JP3760855B2 - Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber - Google Patents

Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber Download PDF

Info

Publication number
JP3760855B2
JP3760855B2 JP2001379821A JP2001379821A JP3760855B2 JP 3760855 B2 JP3760855 B2 JP 3760855B2 JP 2001379821 A JP2001379821 A JP 2001379821A JP 2001379821 A JP2001379821 A JP 2001379821A JP 3760855 B2 JP3760855 B2 JP 3760855B2
Authority
JP
Japan
Prior art keywords
fiber
boron nitride
silicon carbide
boron
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001379821A
Other languages
Japanese (ja)
Other versions
JP2003183979A (en
Inventor
道之 鈴木
吉積 田中
良幸 井上
光彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001379821A priority Critical patent/JP3760855B2/en
Publication of JP2003183979A publication Critical patent/JP2003183979A/en
Application granted granted Critical
Publication of JP3760855B2 publication Critical patent/JP3760855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化ホウ素を被覆した炭化ケイ素系セラミックス繊維とその製造方法、さらにこの窒化ホウ素を被覆した炭化ケイ素系セラミックス繊維で強化されたセラミックス基複合材料に関するものである。
【0002】
【従来の技術】
セラミックス繊維で強化されたセラミックス基複合材料は金属にはない優れた耐熱性と従来の単相のセラミックスにはない損傷許容性から次世代の耐熱材料として開発が進められている。
このセラミックス基複合材料においては強化繊維とマトリックスとの界面の結合を制御し、材料の破壊時に亀裂がこの界面で偏向し、繊維がプルアウトしながら破壊が進行し、大きな破壊エネルギーを示すことが大きな特徴である。この界面の結合を制御するため開発の初期段階では炭素が用いられてきたが、耐酸化性に劣るため、耐酸化性の優れた窒化ホウ素が用いられている。この窒化ホウ素は主に化学蒸着法により繊維に被覆されており、たとえば米国特許第4642271で開示されているような1000℃以下で所望の形状に成形した繊維成形体を反応炉に設置して行うバッチ方式により被覆する方法と、たとえば、Mat.Res.Soc.Symp.Proc.250,(1992)269−274に示されるように反応炉の前後に繊維の送りだし部と巻き取り部を設け、連続的に繊維を反応炉に送りながらバッチ方式よりも高温(〜1400℃)で連続的に被覆する方法がある。
【0003】
【発明が解決しようとする課題】
バッチ方式は連続方式に比べコスト的に有利であるが、たとえば、J.Mater.Sci.33(1998)5277−5289に示されているように炭素や酸素の不純物が合わせて20原子%程度含まれており、Ceram.Eng.Sci.Proc.,18(3)(1997)525−534に示されているように連続方式に比べ耐酸化性に劣ることが指摘されている。
【0004】
一方、連続方式は、バッチ方式に比べ、J.Mater.Sci.33(1998)5277−5289に示されているように炭素や酸素の不純物が合わせて10原子%未満であり、高純度の窒化ホウ素の被覆が可能である。しかしながら、Ceram.Eng.Sci.Proc.,18(3)(1997)525−534やMat.Res.Soc.Symp.Proc.250,(1992)269−274で示されているように繊維束(通常500本から1600本を一束にして供給されている。)の外周部が厚く被覆されるが内部は薄くなり、その比(外周部皮膜厚さ/内部皮膜厚さ)は6〜9になることが報告されている。このような大きな比の値は、この被覆繊維で強化されたセラミックス基複合材料中の繊維とマトリックスの界面の状態が不均一になることを示しており、材料の信頼性をそこなうものである。
【0005】
【課題を解決するための手段】
本発明これらの問題を解決するため、新規な連続方式による窒化ホウ素の被覆方法により、不純物濃度が低く、かつ繊維束の外周部と内部の皮膜厚さの差が小さい窒化ホウ素被覆炭化ケイ素系セラミックス繊維、及びこの繊維により強化されたセラミックス基複合材料が提供される。
【0006】
本発明によれば、直径7〜15μmの炭化ケイ素系セラミックス繊維500〜1600本の繊維束からなり、該繊維表面に厚さ0.2〜2μmで、不純物の酸素と炭素の合計が平均で10原子%以下である窒化ホウ素が被覆されており、前記繊維束の外周部の繊維の窒化ホウ素皮膜と内部の繊維の窒化ホウ素皮膜の厚さの比(外周部皮膜厚さ/内部皮膜厚さ)が5以下であることを特徴とする窒化ホウ素被覆炭化ケイ素系セラミックス繊維が提供される。
【0007】
本発明の窒化ホウ素被覆炭化ケイ素系セラミックス繊維は、直径7〜15μmの炭化ケイ素系セラミックス繊維500〜1600本の繊維束からなる。
該繊維表面には、厚さ0.2〜2μm、好ましくは0.5〜1.5μmの窒化ホウ素が被覆されている。窒化ホウ素皮膜における、不純物の酸素と炭素の合計は平均で10原子%以下である。
【0008】
また、繊維束の外周部の繊維の窒化ホウ素皮膜と内部の繊維の窒化ホウ素皮膜の厚さの比(外周部皮膜厚さ/内部皮膜厚さ)が5以下である。
本発明において、繊維束の外周部とは、繊維束の中心から表面に向かって半径の2/3から表面までの範囲の領域を意味し、繊維束の内部とは、繊維束の中心から表面に向かって半径の1/3の範囲の領域を意味する。また、窒化ホウ素皮膜厚さは、繊維を走査型電子顕微鏡(SEM)で観察して、繊維20本の皮膜厚さを測定し、その平均値で表す。
【0009】
本発明における炭化ケイ素系セラミックス繊維としては、密度が2.7g/cm3以上であり、強度及び弾性率が、それぞれ、2GPa以上及び250GPa以上であり、重量割合で、Si:50〜70%、C:28〜45%、Al:0.06〜3.8%、好ましくは0.13〜1.25%、及びB:0.06%〜0.5%、好ましくは0.06〜0.19%からなり、SiCの焼結構造からなる結晶性炭化ケイ素繊維が用いられる。
【0010】
前記結晶性炭化ケイ素繊維は、Alを0.05〜3重量%、Bを0.05〜0.4重量%、及び余剰の炭素を1重量%以上含有する非晶質炭化ケイ素繊維を1600〜2100℃の範囲内の温度で、不活性ガス中で加熱処理することにより得られる。
前記非晶質炭化ケイ素繊維は、酸素を8〜16重量%含むことが好ましい。非晶質炭化ケイ素繊維を加熱する際に、この酸素は前述の余剰の炭素をCOガスとして脱離させる。
【0011】
上記の非晶質炭化ケイ素繊維は、例えば、以下のような方法で調製することができる。
まず、例えば、「有機ケイ素化合物の化学」化学同人(1972年)に記載の方法に従って、1種類以上のジクロロシランをナトリウムによって脱塩素反応させて鎖状又は環状のポリシランを調製する。ポリシランの数平均分子量は通常300〜1000である。本明細書において、ポリシランは、上記の鎖状又は環状のポリシランを400〜700℃の範囲の温度に加熱することにより、あるいは上記の鎖状又は環状のポリシランにフェニル基含有ポリボロシロキサンを添加して250〜500℃の範囲の温度に加熱することよにって得られる、一部にカルボシラン結合を有するポリシランも包含する。ポリシランは、ケイ素の側鎖として、水素原子、低級アルキル基、アリ−ル基、フェニル基あるいはシリル基を有することができる。
【0012】
次いで、ポリシランに対して、アルミニウムのアルコキシド、アセチルアセトキシド化合物、カルボニル化合物、又はシクロペンタジエニル化合物の所定量を添加し、不活性ガス中、通常250〜350℃の範囲の温度で1〜10時間反応することにより、紡糸原料であるアルミニウム含有有機ケイ素重合体を調製する。アルミニウムの化合物の使用量は、ポリシラン1g当たり、通常0.14〜0.86ミリモルである。
【0013】
アルミニウム含有有機ケイ素重合体を、溶融紡糸、乾式紡糸のようなそれ自体公知の方法によって紡糸して、紡糸繊維を調製する。次に、この紡糸繊維を不融化処理して不融化繊維を調製する。不融化方法としては、一般に行われている空気中での加熱、あるいは空気中での加熱と不活性ガス中での加熱を組合せた方法が好ましく採用されうる。
【0014】
不融化繊維を、窒素、アルゴンのような不活性ガス中、800℃から1500℃の範囲の温度で加熱処理して、非晶質炭化ケイ素繊維が調製される。
次いで、非晶質炭化ケイ素繊維を1600〜2100℃の範囲の温度に加熱することによって、結晶質炭化ケイ素繊維が調製される。
【0015】
また、本発明における、炭化ケイ素系セラミックス繊維としては、2族、3族及び4族の金属原子からなる群から選択され、その酸化物の炭素還元反応における自由エネルギー変化が負の値になる温度が、酸化ケイ素の炭素還元反応における自由エネルギー変化が負になる温度に比較して高温である金属元素を含有し、かつ酸素含有量が1〜13重量%の範囲内である炭化ケイ素系繊維が用いられる。
【0016】
前記炭化ケイ素系繊維における構成元素の重量割合は、酸素原子が1〜13%であり、ケイ素原子は通常35〜70%、炭素原子は通常20〜40%である。前記金属原子としては、Be、Mg、Ca、Sr、Ba、Sc、Y、Th、U、Al、Zr及びHfが挙げられる。
【0017】
また、金属原子の含有割合は、金属の配位数により異なるが、繊維中に含有される酸素の少なくとも5%以上を捕獲できる量であることが好ましい。この割合の金属原子の量の計算方法をつぎに記載する。
金属原子をM、その配位数をWとし、
Si:C:O:M=a:b:c:d(モル比)とした場合、繊維中の酸素全量の少なくとも5%以上を捕獲するに足る金属原子の量はつぎの式で算出することができる。
d≧c×0.05/W(但し、d≦c/Wである。)
ここで、Mの原子量をmとすると、Mの重量割合は下式で表される。

Figure 0003760855
【0018】
前記炭化ケイ素系繊維は、カルボシラン(−Si−CH2 −)結合単位、及びポリシラン(−Si−Si−)結合単位から主としてなり、ケイ素の側鎖に水素原子、低級アルキル基、アリ−ル基、フェニル基及びシリル基からなる群から選択される基を有する有機ケイ素重合体に、2族、3族及び4族の金属原子からなる群から選択され、その酸化物の炭素還元反応における自由エネルギ−変化が負の値になる温度が、酸化ケイ素の炭素還元反応における自由エネルギ−変化が負の値になる温度に比較して、高温である金属原子のアルコキシド、アセチルアセトキシ化合物、カルボニル化合物、シクロペンタジエニル化合物及びアミン化合物からなる群から選択される化合物を加熱反応して金属含有有機ケイ素重合体を調製する第1工程、金属含有有機ケイ素重合体を溶融紡糸して紡糸繊維を得る第2工程、紡糸繊維を酸素含有雰囲気中50〜300℃で不融化して不融化繊維を調製する第3工程、不融化繊維を不活性雰囲気中で予備加熱して予備加熱繊維を調製する第4工程、予備加熱繊維を不活性ガス雰囲気あるいは還元性ガス雰囲気で高温焼成して炭化ケイ素系繊維を調製する第5工程から製造される。
【0019】
本発明の窒化ホウ素被覆炭化ケイ素系セラミックス繊維は、直径7〜15μmの炭化ケイ素系セラミックス繊維500〜1600本からなる繊維束を、400〜800℃に保たれた炉に通して、繊維束の収束に使用されている有機物の収束剤を除去した後、収束剤の除去された繊維束を反応炉に送り、反応ガスとしてハロゲン化ホウ素蒸気及びアンモニア、キャリアガスとしてアルゴン又は水素を用いて、温度1400〜1600℃、圧力0.1〜2Torrで、連続的に炭化ケイ素系セラミックス繊維に窒化ホウ素を被覆することにより製造される。
【0020】
また、前記の製造方法において連続的に被覆される炭化ケイ素系セラミックス繊維にかかる張力(荷重)を30g以下、さらに好ましくは10g以下に制御することが望ましい。
【0021】
セラミックス繊維は一般に直径7〜15μm繊がを500〜1600本合わせたものを一束として、たとえば、ポリエチレンオキサイド(PEO)等の有機物の収束剤により繊維束がばらけないようにして供給されている。この繊維束をこのままの状態で30g以上の張力をかけて反応炉に送りこまれると繊維束が十分開かないまま反応炉中の蒸着ゾーンに送りこまれてしまう。したがって、反応ガスが十分繊維束内部まで拡散しないため、内部の繊維の皮膜厚さが外周部に比べ非常に小さくなってしまうが、本発明では、繊維張力を30g以下、さらに好ましくは10g以下に制御し、繊維送りだし部と反応炉の間に400〜800℃に保たれた炉を設置しこの有機物の収束剤を除去することにより、繊維束が開いた状態で反応炉に送りこむことができる。このため、繊維束内部まで反応ガスが十分拡散するため、繊維束の外周部繊維の窒化ホウ素皮膜と内部繊維の窒化ホウ素皮膜の厚さの比(外周部皮膜厚さ/内部皮膜厚さ)を5以下にすることができる。
【0022】
反応温度は高い方が好ましいが、温度は、被覆される炭化ケイ素系セラミックス繊維の耐熱性に依存する。たとえば、上記の結晶性炭化ケイ素繊維の場合、繊維の耐熱性に優れるため、1500〜1600℃が好ましい。また、Si−Zr−C−O繊維等の炭化ケイ素系繊維はやや耐熱性は劣るため、1400〜1500℃が好ましい。圧力は0.1〜2Torr、さらに好ましくは0.1〜1Torrの範囲であり、圧力が高くなると繊維束の外周部繊維の窒化ホウ素皮膜と内部繊維の皮膜厚さの差が大きくなるので好ましくない。
ハロゲン化ホウ素としては、三塩化ホウ素、三フッ化ホウ素及び三しゅう化ホウ素の少なくとも1種が用いられる。
【0023】
また、反応ガスとキャリアガスは、(アンモニア流量/ハロゲン化ホウ素蒸気流量)が2〜4であり、(アルゴン又は水素流量/(アンモニア流量+ハロゲン化ホウ素蒸気流量))を1〜3に制御して反応炉に導入するが望ましい。(アンモニア流量/ハロゲン化ホウ素蒸気流量)が2未満、4超になると窒化ホウ素皮膜中のホウ素と窒素の元素比が化学量論組成の1:1から大きく逸脱してしまうため好ましくない。(アルゴン又は水素流量/(アンモニア流量+ハロゲン化ホウ素蒸気流量))が1未満になると反応炉内の相対酸素分圧があがり、窒化ホウ素皮膜中の酸素の濃度があがるため好ましくない。また、3超になると炉内の圧力が上昇し、繊維束の外周部繊維の窒化ホウ素皮膜と内部繊維の窒化ホウ素皮膜の厚さの比(外周部皮膜厚さ/内部皮膜厚さ)が大きくなるため好ましくない。
【0024】
本発明の窒化ホウ素被覆炭化ケイ素系セラミックス繊維の製造方法を図を用いて説明する。図1は本発明の窒化ホウ素被覆炭化ケイ素系セラミックス繊維を製造するための装置の略図である。装置は化学蒸着により繊維に被覆する反応炉とその前後に繊維送りだし部と巻き取り部が設置してある。また、巻き出し部と反応炉の間には繊維収束剤除去用の炉を設置し、全体が気密構造になっている。気密性については別段なくてもよいが、あった方が好ましい。反応ガスとキャリアガスの導入は反応炉と巻き取り部の間に設けてある。排気管は反応炉と繊維収束剤除去用の炉の間に設けてある。これにより、未反応ガスや生成物である反応ガスのハロゲン化ホウ素蒸気とアンモニアとの生成物であるハロゲン化アンモニウムと収束剤の分解ガスを効率よく排気することができる。排気設備としては、ロータリーポンプに加えメカニカルブースターポンプを設置して排気能力を高めることが望ましい。図1では繊維は水平方向に送り出されるが、垂直方向に(上から下、又は下から上方向)送り出されるように装置を設置してもよい。張力は送りだし部に張力制御装置を設けることが望ましい。また、図2に示すように、全体が気密構造ではなく、繊維送りだし部と繊維巻取り部は大気圧で反応炉内部のみを作動排気により減圧する装置を用いてもよい。図2の装置では、必要であれば作動排気部と反応炉の間に数個の圧力勾配室を設けてもよい。
【0025】
炭化ケイ素系繊維を送りだし部から巻き取り部に通した後、図1の場合は装置全体を気密状態にして、図2の場合は反応炉の前後から作動排気により反応炉内を減圧する。所定の圧力(0.1〜0.5Torrが望ましい)になった後繊維収束剤除去用の炉と反応炉を所定の温度(除去用の炉:400〜800℃、反応炉:1400〜1600℃)に昇温する。繊維は昇温中に長時間反応炉に滞留すると劣化して切れる可能性がるので、1200℃程度から送りだし、巻き取りをスタートさせた方が望ましい。所定の温度になった後、反応ガスであるハロゲン化ホウ素蒸気とアンモニア、及びアルゴンまたは水素のキャリアガスを送り、被覆を開始する。この時、圧力は、0.1〜2Torr、さらに好ましくは0.1〜1Torrの範囲で、(アンモニア流量/ハロゲン化ホウ素蒸気流量)が2〜4であり、(アルゴン又は水素流量/(アンモニア流量+ハロゲン化ホウ素蒸気流量))が1〜3になるように、反応ガスとキャリアガスの流量を設定する。繊維の張力は張力制御装置により、30g、好ましくは10g以下に制御し、送り速度は、反応炉の蒸着ゾーンの30秒から1分滞留するように設定することが好ましい。
【0026】
また、本発明によれば、上記の窒化ホウ素被覆炭化ケイ素系セラミックス繊維を強化繊維とし、セラミックスをマトリックスとするセラミックス基複合材料が提供される。この窒化ホウ素被覆炭化ケイ素系セラミックス繊維の形態については特に制限はなく、平織、朱子織等の2次元あるいは3次元織物、又は一方向シート状物又はその積層物であってもよい。また、連続繊維を切断したチョップ状短繊維を使用した不織布であってもよい。複合材料中の窒化ホウ素被覆炭化ケイ素系セラミックス繊維の体積率については特別の制限はないが、20〜50%が一般的である。
【0027】
本発明のセラミックスマトリックスとしては、結晶質又は非晶質の酸化物セラミックス、結晶質又は非晶質の非酸化物セラミックス、ガラス、結晶化ガラス、これらの混合物、これらのセラミックスを粒子分散したものが好ましい。
【0028】
酸化物セラミックスの具体例としては、アルミニウム、マグネシウム、ケイ素、イットリウム、インジウム、ウラン、カルシウム、スカンジウム、タンタル、ニオブ、ネオジウム、ランタン、ルテニウム、ロジウム、ベリリウム、チタン、錫、ストロンチウム、バリウム、亜鉛、ジルコニウム、鉄のような元素の酸化物、これら金属の複合酸化物が挙げられる。
【0029】
非酸化物セラミックスの具体例としては、炭化物、窒化物、硼化物を挙げることができる。炭化物の具体例としては、ケイ素、チタン、ジルコニウム、アルミニウム、ウラン、タングステン、タンタル、ハフニウム、ホウ素、鉄、マンガンのような元素の炭化物、これら元素の複合炭化物が挙げられる。この複合炭化物の例としては、ポリチタノカルボシラン又はポリジルコノカルボシランを加熱焼成して得られる無機物が挙げられる。
【0030】
窒化物の具体例としては、ケイ素、ホウ素、アルミニウム、マグネシウム、モリブデンにような元素の窒化物、これらの元素の複合酸化物、サイアロンが挙げられる。
硼化物の具体例としては、チタン、イットリウム、ランタンのような元素の硼化物、CeCoB,CeCo,ErRhのような硼化白金族ランタノイドが挙げられる。
【0031】
ガラスの具体例としては、ケイ酸塩ガラス、リン酸塩ガラス、ホウ酸塩ガラスのような非晶質ガラスが挙げられる。結晶化ガラスの具体例としては、主結晶相がβ−スプジューメンであるLiO−Al2O−MgO−SiO系ガラス及びLiO−Al−MgO−SiO−Nb系ガラス、主結晶相がコージェライトであるMgO−Al−SiO系ガラス、主結晶相がバリウムオスミライトであるBaO−MgO−Al−SiO系ガラス、主結晶相がムライト又はヘキサセルシアンであるBaO−Al−SiO系ガラス、主結晶相がアノーサイトであるCaO−Al−SiO系ガラスが挙げられる。これらの結晶化ガラスの結晶相にはクリストバライトが含まれることがある。本発明におけるセラミックスとして、上記の各種セラミックスの固溶体を挙げることができる。
【0032】
セラミックスを粒子分散強化した具体例としては、上記のセラミックスマトリックス中に、窒化ケイ素、炭化ケイ素、酸化ジルコニウム、酸化マグネシウム、チタン酸カリウム、硼酸マグネシウム、酸化亜鉛、硼化チタン及びムライトから選択される無機物質の球状粒子、多面体粒子、板状粒子、棒状粒子、ウイスカを0.1〜60体積%均一分散したセラミックスが挙げられる。球状粒子及び多面体粒子の粒径は0.1μm〜1mm、板状粒子、棒状粒子及びウイスカのアスペクト比は一般に1.5〜1000である。
【0033】
複合化方法としては、特に制限はないが、セラミックスの前駆体重合体、たとえば、ポリカルボシラン、ポリメタロカルボシラン、ポリシラザン等を窒化ホウ素被覆炭化ケイ素系セラミックス繊維の成形体に含浸した後に加熱焼成することにより複合化を行うポリマー含浸・焼成法、マトリックスの原料粉末のスラリーを含浸し、ホットプレス等で高温で加圧燒結する方法やマトリックス元素のアルコキシドを原料にしたゾルゲル法、又は反応ガスを用いた化学蒸着法や溶融金属を含浸させ、反応によりセラミックス化させる反応燒結法がある。
【0034】
【実施例】
以下、本発明を実施例により説明する。
実施例1
図1の装置を用い、炭化ケイ素系繊維として、化学組成が、Si:67%、C:31%、O:0.3%、Al:0.8%、B:0.06%(原子比Si:C:O:Al=1:1.08:0.008:0.012)の結晶性炭化ケイ素繊維の長繊維(平均直径:7.5μm、1600本/繊維束、収束剤:ポリエチレンオイサイド(PEO))に、反応ガスとして三塩化ホウ素蒸気、キャリアガスとしてアルゴンを用いて窒素ホウ素を下記の条件で連続的に被覆した。
・反応炉の温度:1550℃
・収束剤除去用炉の温度:700℃
・アンモニア流量:300ml/分
・三塩化ホウ素:100ml/分
・アルゴンガス:800ml/分
・圧力0.7Torr
・繊維送り速度:30cm/分
・繊維張力:10g
得られた窒化ホウ素被覆炭化ケイ素繊維の繊維束の外周部(図3)と内部(図4)の被覆繊維の走査型電子顕微鏡(SEM)写真を示す。これから皮膜厚さは、約0.7μm〜1.5μmで繊維束の外周部繊維の窒化ホウ素皮膜と内部繊維の窒化ホウ素の皮膜厚さの比(外周部皮膜厚さ/内部皮膜厚さ)は2程度であり高い均一性の皮膜が形成できていることがわかる。また、図5には皮膜のオージェ分析による深さ方向の元素プロファイルを示す。これからホウ素と窒素はほぼ1:1で、窒化ホウ素の化学量論組成にきわめて近くなっていることがわかる。また、不純物である酸素と炭素の量は合わせても約5原子%であり、高純度で厚さの均一性の高い窒化ホウ素の皮膜が形成できていることがわかった。
【0035】
実施例2
炭化ケイ素系繊維として、化学組成がSi:55.5%、O:9.8%、C:34.1%、Zr:0.6%のSi−Zr−C−O繊維(平均直径:11μm、800本/繊維束、収束剤:ポリエチレンオイサイド)に、反応ガスとして三塩化ホウ素蒸気、キャリアガスとしてアルゴンを用いて窒素ホウ素を下記の条件で連続的に被覆した。
・反応炉の温度:1450℃
・収束剤除去用炉の温度:700℃
・アンモニア流量:330ml/分
・三塩化ホウ素:110ml/分
・アルゴンガス:850ml/分
・圧力0.8Torr
・繊維送り速度:30cm/分
・繊維張力:10g
得られた窒化ホウ素被覆炭化ケイ素繊維の繊維束の外周部と内部の被覆繊維の走査型電子顕微鏡(SEM)で観察したところ、約0.5μm〜1μmで繊維束の外周部繊維の窒化ホウ素皮膜と内部繊維の窒化ホウ素の皮膜厚さの比(外周部皮膜厚さ/内部皮膜厚さ)は2程度であり高い均一性の皮膜が形成できていることがわかった。また、図6は皮膜のオージェ分析による深さ方向の元素プロファイルを示す。これからホウ素と窒素はほぼ1:1で、窒化ホウ素の化学量論組成にきわめて近くなっていることがわかる。また、不純物である不純物である酸素と炭素の量は界面近傍では合わせて10原子%近くであるが、平均では約5原子%であり、高純度で厚さの均一性の高い窒化ホウ素の皮膜が形成できていることがわかった。
【0036】
比較例1
実施例1における収束剤除去用炉の使用をやめ、また張力を50gにして他の条件は同じにして連続的に被覆を行った。得られた窒化ホウ素被覆炭化ケイ素繊維の繊維束の外周部(図7)と内部(図8)の被覆繊維の走査型電子顕微鏡(SEM)写真を示す。これから皮膜厚さは、約0.1μm〜1.5μmで内部の皮膜厚さは非常に薄くなっており、繊維束の外周部繊維の窒化ホウ素皮膜と内部繊維の窒化ホウ素の皮膜厚さの比(外周部皮膜厚さ/内部皮膜厚さ)は15程度と大きくなり、皮膜厚さが非常に不均一になっていた。
【0037】
実施例3
実施例1の窒化ホウ素を被覆した結晶性炭化ケイ素繊維を3次元織物(繊維割合は、X:Y:Z=1:1:0.2)に成形した。
ついで、ポリチタノカルボシラン100部をキシレン100部に溶解させた溶液に浸漬し、アルゴン雰囲気中5気圧で含浸させた。さらに、アルゴン気流中に150℃に加熱してキシレンを蒸発除去した後、1200℃で焼成し、無機化を行った。引き続き、前記浸漬、含浸、焼成を8回繰り返して、繊維体積率40%の結晶性炭化ケイ素強化複合材料を得た。
得られた複合材料の引張強度は室温で350MPaであった。この複合材料の大気中での高温強度を測定したところ、1200℃で330MPa、1400℃で300MPaと優れた特性を示した。
【0038】
比較例2
比較例1の窒化ホウ素を被覆した結晶性炭化ケイ素繊維を実施例3と同様に3次元織物(繊維割合は、X:Y:Z=1:1:0.2)に成形した。
ついで、実施例3と同様にポリチタノカルボシラン100部をキシレン100部に溶解させた溶液に浸漬し、アルゴン雰囲気中5気圧で含浸させた。さらに、アルゴン気流中に150℃に加熱してキシレンを蒸発除去した後、1200℃で焼成し、無機化を行った。引き続き、前記浸漬、含浸、焼成を8回繰り返して、繊維体積率40%の結晶性炭化ケイ素強化複合材料を得た。
得られた複合材料の引張強度は室温で340MPaであった。この複合材料の大気中での高温強度を測定したところ、1200℃で200MPa、1400℃で150MPaと実施例1に比べ大気中高温での強度は大きく低下した。破面を観察したところ、被覆厚さの薄い繊維束内部の繊維とマトリックスが酸化により強固に接着していることが認められた。
【0039】
実施例4
実施例2の窒化ホウ素を被覆したSi−Zr−C−O繊維をMgO−Al−SiOのガラス粉末の水スラリーに連続的に通しながらドラムに巻き取った。その後、一箇所を切断して一方向のシートを作製した。この一方向シートを繊維配向が一方向になるように20枚積層して、ホットプレス装置を用いてアルゴン中1300℃、150kg/cmの圧力で成形し、繊維体積率45%のSi−Zr−C−O繊維強化複合材料を得た。
得られた複合材料の曲げ強度は室温で1100MPaであった。この複合材料の大気中での高温強度を測定したところ、1200℃で1000MPaと優れた特性を示した。
【0040】
【発明の効果】
本発明によれば、不純物濃度が低く、かつ繊維束の外周部と内部の皮膜厚さの差が小さい窒化ホウ素被覆炭化ケイ素系セラミックス繊維が提供できる。これにより、耐酸化性に優れ、皮膜厚さの均一性の高い窒化ホウ素皮膜を被覆した炭化ケイ素系セラミックス繊維が提供できる。また、本発明により、この繊維により強化されたセラミックス基複合材料が提供される。これにより、高温での耐酸化性に優れ、皮膜厚さが過度の薄いために起こる繊維とマトリックスの界面の劣化や皮膜厚さの不均一性による信頼性の低下がない優れたセラミックス基複合材料が提供できる。
【図面の簡単な説明】
【図1】図1は本発明の窒化ホウ素被覆炭化ケイ素系セラミックス繊維を製造するための装置の略図である。
【図2】図2は本発明の窒化ホウ素被覆炭化ケイ素系セラミックス繊維を製造するための他の装置の略図である。
【図3】図3は本発明の実施例1で得られた窒化ホウ素被覆炭化ケイ素繊維の繊維束の外周部の被覆繊維の形状を示す図面に代える走査型電子顕微鏡(SEM)写真である。
【図4】図4は本発明の実施例1で得られた窒化ホウ素被覆炭化ケイ素繊維の繊維束の内部の被覆繊維の形状を示す図面に代える走査型電子顕微鏡(SEM)写真である。
【図5】図5は本発明の実施例1で得られた窒化ホウ素被覆炭化ケイ素繊維の皮膜のオージェ分析による深さ方向の元素プロファイルを示す図である。
【図6】図6は本発明の実施例2で得られた窒化ホウ素被覆炭化ケイ素繊維の皮膜のオージェ分析による深さ方向の元素プロファイルを示す図である。
【図7】図7は本発明の比較例1で得られた窒化ホウ素被覆炭化ケイ素繊維の繊維束の外周部の被覆繊維の形状を示す図面に代える走査型電子顕微鏡(SEM)写真である。
【図8】図8は本発明の比較例1で得られた窒化ホウ素被覆炭化ケイ素繊維の繊維束の内部の被覆繊維の形状を示す図面に代える走査型電子顕微鏡(SEM)写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon carbide ceramic fiber coated with boron nitride, a method for producing the same, and a ceramic matrix composite material reinforced with the silicon carbide ceramic fiber coated with boron nitride.
[0002]
[Prior art]
Ceramic matrix composites reinforced with ceramic fibers are being developed as next-generation heat-resistant materials because of their excellent heat resistance not found in metals and damage tolerance not found in conventional single-phase ceramics.
In this ceramic matrix composite material, the bond at the interface between the reinforcing fiber and the matrix is controlled, and when the material breaks, cracks are deflected at this interface, and the breakage proceeds while the fiber pulls out. It is a feature. Carbon has been used in the early stages of development to control the bonding at this interface, but boron nitride with excellent oxidation resistance is used because of its poor oxidation resistance. This boron nitride is mainly coated on the fiber by chemical vapor deposition. For example, as disclosed in US Pat. No. 4,642,271, a fiber molded body formed into a desired shape at 1000 ° C. or lower is placed in a reaction furnace. A method of coating by a batch method, for example, Mat. Res. Soc. Symp. Proc. As shown in 250, (1992) 269-274, a fiber feeding part and a winding part are provided before and after the reaction furnace, and the fiber is continuously sent to the reaction furnace at a higher temperature (˜1400 ° C.) than the batch system. There is a continuous coating method.
[0003]
[Problems to be solved by the invention]
The batch method is advantageous in terms of cost compared to the continuous method. Mater. Sci. 33 (1998) 5277-5289, carbon and oxygen impurities are included in an amount of about 20 atomic%, and Ceram. Eng. Sci. Proc. 18 (3) (1997) 525-534, it is pointed out that the oxidation resistance is inferior to that of the continuous system.
[0004]
On the other hand, the continuous method is different from the batch method in terms of J.P. Mater. Sci. 33 (1998) 5277-5289, the total amount of impurities of carbon and oxygen is less than 10 atomic%, and high-purity boron nitride can be coated. However, Ceram. Eng. Sci. Proc. , 18 (3) (1997) 525-534 and Mat. Res. Soc. Symp. Proc. 250, (1992) 269-274, the outer periphery of the fiber bundle (usually supplied in a bundle of 500 to 1600) is thickly coated, but the inside is thinned. It has been reported that the ratio (outer peripheral film thickness / internal film thickness) is 6-9. Such a large ratio value indicates that the state of the interface between the fiber and the matrix in the ceramic matrix composite material reinforced with the coated fiber becomes non-uniform, which impairs the reliability of the material.
[0005]
[Means for Solving the Problems]
In order to solve these problems, the boron nitride-coated silicon carbide ceramics having a low impurity concentration and a small difference in film thickness between the outer peripheral portion and the inner portion of the fiber bundle are obtained by a novel continuous coating method of boron nitride. Fibers and ceramic matrix composites reinforced with the fibers are provided.
[0006]
According to the present invention, it is composed of a fiber bundle of 500 to 1600 silicon carbide ceramic fibers having a diameter of 7 to 15 μm, the thickness of the fiber is 0.2 to 2 μm, and the total of oxygen and carbon as impurities is 10 on average. The ratio of the thickness of the boron nitride film on the outer periphery of the fiber bundle to the thickness of the boron nitride film on the inner fiber (outer film thickness / inner film thickness) A boron nitride-coated silicon carbide-based ceramic fiber is provided, wherein
[0007]
The boron nitride-coated silicon carbide based ceramic fiber of the present invention comprises a fiber bundle of 500 to 1600 silicon carbide based ceramic fibers having a diameter of 7 to 15 μm.
The fiber surface is coated with boron nitride having a thickness of 0.2 to 2 μm, preferably 0.5 to 1.5 μm. The total of oxygen and carbon as impurities in the boron nitride film is 10 atomic% or less on average.
[0008]
Further, the ratio of the thickness of the boron nitride film on the outer peripheral portion of the fiber bundle to the thickness of the boron nitride coating on the inner fiber (outer peripheral portion thickness / internal coating thickness) is 5 or less.
In the present invention, the outer peripheral portion of the fiber bundle means an area in the range from 2/3 of the radius to the surface from the center of the fiber bundle to the surface, and the inside of the fiber bundle means the surface from the center of the fiber bundle. This means a region in the range of 1/3 of the radius toward. The boron nitride film thickness is expressed as an average value obtained by observing the fiber with a scanning electron microscope (SEM), measuring the film thickness of 20 fibers.
[0009]
The silicon carbide ceramic fiber in the present invention has a density of 2.7 g / cm. Three The strength and elastic modulus are 2 GPa or more and 250 GPa or more, respectively, and by weight ratio, Si: 50 to 70%, C: 28 to 45%, Al: 0.06 to 3.8%, preferably Is composed of 0.13 to 1.25% and B: 0.06% to 0.5%, preferably 0.06 to 0.19%, and a crystalline silicon carbide fiber having a sintered structure of SiC is used. It is done.
[0010]
The crystalline silicon carbide fiber is made of amorphous silicon carbide fiber containing 0.05 to 3% by weight of Al, 0.05 to 0.4% by weight of B, and 1% by weight or more of excess carbon. It can be obtained by heat treatment in an inert gas at a temperature in the range of 2100 ° C.
The amorphous silicon carbide fiber preferably contains 8 to 16% by weight of oxygen. When the amorphous silicon carbide fiber is heated, this oxygen desorbs the aforementioned excess carbon as CO gas.
[0011]
The amorphous silicon carbide fiber can be prepared, for example, by the following method.
First, for example, according to the method described in “Chemistry of Organosilicon Compounds” Chemistry Dojin (1972), one or more dichlorosilanes are dechlorinated with sodium to prepare a linear or cyclic polysilane. The number average molecular weight of polysilane is usually 300-1000. In this specification, the polysilane is obtained by heating the chain or cyclic polysilane to a temperature in the range of 400 to 700 ° C., or adding a phenyl group-containing polyborosiloxane to the chain or cyclic polysilane. Also included is a polysilane partially having a carbosilane bond obtained by heating to a temperature in the range of 250 to 500 ° C. The polysilane can have a hydrogen atom, a lower alkyl group, an aryl group, a phenyl group or a silyl group as a side chain of silicon.
[0012]
Next, a predetermined amount of aluminum alkoxide, acetylacetoxide compound, carbonyl compound, or cyclopentadienyl compound is added to polysilane, and 1 to 10 at a temperature usually in the range of 250 to 350 ° C. in an inert gas. By reacting for a time, an aluminum-containing organosilicon polymer that is a raw material for spinning is prepared. The amount of the aluminum compound used is usually 0.14 to 0.86 mmol per 1 g of polysilane.
[0013]
An aluminum-containing organosilicon polymer is spun by a method known per se such as melt spinning and dry spinning to prepare a spun fiber. Next, this spinning fiber is infusibilized to prepare an infusible fiber. As the infusibilization method, generally used heating in air or a combination of heating in air and heating in an inert gas can be preferably employed.
[0014]
Amorphous silicon carbide fibers are prepared by heat-treating the infusible fibers in an inert gas such as nitrogen or argon at a temperature in the range of 800 ° C. to 1500 ° C.
Crystalline silicon carbide fibers are then prepared by heating the amorphous silicon carbide fibers to a temperature in the range of 1600-2100 ° C.
[0015]
In addition, the silicon carbide ceramic fiber in the present invention is selected from the group consisting of metal atoms of Group 2, Group 3, and Group 4, and the temperature at which the free energy change in the carbon reduction reaction of the oxide becomes a negative value However, a silicon carbide fiber containing a metal element having a high temperature compared to the temperature at which the free energy change in the carbon reduction reaction of silicon oxide is negative and having an oxygen content in the range of 1 to 13% by weight. Used.
[0016]
The weight ratio of the constituent elements in the silicon carbide fiber is 1 to 13% for oxygen atoms, usually 35 to 70% for silicon atoms, and 20 to 40% for carbon atoms. Examples of the metal atom include Be, Mg, Ca, Sr, Ba, Sc, Y, Th, U, Al, Zr, and Hf.
[0017]
Moreover, although the content rate of a metal atom changes with metal coordination numbers, it is preferable that it is the quantity which can capture at least 5% or more of the oxygen contained in a fiber. The calculation method of the amount of metal atoms in this proportion is described below.
The metal atom is M and the coordination number is W,
When Si: C: O: M = a: b: c: d (molar ratio), the amount of metal atoms sufficient to capture at least 5% of the total amount of oxygen in the fiber can be calculated by the following equation: it can.
d ≧ c × 0.05 / W (where d ≦ c / W)
Here, when the atomic weight of M is m, the weight ratio of M is represented by the following formula.
Figure 0003760855
[0018]
The silicon carbide fiber is carbosilane (-Si-CH 2 A group selected mainly from the group consisting of a hydrogen atom, a lower alkyl group, an aryl group, a phenyl group and a silyl group, which is mainly composed of a-) bonding unit and a polysilane (-Si-Si-) bonding unit. The temperature at which the free energy change in the carbon reduction reaction of the oxide is a negative value is selected from the group consisting of Group 2, Group 3 and Group 4 metal atoms. Selected from the group consisting of metal atom alkoxides, acetylacetoxy compounds, carbonyl compounds, cyclopentadienyl compounds, and amine compounds that are hot compared to the temperature at which the free energy change in the carbon reduction reaction is negative. A first step of preparing a metal-containing organosilicon polymer by reacting the compound with heating, a process for obtaining a spun fiber by melt spinning the metal-containing organosilicon polymer Step, a third step of preparing the infusible fiber by infusibilizing the spun fiber at 50 to 300 ° C. in an oxygen-containing atmosphere, and a fourth step of preparing the preheated fiber by preheating the infusible fiber in an inert atmosphere. The pre-heated fiber is manufactured from the fifth step of preparing a silicon carbide fiber by firing at a high temperature in an inert gas atmosphere or a reducing gas atmosphere.
[0019]
The boron nitride-coated silicon carbide-based ceramic fiber of the present invention passes a fiber bundle composed of 500 to 1600 silicon carbide-based ceramic fibers having a diameter of 7 to 15 μm through a furnace maintained at 400 to 800 ° C. to converge the fiber bundle. After removing the organic sizing agent used in the process, the fiber bundle from which the sizing agent has been removed is sent to a reaction furnace, and boron halide vapor and ammonia are used as a reaction gas, and argon or hydrogen is used as a carrier gas, and the temperature is 1400. It is manufactured by continuously coating silicon carbide ceramic fibers with boron nitride at ˜1600 ° C. and pressure of 0.1 to 2 Torr.
[0020]
In addition, it is desirable to control the tension (load) applied to the silicon carbide ceramic fibers continuously coated in the above manufacturing method to 30 g or less, more preferably 10 g or less.
[0021]
Ceramic fibers are generally supplied in a bundle of 500 to 1600 fibers having a diameter of 7 to 15 μm, for example, such that the fiber bundle is not scattered by an organic converging agent such as polyethylene oxide (PEO). . If this fiber bundle is sent to the reaction furnace under a tension of 30 g or more in this state, the fiber bundle is sent to the vapor deposition zone in the reaction furnace without being sufficiently opened. Therefore, since the reaction gas does not sufficiently diffuse into the fiber bundle, the film thickness of the inner fiber becomes very small compared to the outer peripheral portion. However, in the present invention, the fiber tension is 30 g or less, more preferably 10 g or less. By controlling and installing a furnace maintained at 400 to 800 ° C. between the fiber feeding section and the reaction furnace and removing the organic sizing agent, the fiber bundle can be fed into the reaction furnace. For this reason, since the reaction gas sufficiently diffuses into the fiber bundle, the ratio of the thickness of the boron nitride film on the outer peripheral fiber of the fiber bundle to the thickness of the boron nitride film on the inner fiber (outer film thickness / inner film thickness) 5 or less.
[0022]
A higher reaction temperature is preferred, but the temperature depends on the heat resistance of the silicon carbide ceramic fiber to be coated. For example, in the case of the above-described crystalline silicon carbide fiber, 1500 to 1600 ° C. is preferable because the fiber has excellent heat resistance. In addition, silicon carbide fibers such as Si—Zr—C—O fibers are slightly inferior in heat resistance, so 1400 to 1500 ° C. is preferable. The pressure is in the range of 0.1 to 2 Torr, more preferably 0.1 to 1 Torr. If the pressure is increased, the difference between the film thickness of the boron nitride film on the outer peripheral fiber of the fiber bundle and the film thickness of the internal fiber is not preferable. .
As the boron halide, at least one of boron trichloride, boron trifluoride, and boron trioxalate is used.
[0023]
The reaction gas and the carrier gas have (ammonia flow rate / boron halide vapor flow rate) of 2 to 4, and (argon or hydrogen flow rate / (ammonia flow rate + boron halide vapor flow rate)) is controlled to 1 to 3. Is preferably introduced into the reactor. When (ammonia flow rate / boron halide vapor flow rate) is less than 2 and more than 4, the element ratio of boron to nitrogen in the boron nitride film is greatly deviated from 1: 1 of the stoichiometric composition, which is not preferable. When (argon or hydrogen flow rate / (ammonia flow rate + boron halide vapor flow rate)) is less than 1, the relative oxygen partial pressure in the reaction furnace increases, which is not preferable because the oxygen concentration in the boron nitride film increases. Also, when it exceeds 3, the pressure in the furnace rises, and the ratio of the thickness of the boron nitride coating on the outer peripheral fiber of the fiber bundle to the boron nitride coating on the inner fiber (outer peripheral coating thickness / internal coating thickness) increases. Therefore, it is not preferable.
[0024]
A method for producing the boron nitride-coated silicon carbide ceramic fiber of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of an apparatus for producing the boron nitride-coated silicon carbide ceramic fiber of the present invention. The apparatus has a reaction furnace for coating fibers by chemical vapor deposition, and a fiber feeding section and a winding section before and after the reaction furnace. Further, a furnace for removing the fiber sizing agent is installed between the unwinding part and the reaction furnace, and the whole has an airtight structure. The airtightness may be omitted, but it is preferable. The introduction of the reaction gas and the carrier gas is provided between the reaction furnace and the winding part. The exhaust pipe is provided between the reaction furnace and the furnace for removing the fiber sizing agent. Thereby, the decomposition gas of the ammonium halide which is a product of the boron halide vapor | steam of the reaction gas which is unreacted gas and a product, and ammonia, and a convergence agent can be exhausted efficiently. As an exhaust system, it is desirable to install a mechanical booster pump in addition to a rotary pump to increase the exhaust capacity. In FIG. 1, the fibers are sent out in the horizontal direction, but the apparatus may be installed so as to be sent out in the vertical direction (from top to bottom or from bottom to top). As for the tension, it is desirable to provide a tension control device at the feed section. Moreover, as shown in FIG. 2, the whole may not be an airtight structure, but the apparatus which depressurizes only the inside of a reaction furnace by working exhaust_gas | exhaustion at atmospheric pressure may be used for a fiber delivery part and a fiber winding part. In the apparatus of FIG. 2, if necessary, several pressure gradient chambers may be provided between the working exhaust and the reaction furnace.
[0025]
After passing the silicon carbide fiber from the feed section to the winding section, the entire apparatus is airtight in the case of FIG. 1, and the inside of the reaction furnace is depressurized by working exhaust from before and after the reaction furnace in FIG. After reaching a predetermined pressure (preferably 0.1 to 0.5 Torr), the fiber sizing agent removal furnace and the reaction furnace are set to predetermined temperatures (removal furnace: 400 to 800 ° C., reaction furnace: 1400 to 1600 ° C. ). If the fiber stays in the reactor for a long time during the temperature rise, it may deteriorate and break, so it is preferable to start the winding from about 1200 ° C. After reaching a predetermined temperature, boron halide vapor, which is a reaction gas, ammonia, and a carrier gas of argon or hydrogen are sent to start coating. At this time, the pressure is in the range of 0.1 to 2 Torr, more preferably 0.1 to 1 Torr, (ammonia flow rate / boron halide vapor flow rate) is 2 to 4, and (argon or hydrogen flow rate / (ammonia flow rate). The flow rates of the reaction gas and the carrier gas are set so that + the boron halide vapor flow rate)) is 1 to 3. The tension of the fiber is controlled by a tension control device to 30 g, preferably 10 g or less, and the feed rate is preferably set so as to stay for 1 minute from 30 seconds in the deposition zone of the reactor.
[0026]
In addition, according to the present invention, there is provided a ceramic matrix composite material using the boron nitride-coated silicon carbide ceramic fiber as a reinforcing fiber and a ceramic as a matrix. The form of the boron nitride-coated silicon carbide ceramic fiber is not particularly limited, and may be a two-dimensional or three-dimensional fabric such as plain weave or satin weave, or a unidirectional sheet or laminate thereof. Moreover, the nonwoven fabric using the chopped short fiber which cut | disconnected the continuous fiber may be sufficient. There is no particular restriction on the volume ratio of the boron nitride-coated silicon carbide ceramic fibers in the composite material, but 20 to 50% is common.
[0027]
The ceramic matrix of the present invention includes crystalline or amorphous oxide ceramics, crystalline or amorphous non-oxide ceramics, glass, crystallized glass, a mixture thereof, and those obtained by dispersing these ceramic particles. preferable.
[0028]
Specific examples of oxide ceramics include aluminum, magnesium, silicon, yttrium, indium, uranium, calcium, scandium, tantalum, niobium, neodymium, lanthanum, ruthenium, rhodium, beryllium, titanium, tin, strontium, barium, zinc, zirconium. And oxides of elements such as iron and complex oxides of these metals.
[0029]
Specific examples of non-oxide ceramics include carbides, nitrides and borides. Specific examples of the carbide include carbides of elements such as silicon, titanium, zirconium, aluminum, uranium, tungsten, tantalum, hafnium, boron, iron, and manganese, and composite carbides of these elements. Examples of this composite carbide include inorganic substances obtained by heating and baking polytitanocarbosilane or polyzirconocarbosilane.
[0030]
Specific examples of nitrides include nitrides of elements such as silicon, boron, aluminum, magnesium, and molybdenum, composite oxides of these elements, and sialon.
Specific examples of borides include borides of elements such as titanium, yttrium, and lanthanum, and CeCoB. 2 , CeCo 4 B 4 , ErRh 4 B 4 And platinum boride lanthanoids such as
[0031]
Specific examples of the glass include amorphous glass such as silicate glass, phosphate glass, and borate glass. As a specific example of crystallized glass, LiO whose main crystal phase is β-spudene 2 -Al2O 3 -MgO-SiO 2 Glass and LiO 2 -Al 2 O 3 -MgO-SiO 2 -Nb 2 O 5 -Based glass, MgO-Al whose main crystal phase is cordierite 2 O 3 -SiO 2 -Based glass, BaO-MgO-Al whose main crystal phase is barium osmylite 2 O 3 -SiO 2 -Based glass, BaO-Al whose main crystal phase is mullite or hexacelsian 2 O 3 -SiO 2 Glass, CaO-Al whose main crystal phase is anorthite 2 O 3 -SiO 2 System glass. The crystal phase of these crystallized glasses may contain cristobalite. Examples of the ceramic in the present invention include solid solutions of the above-mentioned various ceramics.
[0032]
As a specific example of ceramic particle dispersion strengthening, an inorganic material selected from silicon nitride, silicon carbide, zirconium oxide, magnesium oxide, potassium titanate, magnesium borate, zinc oxide, titanium boride and mullite in the above ceramic matrix. Examples include ceramics in which spherical particles, polyhedral particles, plate-like particles, rod-like particles, and whiskers of a substance are uniformly dispersed in an amount of 0.1 to 60% by volume. The particle size of spherical particles and polyhedral particles is 0.1 μm to 1 mm, and the aspect ratio of plate-like particles, rod-like particles and whiskers is generally 1.5 to 1000.
[0033]
The composite method is not particularly limited, but a ceramic precursor polymer, for example, polycarbosilane, polymetallocarbosilane, polysilazane, etc., is impregnated into a boron nitride-coated silicon carbide ceramic fiber molded body and then heated and fired. Polymer impregnation / firing method to form a composite, impregnation with slurry of matrix raw material powder, press sintering at high temperature with hot press, etc., sol-gel method using matrix element alkoxide as raw material, or reactive gas There are known chemical vapor deposition methods and reaction sintering methods in which molten metal is impregnated and ceramicized by reaction.
[0034]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Example 1
Using the apparatus of FIG. 1, the chemical composition of silicon carbide fiber is as follows: Si: 67%, C: 31%, O: 0.3%, Al: 0.8%, B: 0.06% (atomic ratio) Crystalline silicon carbide fiber long fibers (average diameter: 7.5 μm, 1600 fibers / fiber bundle, Si: C: O: Al = 1: 1.08: 0.008: 0.012), sizing agent: polyethylene oil Side (PEO)) was continuously coated with boron nitrogen using boron trichloride vapor as a reaction gas and argon as a carrier gas under the following conditions.
-Reactor temperature: 1550 ° C
-Temperature of the sizing agent removal furnace: 700 ° C
・ Ammonia flow rate: 300ml / min
・ Boron trichloride: 100ml / min
Argon gas: 800 ml / min
・ Pressure 0.7 Torr
・ Fiber feeding speed: 30 cm / min
・ Fiber tension: 10g
The scanning electron microscope (SEM) photograph of the outer peripheral part (FIG. 3) of the fiber bundle of the obtained boron nitride covering silicon carbide fiber and the inside (FIG. 4) is shown. From this, the film thickness is about 0.7 μm to 1.5 μm, and the ratio of the film thickness of the boron nitride film of the outer peripheral fiber of the fiber bundle to the boron nitride of the inner fiber (outer film thickness / inner film thickness) is It can be seen that a highly uniform film of about 2 was formed. FIG. 5 shows an element profile in the depth direction by Auger analysis of the film. This shows that boron and nitrogen are approximately 1: 1, which is very close to the stoichiometric composition of boron nitride. Further, the total amount of oxygen and carbon as impurities was about 5 atomic%, and it was found that a boron nitride film having high purity and high uniformity in thickness could be formed.
[0035]
Example 2
As a silicon carbide fiber, Si—Zr—C—O fiber (average diameter: 11 μm) having a chemical composition of Si: 55.5%, O: 9.8%, C: 34.1%, Zr: 0.6% 800 / fiber bundle, sizing agent: polyethylene euside), boron trichloride vapor as a reaction gas and argon as a carrier gas were continuously coated with boron boron under the following conditions.
・ Reactor temperature: 1450 ° C
-Temperature of the sizing agent removal furnace: 700 ° C
・ Ammonia flow rate: 330 ml / min
・ Boron trichloride: 110ml / min
Argon gas: 850 ml / min
・ Pressure 0.8 Torr
・ Fiber feeding speed: 30 cm / min
・ Fiber tension: 10g
Boron nitride coating on the outer peripheral fiber of the fiber bundle at about 0.5 μm to 1 μm as observed by scanning electron microscope (SEM) of the outer peripheral part of the obtained boron nitride-coated silicon carbide fiber bundle and the inner coated fiber The ratio of the coating thickness of boron nitride on the inner fibers (outer peripheral coating thickness / internal coating thickness) was about 2, indicating that a highly uniform coating could be formed. FIG. 6 shows an element profile in the depth direction by Auger analysis of the film. This shows that boron and nitrogen are approximately 1: 1, which is very close to the stoichiometric composition of boron nitride. Further, the amount of oxygen and carbon, which are impurities, is nearly 10 atomic% in the vicinity of the interface, but the average is about 5 atomic%, and the boron nitride film having high purity and high uniformity in thickness. It was found that was formed.
[0036]
Comparative Example 1
The use of the sizing agent removing furnace in Example 1 was stopped, the tension was 50 g, and the other conditions were the same, and the coating was continuously performed. The scanning electron microscope (SEM) photograph of the outer peripheral part (FIG. 7) and the inside (FIG. 8) of the fiber bundle of the obtained boron nitride covering silicon carbide fiber is shown. From this, the film thickness is about 0.1 μm to 1.5 μm, and the inner film thickness is very thin. The ratio of the film thickness of the boron nitride film of the outer peripheral fiber of the fiber bundle to the film thickness of boron nitride of the inner fiber (Outer peripheral film thickness / internal film thickness) was as large as about 15, and the film thickness was very uneven.
[0037]
Example 3
The crystalline silicon carbide fiber coated with boron nitride of Example 1 was formed into a three-dimensional fabric (fiber ratio: X: Y: Z = 1: 1: 0.2).
Subsequently, 100 parts of polytitanocarbosilane was immersed in a solution of 100 parts of xylene and impregnated at 5 atm in an argon atmosphere. Further, the mixture was heated to 150 ° C. in an argon stream to evaporate and remove xylene, and then calcined at 1200 ° C. for mineralization. Subsequently, the above immersion, impregnation and firing were repeated 8 times to obtain a crystalline silicon carbide reinforced composite material having a fiber volume ratio of 40%.
The resulting composite material had a tensile strength of 350 MPa at room temperature. When the high temperature strength of this composite material in the atmosphere was measured, it showed excellent characteristics of 330 MPa at 1200 ° C. and 300 MPa at 1400 ° C.
[0038]
Comparative Example 2
The crystalline silicon carbide fiber coated with boron nitride of Comparative Example 1 was formed into a three-dimensional fabric (fiber ratio: X: Y: Z = 1: 1: 0.2) in the same manner as in Example 3.
Subsequently, in the same manner as in Example 3, 100 parts of polytitanocarbosilane was immersed in 100 parts of xylene and impregnated at 5 atm in an argon atmosphere. Further, the mixture was heated to 150 ° C. in an argon stream to evaporate and remove xylene, and then calcined at 1200 ° C. for mineralization. Subsequently, the above immersion, impregnation and firing were repeated 8 times to obtain a crystalline silicon carbide reinforced composite material having a fiber volume ratio of 40%.
The resulting composite material had a tensile strength of 340 MPa at room temperature. When the high temperature strength in the atmosphere of this composite material was measured, the strength at a high temperature in the atmosphere was greatly reduced as compared with Example 1, 200 MPa at 1200 ° C. and 150 MPa at 1400 ° C. When the fracture surface was observed, it was confirmed that the fibers and the matrix inside the fiber bundle having a thin coating thickness were firmly bonded by oxidation.
[0039]
Example 4
The Si—Zr—C—O fiber coated with boron nitride of Example 2 was changed to MgO—Al. 2 O 3 -SiO 2 While being continuously passed through an aqueous slurry of glass powder, it was wound on a drum. Then, one place was cut | disconnected and the sheet | seat of one direction was produced. 20 sheets of this unidirectional sheet were laminated so that the fiber orientation was unidirectional, and 1300 ° C., 150 kg / cm in argon using a hot press apparatus. 2 The Si-Zr-C-O fiber reinforced composite material having a fiber volume ratio of 45% was obtained.
The bending strength of the obtained composite material was 1100 MPa at room temperature. When the high-temperature strength in the atmosphere of this composite material was measured, it showed an excellent characteristic of 1000 MPa at 1200 ° C.
[0040]
【The invention's effect】
According to the present invention, it is possible to provide a boron nitride-coated silicon carbide ceramic fiber having a low impurity concentration and a small difference in coating thickness between the outer peripheral portion and the inner portion of the fiber bundle. Thereby, it is possible to provide a silicon carbide ceramic fiber coated with a boron nitride film having excellent oxidation resistance and high film thickness uniformity. The present invention also provides a ceramic matrix composite material reinforced with this fiber. As a result, it is excellent in oxidation resistance at high temperatures, and has excellent ceramic matrix composite material that does not deteriorate the reliability due to the deterioration of the interface between the fiber and the matrix due to the excessively thin film thickness and the uneven film thickness. Can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for producing a boron nitride-coated silicon carbide based ceramic fiber of the present invention.
FIG. 2 is a schematic view of another apparatus for producing the boron nitride-coated silicon carbide based ceramic fiber of the present invention.
FIG. 3 is a scanning electron microscope (SEM) photograph instead of a drawing showing the shape of the coated fiber on the outer periphery of the fiber bundle of the boron nitride-coated silicon carbide fiber obtained in Example 1 of the present invention.
FIG. 4 is a scanning electron microscope (SEM) photograph instead of a drawing showing the shape of the coated fiber inside the fiber bundle of the boron nitride-coated silicon carbide fiber obtained in Example 1 of the present invention.
FIG. 5 is a diagram showing an element profile in the depth direction by Auger analysis of a film of boron nitride-coated silicon carbide fiber obtained in Example 1 of the present invention.
FIG. 6 is a diagram showing an element profile in the depth direction by Auger analysis of a film of boron nitride-coated silicon carbide fiber obtained in Example 2 of the present invention.
FIG. 7 is a scanning electron microscope (SEM) photograph instead of a drawing showing the shape of the coated fiber on the outer periphery of the fiber bundle of the boron nitride-coated silicon carbide fiber obtained in Comparative Example 1 of the present invention.
FIG. 8 is a scanning electron microscope (SEM) photograph instead of a drawing showing the shape of the coated fiber inside the fiber bundle of the boron nitride-coated silicon carbide fiber obtained in Comparative Example 1 of the present invention.

Claims (2)

直径7〜15μmの炭化ケイ素系セラミックス繊維500〜1600本からなる繊維束を、該繊維にかかる張力を30g以下に制御し、400〜800℃に保たれた炉に通して、繊維束の収束に使用されている有機物の収束剤を除去した後、繊維束が開いた状態で収束剤の除去された繊維束を反応炉に送り、反応ガスとしてハロゲン化ホウ素蒸気及びアンモニア、キャリアガスとしてアルゴン又は水素を用いて、温度1400〜1600℃、圧力0.1〜2Torrで、連続的に炭化ケイ素系セラミックス繊維に窒化ホウ素を被覆する窒化ホウ素被覆炭化ケイ素系セラミックス繊維の製造方法であり、前記窒化ホウ素被覆の厚さが0.2〜2μmで、前記窒化ホウ素被覆中の不純物の酸素と炭素の合計が平均で10原子以下であり、前記繊維束の外周部の繊維の窒化ホウ素皮膜と内部の繊維の窒化ホウ素皮膜の厚さの比(外周部皮膜厚さ/内部皮膜厚さ)が5以下であることを特徴とする窒化ホウ素被覆炭化ケイ素系セラミックス繊維の製造方法。  A fiber bundle composed of 500 to 1600 silicon carbide ceramic fibers having a diameter of 7 to 15 μm is passed through a furnace maintained at 400 to 800 ° C. by controlling the tension applied to the fiber to 30 g or less to converge the fiber bundle. After removing the organic sizing agent used, the fiber bundle from which the sizing agent has been removed is sent to the reaction furnace with the fiber bundle open, and boron halide vapor and ammonia as the reaction gas, and argon or hydrogen as the carrier gas. Is a method for producing boron nitride-coated silicon carbide-based ceramic fibers in which silicon nitride-based ceramic fibers are continuously coated with boron nitride at a temperature of 1400 to 1600 ° C. and a pressure of 0.1 to 2 Torr. The fiber bundle has a thickness of 0.2 to 2 μm and the total of oxygen and carbon as impurities in the boron nitride coating is 10 atoms or less on average. Boron nitride-coated silicon carbide system, wherein the ratio of the thickness of the boron nitride coating on the outer peripheral fiber to the thickness of the boron nitride coating on the inner fiber (outer coating thickness / inner coating thickness) is 5 or less Manufacturing method of ceramic fiber. (アンモニア流量/ハロゲン化ホウ素蒸気流量)を2〜4、(アルゴン又は水素流量/(アンモニア流量+ハロゲン化ホウ素蒸気流量))を1〜3に制御して反応炉に導入することを特徴とする請求項記載の窒化ホウ素被覆炭化ケイ素系セラミックス繊維の製造方法。(Ammonia flow rate / boron halide vapor flow rate) is controlled to 2-4, (Argon or hydrogen flow rate / (ammonia flow rate + boron halide vapor flow rate)) is controlled to 1 to 3, and is introduced into the reactor. The method for producing a boron nitride-coated silicon carbide ceramic fiber according to claim 1 .
JP2001379821A 2001-12-13 2001-12-13 Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber Expired - Fee Related JP3760855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001379821A JP3760855B2 (en) 2001-12-13 2001-12-13 Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001379821A JP3760855B2 (en) 2001-12-13 2001-12-13 Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber

Publications (2)

Publication Number Publication Date
JP2003183979A JP2003183979A (en) 2003-07-03
JP3760855B2 true JP3760855B2 (en) 2006-03-29

Family

ID=27591175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001379821A Expired - Fee Related JP3760855B2 (en) 2001-12-13 2001-12-13 Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber

Country Status (1)

Country Link
JP (1) JP3760855B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176182A (en) * 2001-12-07 2003-06-24 Ishikawajima Harima Heavy Ind Co Ltd Ceramic composite material and turbine member obtained by using the same
JP5370084B2 (en) * 2009-10-30 2013-12-18 宇部興産株式会社 Opening inorganic fiber bundle for composite material, method for producing the same, and ceramic matrix composite material reinforced with this fiber bundle
JPWO2011114810A1 (en) * 2010-03-19 2013-06-27 宇部興産株式会社 Inorganic fiber for fiber bundle and method for producing the same, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with the fiber bundle
WO2017210571A1 (en) * 2016-06-02 2017-12-07 Applied Materials, Inc. Qualification and repair station
FR3059321B1 (en) * 2016-11-28 2019-01-25 Safran Ceramics PIECE OF COMPOSITE MATERIAL
JP2018138710A (en) * 2017-02-24 2018-09-06 三菱重工業株式会社 Method for producing ceramic-coated fiber and method for producing ceramic-based composite material
JP6959747B2 (en) * 2017-03-14 2021-11-05 株式会社Ihiエアロスペース Silicon Carbide Complex and Its Manufacturing Method
US10745803B2 (en) * 2017-06-15 2020-08-18 Rolls-Royce High Temperature Composites Inc. Method of forming a moisture-tolerant coating on a silicon carbide fiber
CN107326655B (en) * 2017-07-11 2020-06-30 湖南金戈新材料有限责任公司 Method for modifying surface of carbon fiber
EP3835466A4 (en) * 2018-08-06 2022-05-04 Ube Industries, Ltd. Crystalline silicon carbide fiber and method for manufacturing same, and ceramic composite substrate
JP7347045B2 (en) * 2019-09-11 2023-09-20 株式会社プロテリアル BN-coated SiC fiber and method for producing SiC-based composite material
DE102019215938A1 (en) * 2019-10-16 2021-04-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of reinforcement fibers coated with boron nitride and / or reinforcement fiber bundles coated with boron nitride, reinforcement fibers or reinforcement fiber bundles which can be produced by the process and their use
CN116289225B (en) * 2021-12-20 2024-04-02 四川大学 Fiber modified based on polyborosiloxane and preparation method thereof
CN114890795B (en) * 2022-06-01 2023-04-28 湖南博翔新材料有限公司 Silicon carbide fiber reinforced glass ceramic composite material and preparation method thereof
CN115161997A (en) * 2022-07-28 2022-10-11 广东湾区交通建设投资有限公司 Preparation method of multi-component aerogel composite fiber felt for bridge fire resistance
CN115928264B (en) * 2022-11-29 2024-02-20 湖南泽睿新材料有限公司 Preparation method of continuous silicon carbide fiber containing metal in near-stoichiometric ratio
CN116239367B (en) * 2022-12-28 2024-01-09 湖南聚能陶瓷材料有限公司 High-heat-conductivity aluminum oxide ceramic material and ceramic circuit substrate

Also Published As

Publication number Publication date
JP2003183979A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP3760855B2 (en) Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber
JP5458915B2 (en) Opening inorganic fiber bundle for composite material, method for producing the same, and ceramic matrix composite material reinforced with the fiber bundle
JPH11200158A (en) Production of silicon carbide fiber
WO2011114810A1 (en) Inorganic fibers for fiber bundles, process for production of the inorganic fibers, inorganic fiber bundles for composite material produced using the inorganic fibers, and ceramic-based composite material reinforced by the fiber bundles
JP3979311B2 (en) Silicon carbide ceramic fiber and method for producing the same
JP2016188439A (en) Crystalline silicon carbide-based ceramic fiber and manufacturing method therefor
JPWO2020032067A1 (en) Crystalline silicon carbide fiber, its manufacturing method, and ceramic composite base material
JPH03285877A (en) Fiber reinforced ceramic composite material and fiber for reinforcement
WO2001038616A1 (en) Organic silicon polymer, inorganic fiber with silicon carbide base, and method of manufacture thereof
JP4239684B2 (en) High heat resistant inorganic fiber bonded ceramic member and method for manufacturing the same
JP5370084B2 (en) Opening inorganic fiber bundle for composite material, method for producing the same, and ceramic matrix composite material reinforced with this fiber bundle
JP5668550B2 (en) Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle
JP5668575B2 (en) Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle
JPH10120472A (en) Inorganic fiber-reinforced ceramic composite material
JP2001181046A (en) Inorganic fiber bound ceramics, method for producing the same and high-surface accuracy member using the same
JP3097894B2 (en) Preparation of inorganic fiber reinforced ceramic composites.
JPH09157051A (en) Carbon/boron/silicon inorganic coating, fiber and composite material containing the same
JPH1045480A (en) Coating material to cost inorganic fiber for fiber reinforced composite material, and inorganic fiber and fiber reinforced composite material containing that coating material
JP2004067481A (en) High heat resistance inorganic fiber bonded ceramics and method for manufacturing the same
JPH11171658A (en) Crystalline silicon carbide-based fiber-reinforced ceramic composite material
JP3617092B2 (en) Inorganic fiber reinforced ceramic composite material
EP1043293A1 (en) Ceramics-based composite material excellent in high-temperature durability
JP3193911B2 (en) Ceramic-based composite material with excellent high-temperature durability
JP2004197249A (en) Oxide sliding interface-coated silicon carbide-based fiber and ceramic-based composite material reinforced with the fiber
JP2792593B2 (en) Inorganic fiber reinforced ceramic composite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3760855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees