な流れをより確実にするため、下から上(アップフロー)が好ましい。更に、脱硫器に設ける炭化水素油の入口(流入口2)は、脱硫器の下部であれば、その方向や位置は問わない。従って、図3に示されるように、流入口2が脱硫器1の底部に位置する必要は無く、例えば図4に示されるように、脱硫器下部の側面部に位置してもよい。   The shape of the desulfurizer of the present invention does not need to be rounded in consideration of dispersion of hydrocarbon oil, and may be a cylinder or a square column. Further, the flow direction of the hydrocarbon oil in the desulfurizer is preferably from the bottom to the top (up flow) in order to ensure a uniform flow. Further, the hydrocarbon oil inlet (inlet 2) provided in the desulfurizer may be in any direction and position as long as it is a lower part of the desulfurizer. Therefore, as shown in FIG. 3, the inlet 2 does not have to be located at the bottom of the desulfurizer 1, and may be located at the side of the lower part of the desulfurizer, for example, as shown in FIG.

〔金属担持繊維状活性炭以外の吸着脱硫剤〕
本発明の脱硫器は、上記金属担持繊維状活性炭の他、更に該金属担持繊維状活性炭以外の吸着脱硫剤(以下、単に吸着脱硫剤ともいう)を充填することができ、金属担持繊維状活性炭より炭化水素油の流れ方向からみて下流側に吸着脱硫剤を充填することが好ましい。このような構造の脱硫器であれば、炭化水素油を金属担持繊維状活性炭と接触させ、その後に、吸着脱硫剤と接触させることで、該炭化水素油から硫黄化合物を吸着除去することができる。即ち、脱硫器における炭化水素油の流入口より流入した炭化水素油は、まず金属担持繊維状活性炭層で脱硫器の長さ方向と垂直な方向へ分散し、次いで脱硫器の長さ方向へ流れるため、該金属担持繊維状活性炭層の下流側に位置する吸着脱硫剤層と均一に接触することになる。従って、上記吸着脱硫剤には、金属担持繊維状活性炭よりも単位体積当たりの吸着脱硫性能が高い吸着脱硫剤を使用することができ、固体酸系吸着剤が好ましく、特には、本発明者らが提案している固体酸系脱硫剤と活性炭系脱硫剤を組み合わせてなる吸着脱硫剤が好ましい(国際公開第2007/015391号参照)。
[Adsorption desulfurization agents other than metal-supported fibrous activated carbon]
The desulfurizer of the present invention can be filled with an adsorbing desulfurizing agent other than the metal-supporting fibrous activated carbon (hereinafter also simply referred to as adsorptive desulfurizing agent) in addition to the metal-supporting fibrous activated carbon. More preferably, the adsorbing desulfurization agent is filled downstream from the flow direction of the hydrocarbon oil. In the case of the desulfurizer having such a structure, the sulfur oil can be adsorbed and removed from the hydrocarbon oil by bringing the hydrocarbon oil into contact with the metal-supported fibrous activated carbon and then contacting with the adsorbing desulfurizing agent. . That is, the hydrocarbon oil that has flowed in from the inlet of the hydrocarbon oil in the desulfurizer is first dispersed in the metal-supported fibrous activated carbon layer in a direction perpendicular to the length direction of the desulfurizer, and then flows in the length direction of the desulfurizer. Therefore, the adsorbing desulfurization agent layer located on the downstream side of the metal-supported fibrous activated carbon layer is uniformly contacted. Therefore, an adsorptive desulfurizing agent having a higher adsorptive desulfurizing performance per unit volume than the metal-supported fibrous activated carbon can be used as the adsorptive desulfurizing agent, and a solid acid adsorbent is preferable. Adsorbing desulfurization agent, which is a combination of a solid acid desulfurization agent and an activated carbon desulfurization agent proposed by J. Org., Is preferred (see International Publication No. 2007/015391).

固体酸系吸着剤としては、固体超強酸を含有する吸着剤が特に好ましい。固体超強酸とは、ハメット(Hammett)の酸度関数Hが−11.93である100%硫酸よりも酸強度が高い固体酸をいい、具体的には、珪素、アルミニウム、チタン、ジルコニウム、タングステン、モリブデン、鉄等の水酸化物又は酸化物、或いはグラファイト、イオン交換樹脂等からなる担体に、硫酸根、五フッ化アンチモン、五フッ化タンタル、三フッ化ホウ素等を付着又は担持したもの、酸化ジルコニウム(ZrO)、酸化第二スズ(SnO)、チタニア(TiO)又は酸化第二鉄(Fe)等に酸化タングステン(WO)を担持したもの、更にはフッ素化スルホン酸樹脂等を例示することができる(国際公開第2005/073348号参照)。これらの中でも、本発明者らが提案した硫酸根アルミナが好ましい(国際公開第2009/031613号参照)。また、該硫酸根アルミナに、銅、銀、ガリウム等を担持した吸着剤も好適に使用される。 As the solid acid adsorbent, an adsorbent containing a solid super strong acid is particularly preferable. The solid super strong acid means a solid acid having a higher acid strength than 100% sulfuric acid having a Hammett acidity function H 0 of −11.93. Specifically, silicon, aluminum, titanium, zirconium, tungsten , A carrier made of hydroxide or oxide such as molybdenum or iron, graphite, ion exchange resin, or the like, to which sulfate radical, antimony pentafluoride, tantalum pentafluoride, boron trifluoride or the like is attached or supported, Zirconium oxide (ZrO 2 ), stannic oxide (SnO 2 ), titania (TiO 2 ), ferric oxide (Fe 2 O 3 ) or the like carrying tungsten oxide (WO 3 ), and further fluorinated sulfone An acid resin etc. can be illustrated (refer international publication 2005/073348). Among these, sulfate group alumina proposed by the present inventors is preferable (see International Publication No. 2009/031613). An adsorbent in which copper, silver, gallium or the like is supported on the sulfate radical alumina is also preferably used.

〔炭化水素油の脱硫方法〕
本発明の炭化水素油の脱硫方法は、上述の脱硫器を用いて、該脱硫器内を流通する炭化水素油を金属担持繊維状活性炭と接触させることにより、該炭化水素油から硫黄化合物を吸着除去することを特徴とし、好ましくは、第一に炭化水素油を金属担持繊維状活性炭と接触させることにより該炭化水素油に含有される硫黄化合物を吸着除去し、次いで、吸着脱硫剤と接触させることにより炭化水素油中に残留する硫黄化合物を吸着除去する。金属担持繊維状活性炭により炭化水素油の流れが均一になっているため、吸着脱硫剤により効率良く硫黄化合物を吸着除去するこができる。これにより、脱硫器から流出される炭化水素油中の硫黄分を20質量ppb以下にすることも可能となる。
[Desulfurization method of hydrocarbon oil]
The hydrocarbon oil desulfurization method of the present invention uses the above-described desulfurizer to adsorb the sulfur compound from the hydrocarbon oil by bringing the hydrocarbon oil flowing through the desulfurizer into contact with the metal-supported fibrous activated carbon. Preferably, the sulfur compound contained in the hydrocarbon oil is adsorbed and removed by first contacting the hydrocarbon oil with the metal-supported fibrous activated carbon, and then contacting with the adsorbing desulfurizing agent. Thus, the sulfur compound remaining in the hydrocarbon oil is removed by adsorption. Since the flow of the hydrocarbon oil is made uniform by the metal-supported fibrous activated carbon, the sulfur compound can be efficiently adsorbed and removed by the adsorptive desulfurization agent. Thereby, the sulfur content in the hydrocarbon oil flowing out from the desulfurizer can be reduced to 20 mass ppb or less.

炭化水素油を金属担持繊維状活性炭と接触させる条件(吸着脱硫剤を用いる場合は、炭化水素油を吸着脱硫剤と接触させる条件も含む)としては、圧力は、常圧〜1.0MPaGが好ましく、常圧〜0.1MPaGがより好ましく、特には0.001〜0.03MPaGが好ましい。流量は、液空間速度(LHSV)で0.001〜100hr−1が好ましく、0.01〜10hr−1がより好ましい。見掛けの線速度は、1×10−7〜1×10−1m/秒、更には5×10−7〜1×10−2m/秒、特には1×10−6〜1×10−3m/秒が好ましい。見掛けの線速度が大きいと、吸着速度(液相から固相への移動速度)に比べて液相自体が吸着剤の充填層を通過する移動速度が速くなり、液相が吸着層出口に到達するまでに吸着質が除去しきれず、除去されない吸着質を含有したまま炭化水素油は出口から流出されてしまうといった問題が生じやすくなる。逆に見掛けの線速度が小さいと、吸着剤層の断面積が相対的に大きくなることから、炭化水素油の分散状態が不良となり、吸着剤層の流れ方向と直角な断面を通過する炭化水素油の流速(流量)にムラが生じやすく、吸着剤層の断面において吸着した吸着質に分布(ムラ)が生じやすいため、吸着剤への負荷が不均一になり、やはり十分効率的に脱硫することができない。 As conditions for bringing the hydrocarbon oil into contact with the metal-supported fibrous activated carbon (including the conditions for bringing the hydrocarbon oil into contact with the adsorptive desulfurizing agent when using an adsorptive desulfurizing agent), the pressure is preferably normal pressure to 1.0 MPaG. Normal pressure to 0.1 MPaG is more preferable, and 0.001 to 0.03 MPaG is particularly preferable. Flow rate is preferably 0.001~100Hr -1 at a liquid hourly space velocity (LHSV), 0.01~10hr -1 are more preferred. The apparent linear velocity is, 1 × 10 -7 ~1 × 10 -1 m / sec, even 5 × 10 -7 ~1 × 10 -2 m / sec, in particular 1 × 10 -6 ~1 × 10 - 3 m / sec is preferred. If the apparent linear velocity is high, the moving speed of the liquid phase itself passing through the packed bed of adsorbent is faster than the adsorption speed (moving speed from the liquid phase to the solid phase), and the liquid phase reaches the outlet of the adsorbing layer. By this time, the adsorbate cannot be completely removed, and the hydrocarbon oil tends to flow out from the outlet while containing the adsorbate that is not removed. Conversely, if the apparent linear velocity is low, the cross-sectional area of the adsorbent layer is relatively large, so the hydrocarbon oil dispersion state is poor, and the hydrocarbon passes through a cross section perpendicular to the flow direction of the adsorbent layer. The oil flow rate (flow rate) is likely to be uneven, and the adsorbate adsorbed in the cross section of the adsorbent layer is likely to be distributed (unevenness), resulting in uneven load on the adsorbent and desulfurization sufficiently efficiently. I can't.

本発明の炭化水素油の脱硫方法において、炭化水素油が脱硫器内を流通する温度、即ち吸着脱流を行う温度又は炭化水素油を金属担持繊維状活性炭と接触させる温度(吸着脱硫剤を用いる場合は、炭化水素油を吸着脱硫剤と接触させる温度も含む)は、−30〜100℃が好ましく、特に0〜80℃が好ましい。該温度が−30℃未満では、吸着される物質(吸着質)の炭化水素油中の拡散速度が著しく小さく、吸着されるまでに長時間を要する。また、炭化水素油の粘性が高くなるため、脱硫器内での圧力損失が大きくなり、脱硫器入口圧力を高くする必要がある。一般的に、0℃以上が特に好ましい。一方、該温度が100℃を超えると、ジベンゾチオフェン類の吸着は物理吸着であるため、平衡時の吸着量が著しく減少する。温度が高いほど、吸着速度は向上することになるが、平衡時のジベンゾチオフェン類の吸着量が少なくなるため、80℃以下が特に好ましい。   In the hydrocarbon oil desulfurization method of the present invention, the temperature at which the hydrocarbon oil circulates in the desulfurizer, that is, the temperature at which the adsorptive deflow is performed, or the temperature at which the hydrocarbon oil is brought into contact with the metal-supported fibrous activated carbon (the adsorptive desulfurizing agent is used. In the case, the temperature at which the hydrocarbon oil is brought into contact with the adsorptive desulfurization agent) is preferably -30 to 100 ° C, particularly preferably 0 to 80 ° C. When the temperature is lower than −30 ° C., the diffusion rate of the adsorbed substance (adsorbate) in the hydrocarbon oil is remarkably small, and it takes a long time to be adsorbed. Further, since the viscosity of the hydrocarbon oil increases, the pressure loss in the desulfurizer increases, and the desulfurizer inlet pressure needs to be increased. In general, 0 ° C. or higher is particularly preferable. On the other hand, when the temperature exceeds 100 ° C., the adsorption of dibenzothiophenes is physical adsorption, so that the adsorption amount at equilibrium is remarkably reduced. The higher the temperature, the higher the adsorption rate. However, since the amount of dibenzothiophenes adsorbed at the time of equilibrium decreases, 80 ° C. or lower is particularly preferable.

〔炭化水素油〕
本発明の脱硫器が適用対象とする炭化水素油としては、チオフェン類、ベンゾチオフェン類及びジベンゾチオフェン類からなる群から選択される少なくとも一種の硫黄化合物を含む炭化水素油を挙げることができる。具体的には、灯油、軽油などが挙げられ、特には高度に(深度に)脱硫する必要のある燃料電池用の灯油が挙げられる。
[Hydrocarbon oil]
Examples of the hydrocarbon oil to which the desulfurizer of the present invention is applied include hydrocarbon oils containing at least one sulfur compound selected from the group consisting of thiophenes, benzothiophenes, and dibenzothiophenes. Specific examples include kerosene and light oil, and particularly kerosene for fuel cells that needs to be highly desulfurized (deep).

これらの硫黄化合物の定性及び定量分析には、ガスクロマトグラフ(Gas Chromatograph:GC)−炎光光度検出器(Flame Photometric Detector:FPD)、GC−原子発光検出器(Atomic Emission Detector:AED)、GC−硫黄化学発光検出器(Sulfur Chemiluminescence Detector:SCD)、GC−誘導結合プラズマ質量分析装置(Inductively Coupled Plasma Mass Spectrometer:ICP−MS)などを用いることができるが、質量ppbレベルの分析にはGC−ICP−MSが最も好ましい(特開2006−145219号公報参照)。   For qualitative and quantitative analysis of these sulfur compounds, Gas Chromatograph (GC) -Flame Photometric Detector (FPD), GC-Atomic Emission Detector (AED), GC- Sulfur Chemiluminescence Detector (SCD), GC-Inductively Coupled Plasma Mass Spectrometer (ICP-MS), etc. can be used, but GC-ICP is used for mass ppb level analysis. -MS is most preferable (see JP 2006-145219 A).

灯油は、炭素数12〜16程度の炭化水素を主体とし、密度(15℃)0.79〜0.85g/cm、沸点範囲150〜320℃程度の油である。パラフィン系炭化水素を多く含むが、芳香族系炭化水素を0〜30容量%程度含み、多環芳香族も0〜5容量%程度含む。一般的には、灯火用及び暖房用・ちゅう(厨)房用燃料として日本工業規格JIS K2203に規定される1号灯油が対象となる。品質として、引火点40℃以上、95%留出温度270℃以下、硫黄分0.008質量%以下、煙点23mm以上(寒候用のものは21mm以上)、銅板腐食(50℃、3時間)1以下、色(セーボルト)+25以上の規定がある。通常、硫黄分を数質量ppmから80質量ppm以下、窒素分を数質量ppmから10質量ppm程度含む。 Kerosene is an oil having mainly a hydrocarbon having about 12 to 16 carbon atoms, a density (15 ° C.) of 0.79 to 0.85 g / cm 3 , and a boiling point range of about 150 to 320 ° C. Although it contains a lot of paraffinic hydrocarbons, it contains about 0 to 30% by volume of aromatic hydrocarbons and about 0 to 5% by volume of polycyclic aromatics. In general, No. 1 kerosene defined in Japanese Industrial Standard JIS K2203 is used as a fuel for lighting, heating, and kitchen. Quality: flash point 40 ° C or higher, 95% distillation temperature 270 ° C or lower, sulfur content 0.008% by mass or lower, smoke point 23mm or higher (21mm or higher for cold weather), copper plate corrosion (50 ° C, 3 hours) ) There are provisions of 1 or less and color (Saebold) +25 or more. Usually, the sulfur content is from several ppm to 80 ppm by mass and the nitrogen content is from several ppm to 10 ppm by mass.

軽油は、炭素数16〜20程度の炭化水素を主体とし、密度(15℃)0.82〜0.88g/cm、沸点範囲140〜390℃程度の油である。パラフィン系炭化水素を多く含むが、芳香族系炭化水素も10〜30容量%程度含み、多環芳香族も1〜10容量%程度含む。硫黄分を数質量ppmから100質量ppm以下、窒素分を数質量ppmから数10質量ppm程度含む。 The light oil is an oil having mainly a hydrocarbon having about 16 to 20 carbon atoms, a density (15 ° C.) of 0.82 to 0.88 g / cm 3 , and a boiling point range of about 140 to 390 ° C. Although it contains a lot of paraffinic hydrocarbons, it also contains about 10-30% by volume of aromatic hydrocarbons and about 1-10% by volume of polycyclic aromatics. Sulfur is contained from several ppm to 100 ppm by mass, and nitrogen is contained from several ppm to several tens of ppm.

チオフェン類は、1個以上の硫黄原子を異原子として含む複素環式化合物のうち、複素環が五員環又は六員環で且つ芳香性をもつ(複素環に二重結合を2個以上有する)硫黄化合物及びその誘導体であり、該複素環同士が縮合した化合物も含む。チオフェンは、チオフランとも呼ばれ、分子式C44Sで表わせる、分子量84.1の硫黄化合物である。その他の代表的なチオフェン類としては、メチルチオフェン(チオトレン、分子式C56S、分子量98.2)、チオピラン(ペンチオフェン、分子式C56S、分子量98.2)、チオフテン(分子式C642、分子量140)、テトラフェニルチオフェン(チオネサル、分子式C2020S、分子量388)、ジチエニルメタン(分子式C982、分子量180)及びこれらの誘導体が挙げられる。 Thiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocyclic ring is a five-membered or six-membered ring and has aromaticity (has two or more double bonds in the heterocyclic ring). ) Sulfur compounds and derivatives thereof, including compounds in which the heterocycles are condensed with each other. Thiophene, also called thiofuran, is a sulfur compound having a molecular weight of 84.1 that can be represented by the molecular formula C 4 H 4 S. Other typical thiophenes, methylthiophene (thiotolene, molecular formula C 5 H 6 S, molecular weight 98.2), thiopyran (penthiophene, molecular formula C 5 H 6 S, molecular weight 98.2), thiophthene (molecular formula C 6 H 4 S 2 , molecular weight 140), tetraphenylthiophene (thionesal, molecular formula C 20 H 20 S, molecular weight 388), dithienylmethane (molecular formula C 9 H 8 S 2 , molecular weight 180) and derivatives thereof.

ベンゾチオフェン類は、1個以上の硫黄原子を異原子として含む複素環式化合物のうち、複素環が五原子環又は六原子環で且つ芳香性をもち(複素環に二重結合を2個以上有し)、さらに複素環が1個のベンゼン環と縮合している硫黄化合物及びその誘導体である。ベンゾチオフェンは、チオナフテン、チオクマロンとも呼ばれ、分子式CSで表わせる、分子量134の硫黄化合物である。その他の代表的なベンゾチオフェン類としては、メチルベンゾチオフェン、ジメチルベンゾチオフェン、トリメチルベンゾチオフェン、テトラメチルベンゾチオフェン、ペンタメチルベンゾチオフェン、ヘキサメチルベンゾチオフェン、メチルエチルベンゾチオフェン、ジメチルエチルベンゾチオフェン、トリメチルエチルベンゾチオフェン、テトラメチルエチルベンゾチオフェン、ペンタメチルエチルベンゾチオフェン、メチルジエチルベンゾチオフェン、ジメチルジエチルベンゾチオフェン、トリメチルジエチルベンゾチオフェン、テトラメチルジエチルベンゾチオフェン、メチルプロピルベンゾチオフェン、ジメチルプロピルベンゾチオフェン、トリメチルプロピルベンゾチオフェン、テトラメチルプロピルベンゾチオフェン、ペンタメチルプロピルベンゾチオフェン、メチルエチルプロピルベンゾチオフェン、ジメチルエチルプロピルベンゾチオフェン、トリメチルエチルプロピルベンゾチオフェン、テトラメチルエチルプロピルベンゾチオフェンなどのアルキルベンゾチオフェン、チアクロメン(ベンゾチア−γ−ピラン、分子式CS、分子量148)、ジチアナフタリン(分子式C、分子量166)及びこれらの誘導体が挙げられる。 Benzothiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (two or more double bonds in the heterocycle). And a sulfur compound in which the heterocyclic ring is condensed with one benzene ring and derivatives thereof. Benzothiophene, also called thionaphthene or thiocoumarone, is a sulfur compound with a molecular weight of 134, which can be represented by the molecular formula C 8 H 6 S. Other representative benzothiophenes include methylbenzothiophene, dimethylbenzothiophene, trimethylbenzothiophene, tetramethylbenzothiophene, pentamethylbenzothiophene, hexamethylbenzothiophene, methylethylbenzothiophene, dimethylethylbenzothiophene, trimethylethyl Benzothiophene, tetramethylethylbenzothiophene, pentamethylethylbenzothiophene, methyldiethylbenzothiophene, dimethyldiethylbenzothiophene, trimethyldiethylbenzothiophene, tetramethyldiethylbenzothiophene, methylpropylbenzothiophene, dimethylpropylbenzothiophene, trimethylpropylbenzothiophene , Tetramethylpropylbenzothiophene, penta Chill propyl benzothiophene, methyl ethyl propyl benzothiophene, dimethyl ethyl propyl benzothiophene, trimethyl ethylpropyl benzothiophene, alkyl benzothiophenes such as tetramethyl-ethylpropyl benzothiophene, Chiakuromen (Benzochia -γ- pyran, molecular formula C 9 H 8 S, Molecular weight 148), dithiaphthalene (molecular formula C 8 H 6 S 2 , molecular weight 166) and derivatives thereof.

ジベンゾチオフェン類は、1個以上の硫黄原子を異原子として含む複素環式化合物のうち、複素環が五原子環又は六原子環で且つ芳香性をもち(複素環に二重結合を2個以上有し)、さらに複素環が2個のベンゼン環と縮合している硫黄化合物及びその誘導体である。ジベンゾチオフェンは、ジフェニレンスルフィド、ビフェニレンスルフィド、硫化ジフェニレンとも呼ばれ、分子式C12Sで表わせる、分子量184の硫黄化合物である。4−メチルジベンゾチオフェンや4,6−ジメチルジベンゾチオフェンは、水素化脱硫における難脱硫化合物として良く知られている。その他の代表的なジベンゾチオフェン類としては、トリメチルジベンゾチオフェン、テトラメチルジベンゾチオフェン、ペンタメチルジベンゾチオフェン、ヘキサメチルジベンゾチオフェン、ヘプタメチルジベンゾチオフェン、オクタメチルジベンゾチオフェン、メチルエチルジベンゾチオフェン、ジメチルエチルジベンゾチオフェン、トリメチルエチルジベンゾチオフェン、テトラメチルエチルジベンゾチオフェン、ペンタメチルエチルジベンゾチオフェン、ヘキサメチルエチルジベンゾチオフェン、ヘプタメチルエチルジベンゾチオフェン、メチルジエチルジベンゾチオフェン、ジメチルジエチルジベンゾチオフェン、トリメチルジエチルジベンゾチオフェン、テトラメチルジエチルジベンゾチオフェン、ペンタメチルジエチルジベンゾチオフェン、ヘキサメチルジエチルジベンゾチオフェン、ヘプタメチルジエチルジベンゾチオフェン、メチルプロピルジベンゾチオフェン、ジメチルプロピルジベンゾチオフェン、トリメチルプロピルジベンゾチオフェン、テトラメチルプロピルジベンゾチオフェン、ペンタメチルプロピルジベンゾチオフェン、ヘキサメチルプロピルジベンゾチオフェン、ヘプタメチルプロピルジベンゾチオフェン、メチルエチルプロピルジベンゾチオフェン、ジメチルエチルプロピルジベンゾチオフェン、トリメチルエチルプロピルジベンゾチオフェン、テトラメチルエチルプロピルジベンゾチオフェン、ペンタメチルエチルプロピルジベンゾチオフェン、ヘキサメチルエチルプロピルジベンゾチオフェンなどのアルキルジベンゾチオフェン、チアントレン(ジフェニレンジスルフィド、分子式C12、分子量216)、チオキサンテン(ジベンゾチオピラン、ジフェニルメタンスルフィド、分子式C1310S、分子量198)及びこれらの誘導体が挙げられる。 Dibenzothiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (two or more double bonds in the heterocycle). And a sulfur compound in which a heterocyclic ring is condensed with two benzene rings and derivatives thereof. Dibenzothiophene is also called diphenylene sulfide, biphenylene sulfide, or diphenylene sulfide, and is a sulfur compound having a molecular weight of 184 that can be represented by the molecular formula C 12 H 8 S. 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene are well known as difficult desulfurization compounds in hydrodesulfurization. Other representative dibenzothiophenes include trimethyldibenzothiophene, tetramethyldibenzothiophene, pentamethyldibenzothiophene, hexamethyldibenzothiophene, heptamethyldibenzothiophene, octamethyldibenzothiophene, methylethyldibenzothiophene, dimethylethyldibenzothiophene, Trimethylethyldibenzothiophene, tetramethylethyldibenzothiophene, pentamethylethyldibenzothiophene, hexamethylethyldibenzothiophene, heptamethylethyldibenzothiophene, methyldiethyldibenzothiophene, dimethyldiethyldibenzothiophene, trimethyldiethyldibenzothiophene, tetramethyldiethyldibenzothiophene, Pentamethyldiethyldibenzo Offene, hexamethyldiethyldibenzothiophene, heptamethyldiethyldibenzothiophene, methylpropyldibenzothiophene, dimethylpropyldibenzothiophene, trimethylpropyldibenzothiophene, tetramethylpropyldibenzothiophene, pentamethylpropyldibenzothiophene, hexamethylpropyldibenzothiophene, heptamethylpropyl Alkyl dibenzothiophenes such as dibenzothiophene, methylethylpropyldibenzothiophene, dimethylethylpropyldibenzothiophene, trimethylethylpropyldibenzothiophene, tetramethylethylpropyldibenzothiophene, pentamethylethylpropyldibenzothiophene, hexamethylethylpropyldibenzothiophene, thianthre (Diphenylene disulfide, molecular formula C 12 H 8 S 2, molecular weight 216), thioxanthene (dibenzo thiopyran, diphenylmethane sulfide, molecular formula C 13 H 10 S, molecular weight 198) include and derivatives thereof.

燃料電池などの水素源として炭化水素油を用いる場合、炭化水素油に含まれる硫黄は、水素製造過程で改質触媒の触媒毒であるから厳しく除去する必要がある。本発明の脱硫器は、硫黄化合物を極めて微量濃度まで低減することができる。したがって、本発明の脱硫器を用いれば、水素製造用の改質触媒を被毒することなく水素を製造して燃料電池に供給することができる。また、本発明の脱硫器を備える燃料電池システムは、定置式であっても良いし、可動式(例えば、燃料電池自動車など)であってもよい。   When hydrocarbon oil is used as a hydrogen source for a fuel cell or the like, sulfur contained in the hydrocarbon oil must be strictly removed because it is a catalyst poison of the reforming catalyst in the hydrogen production process. The desulfurizer of the present invention can reduce sulfur compounds to a very small concentration. Therefore, if the desulfurizer of the present invention is used, hydrogen can be produced and supplied to the fuel cell without poisoning the reforming catalyst for producing hydrogen. Further, the fuel cell system including the desulfurizer of the present invention may be a stationary type or a movable type (for example, a fuel cell vehicle).

以下に、実施例を挙げて本発明を更に具体的に説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

〔金属担持繊維状活性炭の調製−1〕
繊維状活性炭として、クラレケミカル社製FR−25(比表面積2,749m/g、全細孔容積0.96cm/g、平均太さ10μm、平均長さ8mm)を使用した。
硝酸銅(II)三水和物2.2gをイオン交換水69.1gに溶解し、含浸液Aを71.3g調製した。含浸液Aの1kg当たり、8.1gの銅が含有されていた。
上記繊維状活性炭10gを容器に入れ、含浸液Aの全量を均一に散布し、常温(約25℃)で24時間放置し、その後、130℃で12時間乾燥し、金属成分が浸透した繊維状活性炭を得た。これを21分割して、各画分の銅含有率を分析した。なお、繊維状活性炭の銅含有率は、試料をアルカリ融解したものを酸性溶液中に溶解し、ICP−AES(誘導結合プラズマ発光分光分析装置)によって測定された。
次に、窒素ガスを4L/分の流量で流しながら、温度を400℃まで1時間で昇温させて、金属成分が浸透した繊維状活性炭を400℃にて1時間焼成し、実施例1の金属担持繊維状活性炭Aを得た。
[Preparation-1 of metal-supported fibrous activated carbon-1]
As the fibrous activated carbon, FR-25 manufactured by Kuraray Chemical Co., Ltd. (specific surface area 2,749 m 2 / g, total pore volume 0.96 cm 3 / g, average thickness 10 μm, average length 8 mm) was used.
Copper (II) nitrate trihydrate (2.2 g) was dissolved in ion-exchanged water (69.1 g) to prepare impregnating solution A (71.3 g). 8.1 kg of copper was contained per 1 kg of the impregnation liquid A.
10 g of the above-mentioned fibrous activated carbon is put in a container, and the whole amount of the impregnating liquid A is uniformly dispersed, left at room temperature (about 25 ° C.) for 24 hours, and then dried at 130 ° C. for 12 hours. Activated carbon was obtained. This was divided into 21 parts, and the copper content of each fraction was analyzed. The copper content of the fibrous activated carbon was measured by ICP-AES (inductively coupled plasma emission spectroscopy) after dissolving the sample in an alkali solution in an acidic solution.
Next, while flowing nitrogen gas at a flow rate of 4 L / min, the temperature was raised to 400 ° C. over 1 hour, and the fibrous activated carbon infiltrated with the metal component was fired at 400 ° C. for 1 hour. Metal-supported fibrous activated carbon A was obtained.

〔金属担持繊維状活性炭の調製−2〕
硝酸銅(II)三水和物2.2gをイオン交換水33.4gに溶解し、含浸液Bを35.6g調製した。含浸液Bの1kg当たりに16.2gの銅が含有されていた。
含浸液Aに代えて含浸液Bを用いた以外は〔金属担持繊維状活性炭の調製−1〕と同様の方法で調製し、金属担持繊維状活性炭B(実施例2)を得た。なお、金属成分が浸透した焼成前の繊維状活性炭を21分割して、各画分の銅含有率を分析した。
[Preparation-2 of metal-supported fibrous activated carbon-2]
2.2 g of copper (II) nitrate trihydrate was dissolved in 33.4 g of ion-exchanged water to prepare 35.6 g of impregnation liquid B. 16.2 g of copper was contained per 1 kg of the impregnation liquid B.
A metal-supported fibrous activated carbon B (Example 2) was obtained in the same manner as [Preparation of metal-supported fibrous activated carbon-1] except that the impregnation solution B was used instead of the impregnation solution A. In addition, the fibrous activated carbon before baking which the metal component osmose | permeated was divided into 21 parts, and the copper content rate of each fraction was analyzed.

〔金属担持繊維状活性炭の調製−3〕
含浸液Aの全量を均一に散布した後、常温での放置を全く行わず、すぐに130℃で12時間乾燥させた以外は〔金属担持繊維状活性炭の調製−1〕と同様の方法で調製し、金属担持繊維状活性炭C(比較例1)を得た。なお、金属成分が浸透した焼成前の繊維状活性炭を21分割して、各画分の銅含有率を分析した。
[Preparation-3 of metal-supported fibrous activated carbon-3]
Prepared in the same manner as [Preparation of metal-supported fibrous activated carbon-1] except that the entire amount of impregnating liquid A was uniformly sprayed, and was not allowed to stand at room temperature, but immediately dried at 130 ° C. for 12 hours. As a result, metal-supported fibrous activated carbon C (Comparative Example 1) was obtained. In addition, the fibrous activated carbon before baking which the metal component osmose | permeated was divided into 21 parts, and the copper content rate of each fraction was analyzed.

〔金属担持繊維状活性炭の調製−4〕
含浸液Bの全量を均一に散布した後、常温での放置を全く行わず、すぐに130℃で12時間乾燥させた以外は〔金属担持繊維状活性炭の調製−2〕と同様の方法で調製し、金属担持繊維状活性炭D(比較例2)を得た。なお、金属成分が浸透した焼成前の繊維状活性炭を21分割して、各画分の銅含有率を分析した。
[Preparation of metal-supported fibrous activated carbon-4]
Prepared in the same manner as [Preparation of metal-supported fibrous activated carbon-2] except that the entire amount of impregnating solution B was sprayed uniformly and was not left at room temperature at all and immediately dried at 130 ° C. for 12 hours. As a result, metal-supported fibrous activated carbon D (Comparative Example 2) was obtained. In addition, the fibrous activated carbon before baking which the metal component osmose | permeated was divided into 21 parts, and the copper content rate of each fraction was analyzed.

〔銅含有率の分布〕
実施例1〜2及び比較例1〜2の金属担持繊維状活性炭について、金属の分布を評価するため、焼成前の繊維状活性炭における各画分の銅含有率を0.5質量%刻みに分類し、各分類の度数分布を求めた。銅含有率と度数割合との関係を図5に示す。常温で24時間放置した実施例1及び実施例2の場合、銅含有率4.5〜5.5質量%の度数割合が最も高く、分布の広がりも少なく、繊維状活性炭に銅が均一に担持されたことが分かる。また、常温での放置を全く行わなかった比較例1及び比較例2の場合、銅含有率が広く分布しており、銅の担持ムラが発生したことが分かる。なお、含浸液Aと含浸液Bとでは顕著な差が認められなかったことから、繊維状活性炭への金属成分の均一な担持には、含浸液中の金属成分の濃度では無く、放置温度及び放置時間による影響が大きいことが分かる。以上のことから、実施例1〜2の金属担持繊維状活性炭は、金属成分を均一に担持するため、灯油等の炭化水素油の流れに生じるムラの発生を低減できることが分かる。
[Distribution of copper content]
In order to evaluate the metal distribution of the metal-supported fibrous activated carbons of Examples 1-2 and Comparative Examples 1-2, the copper content of each fraction in the fibrous activated carbon before firing is classified into 0.5 mass% increments. The frequency distribution of each classification was obtained. The relationship between the copper content and the frequency ratio is shown in FIG. In the case of Example 1 and Example 2 which were allowed to stand at room temperature for 24 hours, the frequency ratio with the copper content of 4.5 to 5.5% by mass was the highest, the spread of the distribution was small, and copper was evenly supported on the fibrous activated carbon. You can see that Moreover, in the case of the comparative example 1 and the comparative example 2 which were not left at room temperature at all, it can be seen that the copper content was widely distributed, and copper carrying unevenness occurred. Since no significant difference was observed between the impregnating liquid A and the impregnating liquid B, the uniform loading of the metal component on the fibrous activated carbon is not the concentration of the metal component in the impregnating liquid, but the standing temperature and It can be seen that the effect of leaving time is large. From the above, it can be seen that the metal-supported fibrous activated carbons of Examples 1 and 2 can reduce the occurrence of unevenness in the flow of hydrocarbon oil such as kerosene because the metal component is uniformly supported.

1 脱硫器
2 炭化水素油の流入口
3 吸着脱硫剤
4 吸着脱硫剤を充填しない部分
5 炭化水素油の流入口近傍を狭めた部分
6 炭化水素油供給ライン
7 金属担持繊維状活性炭
8 金属担持繊維状活性炭以外の吸着脱硫剤
9 炭化水素油の流出口
D 炭化水素油の流入口から流出口までの距離
DESCRIPTION OF SYMBOLS 1 Desulfurizer 2 Hydrocarbon oil inflow port 3 Adsorption desulfurization agent 4 Portion which does not fill with adsorption desulfurization agent 5 Portion where hydrocarbon oil inflow port vicinity is narrowed 6 Hydrocarbon oil supply line 7 Metal-supporting fibrous activated carbon 8 Metal-supporting fiber Adsorbent desulfurization agents other than glassy activated carbon 9 Hydrocarbon oil outlet D Distance from hydrocarbon oil inlet to outlet

Claims (10)

比表面積が800〜4,000m/gで且つ全細孔容積が0.5〜1.5cm/gである繊維状活性炭に、金属成分を含む含浸液を浸透させ、0〜40℃で12〜36時間放置し、その後に該金属成分が浸透した繊維状活性炭を焼成することを特徴とする金属担持繊維状活性炭の製造方法。 A fibrous activated carbon having a specific surface area of 800 to 4,000 m 2 / g and a total pore volume of 0.5 to 1.5 cm 3 / g is impregnated with an impregnating solution containing a metal component at 0 to 40 ° C. A method for producing a metal-supported fibrous activated carbon, wherein the fibrous activated carbon is allowed to stand for 12 to 36 hours, and then the fibrous activated carbon infiltrated with the metal component is fired. 前記繊維状活性炭は、比表面積が2,000〜3,000m/gで、全細孔容積が1.0〜1.3cm/gで、平均太さが5〜30μmで、且つ、平均長さが0.1〜200mmであることを特徴とする請求項1に記載の金属担持繊維状活性炭の製造方法。 The fibrous activated carbon has a specific surface area of 2,000 to 3,000 m 2 / g, a total pore volume of 1.0 to 1.3 cm 3 / g, an average thickness of 5 to 30 μm, and an average The method for producing metal-supported fibrous activated carbon according to claim 1, wherein the length is 0.1 to 200 mm. 前記金属成分を含む含浸液が、該含浸液1kg当たり0.1〜50gの金属成分を含有する水溶液であることを特徴とする請求項1又は2に記載の金属担持繊維状活性炭の製造方法。   The method for producing a metal-supported fibrous activated carbon according to claim 1 or 2, wherein the impregnating liquid containing the metal component is an aqueous solution containing 0.1 to 50 g of metal component per kg of the impregnating liquid. 前記金属成分が、銅であることを特徴とする請求項1〜3のいずれかに記載の金属担持繊維状活性炭の製造方法。   The said metal component is copper, The manufacturing method of the metal carrying | support fibrous activated carbon in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれかに記載の製造方法により得たことを特徴とする金属担持繊維状活性炭。   A metal-supported fibrous activated carbon obtained by the production method according to claim 1. 内部に炭化水素油を流して該炭化水素油を脱硫する脱硫器であって、該脱硫器の内部に請求項5に記載の金属担持繊維状活性炭が充填されていることを特徴とする脱硫器。   A desulfurizer for desulfurizing a hydrocarbon oil by flowing a hydrocarbon oil therein, wherein the desulfurizer is filled with the metal-supported fibrous activated carbon according to claim 5. . 前記金属担持繊維状活性炭が、少なくとも前記炭化水素油の流入口近傍に配置されていることを特徴とする請求項6に記載の脱硫器。   The desulfurizer according to claim 6, wherein the metal-supported fibrous activated carbon is disposed at least in the vicinity of an inlet of the hydrocarbon oil. 前記炭化水素油が、灯油又は軽油であることを特徴とする請求項6に記載の脱硫器。   The desulfurizer according to claim 6, wherein the hydrocarbon oil is kerosene or light oil. 更に、固体酸系吸着剤が充填された脱硫器であって、前記炭化水素油を前記金属担持繊維状活性炭と接触させ、その後に前記固体酸系吸着剤と接触させることで、該炭化水素油から硫黄化合物を吸着除去することを特徴とする請求項6に記載の脱硫器。   Further, a desulfurizer filled with a solid acid adsorbent, wherein the hydrocarbon oil is brought into contact with the metal-supported fibrous activated carbon, and then brought into contact with the solid acid adsorbent. The desulfurizer according to claim 6, wherein the sulfur compound is removed by adsorption from the adsorbent. 請求項6〜9のいずれかに記載の脱硫器を用いた炭化水素油の脱硫方法であって、前記炭化水素油が該脱硫器内を流通する温度が−30〜100℃の範囲であることを特徴とする炭化水素油の脱硫方法。   It is the desulfurization method of hydrocarbon oil using the desulfurizer in any one of Claims 6-9, Comprising: The temperature which the said hydrocarbon oil distribute | circulates in this desulfurizer is the range of -30-100 degreeC. Hydrocarbon oil desulfurization method characterized by the above.
JP2010045424A 2010-03-02 2010-03-02 Metal-supported fibrous activated carbon for hydrocarbon oil desulfurizer, method for producing the same, desulfurizer using the same, and method for desulfurizing hydrocarbon oil Expired - Fee Related JP5530756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045424A JP5530756B2 (en) 2010-03-02 2010-03-02 Metal-supported fibrous activated carbon for hydrocarbon oil desulfurizer, method for producing the same, desulfurizer using the same, and method for desulfurizing hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045424A JP5530756B2 (en) 2010-03-02 2010-03-02 Metal-supported fibrous activated carbon for hydrocarbon oil desulfurizer, method for producing the same, desulfurizer using the same, and method for desulfurizing hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2011178625A true JP2011178625A (en) 2011-09-15
JP5530756B2 JP5530756B2 (en) 2014-06-25

Family

ID=44690552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045424A Expired - Fee Related JP5530756B2 (en) 2010-03-02 2010-03-02 Metal-supported fibrous activated carbon for hydrocarbon oil desulfurizer, method for producing the same, desulfurizer using the same, and method for desulfurizing hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP5530756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000764A (en) * 2017-06-12 2019-01-10 株式会社環境レジリエンス Cesium strontium adsorbent, manufacturing method therefor, and adsorption removal system using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269375A (en) * 1992-03-27 1993-10-19 Nippondenso Co Ltd Carrier active carbon for deodrization and production thereof
JPH08295565A (en) * 1995-04-26 1996-11-12 New Oji Paper Co Ltd Production of silicon carbide material
JPH09308830A (en) * 1996-05-21 1997-12-02 Kuraray Chem Corp Agent for removing acidic gas and basic gas
JP2000233913A (en) * 1999-02-10 2000-08-29 Osaka Gas Co Ltd Gas storage material using deposited-metal-containing active carbon and its production
JP2003049172A (en) * 2001-08-08 2003-02-21 Corona Corp Desulfurization of liquid hydrocarbon fuel
JP2003268386A (en) * 2002-03-14 2003-09-25 Nippon Oil Corp Method of desulfurization of hydrocarbon, and fuel cell system
JP2005002317A (en) * 2003-03-20 2005-01-06 Japan Energy Corp Desulfurization method of liquid hydrocarbon containing organic sulfur compound
WO2005073348A1 (en) * 2004-02-02 2005-08-11 Japan Energy Corporation Method of desulfurizing hydrocarbon oil
WO2007015391A1 (en) * 2005-08-01 2007-02-08 Japan Energy Corporation Method for desulfurization of hydrocarbon oil

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269375A (en) * 1992-03-27 1993-10-19 Nippondenso Co Ltd Carrier active carbon for deodrization and production thereof
JPH08295565A (en) * 1995-04-26 1996-11-12 New Oji Paper Co Ltd Production of silicon carbide material
JPH09308830A (en) * 1996-05-21 1997-12-02 Kuraray Chem Corp Agent for removing acidic gas and basic gas
JP2000233913A (en) * 1999-02-10 2000-08-29 Osaka Gas Co Ltd Gas storage material using deposited-metal-containing active carbon and its production
JP2003049172A (en) * 2001-08-08 2003-02-21 Corona Corp Desulfurization of liquid hydrocarbon fuel
JP2003268386A (en) * 2002-03-14 2003-09-25 Nippon Oil Corp Method of desulfurization of hydrocarbon, and fuel cell system
JP2005002317A (en) * 2003-03-20 2005-01-06 Japan Energy Corp Desulfurization method of liquid hydrocarbon containing organic sulfur compound
WO2005073348A1 (en) * 2004-02-02 2005-08-11 Japan Energy Corporation Method of desulfurizing hydrocarbon oil
WO2007015391A1 (en) * 2005-08-01 2007-02-08 Japan Energy Corporation Method for desulfurization of hydrocarbon oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000764A (en) * 2017-06-12 2019-01-10 株式会社環境レジリエンス Cesium strontium adsorbent, manufacturing method therefor, and adsorption removal system using the same

Also Published As

Publication number Publication date
JP5530756B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5252674B2 (en) Hydrocarbon oil desulfurization method
JP5048495B2 (en) Hydrocarbon oil desulfurization method
Bu et al. Desulfurization of diesel fuels by selective adsorption on activated carbons: Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons
Nair et al. Supported silver adsorbents for selective removal of sulfur species from hydrocarbon fuels
JP4424586B2 (en) Method for desulfurization of liquid hydrocarbons containing organic sulfur compounds
JP2011093774A (en) Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system
JP5328655B2 (en) Solid acid, method for producing the same, and method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent
JP5032992B2 (en) Hydrocarbon oil desulfurization agent and desulfurization method
JP5337036B2 (en) Hydrocarbon oil desulfurization method
Ju et al. Reactive adsorption desulfurization of fluidized catalytically cracked (FCC) gasoline over a Ca-doped Ni-ZnO/Al2O3–SiO2 adsorbent
Salonikidou et al. Deep desulfurization of model fuels by metal-free activated carbons: The impact of surface oxidation and antagonistic effects by mono-and poly-aromatics
Rekos et al. Adsorption of DBT and 4, 6-DMDBTon nanoporous activated carbons: the role of surface chemistry and the solvent
US20130330555A1 (en) Novel adsorbent for ultradeep removal of sulfur compounds from distillate fuels
Wang et al. Adsorptive desulfurization of organic sulfur from model fuels by active carbon supported Mn (II): equilibrium, kinetics, and thermodynamics
JP5530756B2 (en) Metal-supported fibrous activated carbon for hydrocarbon oil desulfurizer, method for producing the same, desulfurizer using the same, and method for desulfurizing hydrocarbon oil
US10494575B2 (en) Sulfur adsorbent and a method of separating sulfur compounds from a sulfur-containing mixture
JP5294927B2 (en) Hydrocarbon oil desulfurization method and fuel cell system
JP5476180B2 (en) Method for reducing peroxide value of hydrocarbon oil, method for desulfurizing hydrocarbon oil, and fuel cell system
Neubauer et al. Thermal in situ and system-integrated regeneration strategy for adsorptive on-board desulfurization units
WO2006068069A1 (en) Liquid fuel for fuel cell and method of desulfurization
JP5420455B2 (en) Method for producing adsorptive desulfurization agent, hydrocarbon oil desulfurization method, and fuel cell system
Shimizu et al. Mechanism of Adsorptive Removal of tert-Butanethiol under Ambient Conditions with Silver Nitrate Supported on Silica and Silica− Alumina
JP2005270855A (en) Adsorbent of sulfur compound in hydrocarbon oil and method for removing sulfur compound in hydrocarbon oil
JP5334630B2 (en) Hydrocarbon oil desulfurization method and fuel cell system
JP2016000807A (en) Method for removing anilines by adsorption from catalytically-cracked gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees