JP7347045B2 - BN-coated SiC fiber and method for producing SiC-based composite material - Google Patents

BN-coated SiC fiber and method for producing SiC-based composite material Download PDF

Info

Publication number
JP7347045B2
JP7347045B2 JP2019165506A JP2019165506A JP7347045B2 JP 7347045 B2 JP7347045 B2 JP 7347045B2 JP 2019165506 A JP2019165506 A JP 2019165506A JP 2019165506 A JP2019165506 A JP 2019165506A JP 7347045 B2 JP7347045 B2 JP 7347045B2
Authority
JP
Japan
Prior art keywords
sic
layer
fiber
composite material
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019165506A
Other languages
Japanese (ja)
Other versions
JP2021042100A (en
Inventor
正 藤枝
耕司 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2019165506A priority Critical patent/JP7347045B2/en
Publication of JP2021042100A publication Critical patent/JP2021042100A/en
Application granted granted Critical
Publication of JP7347045B2 publication Critical patent/JP7347045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は、SiCを主成分とする繊維間にSiCを主成分とするマトリックスが形成されたSiC基複合材料に用いられるBN被覆SiC繊維、およびSiC基複合材料の製造方法に関する。 The present invention relates to a BN-coated SiC fiber used in a SiC-based composite material in which a matrix mainly composed of SiC is formed between fibers mainly composed of SiC, and a method for producing the SiC-based composite material.

世界的な環境保全への関心の高まりや、原油価格の高騰に対応するために、ジェットエンジンの燃焼効率を高めて、燃費を改善することが検討されている。燃焼効率を高めるには、燃焼ガスをより高温にする必要があり、高温に晒される部材には、耐熱性の高いNi基超合金とともに、新たな材料として、セラミックス基複合材料が注目されている。 In response to the growing global interest in environmental conservation and the soaring price of crude oil, efforts are being made to increase the combustion efficiency of jet engines to improve fuel efficiency. In order to increase combustion efficiency, it is necessary to raise the temperature of the combustion gas to higher temperatures, and ceramic matrix composite materials are attracting attention as new materials for parts exposed to high temperatures, along with highly heat-resistant Ni-based superalloys. .

このようなセラミックス基複合材料としては、SiCを主成分とする繊維間にSiCを主成分とするマトリックスが形成されたSiC基複合材料が知られている。SiC基複合材料として、例えば特許文献1に、表面に炭化ケイ素からなる繊維上に窒化ホウ素の相間層を形成し、これを用いてマトリックスを形成することで、繊維/マトリックス間に強固な窒化ホウ素の相間層、すなわちBN界面層を形成できることが開示されている。これによれば、BN界面層はBN界面層/繊維間、BN界面層/マトリックス間、のそれぞれの結合力が高まり、マトリックス材料より強度の高い複合材料にできる、とされている。 As such a ceramic matrix composite material, a SiC matrix composite material in which a matrix mainly composed of SiC is formed between fibers mainly composed of SiC is known. As a SiC-based composite material, for example, Patent Document 1 discloses that by forming an interphase layer of boron nitride on fibers made of silicon carbide on the surface and forming a matrix using this, a strong boron nitride layer is formed between the fibers and the matrix. It is disclosed that an interphase layer, that is, a BN interface layer, can be formed. According to this, the BN interface layer increases the bonding strength between the BN interface layer/fibers and between the BN interface layer/matrix, making it possible to create a composite material with higher strength than the matrix material.

特表2001-505864号公報Special Publication No. 2001-505864

しかし、特許文献1の複合材料では、マトリックス材料より強度が高いものの、伸びが小さく、より一層強度の高いSiC基複合材料が望まれていた。 However, in the composite material of Patent Document 1, although the strength is higher than that of the matrix material, the elongation is small, and a SiC-based composite material with even higher strength has been desired.

そこで、本発明では、延性と強度の高いSiC基複合材料、およびSiC基複合材料に用いられるBN被覆SiC繊維、およびSiC基複合材料の製造方法を提供する。 Therefore, the present invention provides a SiC-based composite material with high ductility and strength, a BN-coated SiC fiber used in the SiC-based composite material, and a method for producing the SiC-based composite material.

発明のBN被覆SiC繊維は、SiCを主成分とする繊維表面に、最外層となる第1のBN被覆層と前記第1のBN被覆層の内側の第2のBN被覆層とを備え、前記第1のBN被覆層に含まれる酸素量が、前記第2のBN被覆層に含まれる酸素量よりも高いことを特徴とする。 The BN-coated SiC fiber of the present invention includes a first BN coating layer serving as the outermost layer and a second BN coating layer inside the first BN coating layer on the surface of the fiber mainly composed of SiC, The amount of oxygen contained in the first BN coating layer is higher than the amount of oxygen contained in the second BN coating layer.

また、本発明のBN被覆SiC繊維は、前記第1のBN被覆層の結晶化度が、前記第2のBN被覆層の結晶化度よりも低いことが好ましい。 Further, in the BN-coated SiC fiber of the present invention, it is preferable that the first BN coating layer has a lower crystallinity than the second BN coating layer.

また、本発明のBN被覆SiC繊維は、前記第1のBN被覆層に含まれる酸素量が、3原子パーセント以上であることが好ましい。 Further, in the BN-coated SiC fiber of the present invention, it is preferable that the first BN coating layer contains oxygen amount of 3 atomic percent or more.

また、本発明のSiCの製造方法は、前記BN被覆SiC繊維を製造する工程と、前記BN被覆SiC繊維にSiCを主成分とするマトリックスを形成する間に、結晶性カーボン層を形成する工程と、を有することを特徴とする。 Further, the method for producing SiC of the present invention includes a step of producing the BN-coated SiC fiber, and a step of forming a crystalline carbon layer while forming a matrix mainly composed of SiC on the BN-coated SiC fiber. It is characterized by having the following.

また、本発明のSiCの製造方法は、前記SiCを主成分とするマトリックスを形成する方法が、化学気相含浸(CVI)法であることが好ましい。 Further, in the SiC manufacturing method of the present invention, it is preferable that the method for forming the matrix containing SiC as a main component is a chemical vapor impregnation (CVI) method.

本発明によれば、延性と強度の高いSiC基複合材料にすることができる。 According to the present invention, a SiC-based composite material with high ductility and strength can be obtained.

本発明の第1実施形態であるSiC基複合材料の模式図である。FIG. 1 is a schematic diagram of a SiC-based composite material according to a first embodiment of the present invention. 本発明の第1実施形態であるSiC基複合材料におけるSiCを繊維と、SiCマトリックスと、SiC繊維表面に形成された結晶性BN層、マトリックスと、の間に、結晶性カーボン層を含む領域の(a)断面TEM像、(b)結晶性BN層および結晶性カーボン層の制限視野電子回折図形である。In the SiC matrix composite material according to the first embodiment of the present invention, a region containing a crystalline carbon layer is formed between the SiC fiber, the SiC matrix, the crystalline BN layer formed on the surface of the SiC fiber, and the matrix. (a) A cross-sectional TEM image, (b) a selected area electron diffraction pattern of a crystalline BN layer and a crystalline carbon layer. 本発明の第1実施形態であるSiC基複合材料におけるSiC繊維と、結晶性BN層を含む領域の(a)断面TEM像および(b)その高分解能TEM像である。They are (a) a cross-sectional TEM image and (b) a high-resolution TEM image of a region including SiC fibers and a crystalline BN layer in the SiC-based composite material according to the first embodiment of the present invention. 本発明の第1実施形態であるSiC基複合材料における結晶性カーボン層と、SiCマトリックスを含む領域の(a)断面TEM像、および(b)その高分解能TEM像である。They are (a) a cross-sectional TEM image of a region containing a crystalline carbon layer and a SiC matrix in a SiC-based composite material according to a first embodiment of the present invention, and (b) a high-resolution TEM image thereof. ナノインデンターによる単繊維引抜き試験で得られた本発明のSiC基複合材料の代表的な変位―荷重曲線と、圧子と繊維およびマトリクスの配置を示した模式図である。FIG. 2 is a schematic diagram showing a typical displacement-load curve of the SiC-based composite material of the present invention obtained in a single fiber pullout test using a nanoindenter, and the arrangement of an indenter, fibers, and matrix. 繊維とマトリクス間の界面せん断強度のCVIによるマトリクス形成前のBN被覆層厚さ依存性を調査した結果である。These are the results of investigating the dependence of the interfacial shear strength between the fiber and the matrix on the thickness of the BN coating layer before matrix formation using CVI. 本発明の第2実施形態であるBN被覆SiC繊維断面の模式図である。FIG. 2 is a schematic diagram of a cross section of a BN-coated SiC fiber according to a second embodiment of the present invention. 本発明の第2実施形態であるBN被覆SiC繊維の(a)断面TEM像と(b)第1のBN被覆層の高分解能TEM像および(c)第2のBN被覆層の高分解能TEM像である。(a) Cross-sectional TEM image of the BN-coated SiC fiber according to the second embodiment of the present invention, (b) High-resolution TEM image of the first BN coating layer, and (c) High-resolution TEM image of the second BN coating layer. It is. 連続式成膜装置の模式図である。FIG. 2 is a schematic diagram of a continuous film forming apparatus. 比較例のSiC繊維上に形成したBN被覆SiC繊維の(a)断面TEM像、(b)BN層の制限視野電子回折図形、(c)BN層断面の高分解能TEM像である。These are (a) a cross-sectional TEM image of a BN-coated SiC fiber formed on a SiC fiber of a comparative example, (b) a selected area electron diffraction pattern of a BN layer, and (c) a high-resolution TEM image of a cross-section of a BN layer. 比較例のSiC基複合材料のSiC繊維/界面層/SiCマトリックス界面近傍の(a)断面TEM像、(b)結晶性BN層の制限視野電子回折図形、(c)結晶性BN層とマトリクスを含む領域の高分解能TEM像である。(a) Cross-sectional TEM image near the SiC fiber/interface layer/SiC matrix interface of the SiC-based composite material of the comparative example, (b) selected area electron diffraction pattern of the crystalline BN layer, (c) crystalline BN layer and matrix This is a high-resolution TEM image of the area containing the image. 本発明のSiC基複合材と比較サンプルの室温曲げ応力-変位曲線である。2 is a room temperature bending stress-displacement curve of the SiC-based composite material of the present invention and a comparative sample. 本発明のSiC基複合材と比較サンプルの曲げ試験後の破断面のSEM像である。It is a SEM image of the fracture surface of the SiC-based composite material of the present invention and a comparative sample after a bending test. 本発明のSiC基複合材と比較サンプルの室温引張応力-歪み曲線である。2 is a room temperature tensile stress-strain curve of the SiC-based composite material of the present invention and a comparative sample. 本発明のSiC基複合材と比較サンプルの引張試験後の破断面のSEM像である。It is a SEM image of the fracture surface of the SiC-based composite material of the present invention and a comparative sample after a tensile test.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

(第1実施形態)
まず、本発明の第1実施形態として、図1のSiC基複合材料100について説明する。
SiC基複合材料100は、SiCを主成分とする繊維10の繊維と、SiCを主成分とするマトリックス40と、を含み、SiC繊維10表面に形成された結晶性BN層20と、マトリックス40と、の間に、結晶性カーボン層30を含む。すなわち、結晶性BN層20と、マトリックス40と、の間に、結晶性カーボン層30が形成されている。
(First embodiment)
First, as a first embodiment of the present invention, a SiC-based composite material 100 shown in FIG. 1 will be described.
The SiC-based composite material 100 includes fibers 10 mainly composed of SiC and a matrix 40 mainly composed of SiC, and includes a crystalline BN layer 20 formed on the surface of the SiC fibers 10 and the matrix 40. , a crystalline carbon layer 30 is included between them. That is, the crystalline carbon layer 30 is formed between the crystalline BN layer 20 and the matrix 40.

図2はSiC基複合材料100におけるSiCを主成分とする繊維10と、SiCを主成分とするマトリックス40と、SiC繊維10表面に形成された結晶性BN層20と、マトリックス40と、の間に、結晶性カーボン層30を含む領域のTEM像である。図2(b)(1)に示す結晶性BN層20の電子回折図形より、六方晶系のBNに起因する微細斑点からなるデバイリングが現れており、結晶化度が高いことがわかる。更に、以下の表1における結晶性BN層20のEDX元素分析領域2、3からB、Nが主として検出されている。また、図2(b)(2)に示す結晶性カーボン層30の電子回折図形において、六方晶系のグラファイト(黒鉛)に起因する微細斑点からなるデバイリングが現れており、結晶化度が高いことがわかる。更に、以下の表1に示す通り結晶性カーボン層30のEDX元素分析領域4からCが主として検出されている。 FIG. 2 shows the relationship between the fibers 10 mainly composed of SiC, the matrix 40 mainly composed of SiC, the crystalline BN layer 20 formed on the surface of the SiC fibers 10, and the matrix 40 in the SiC-based composite material 100. 3 is a TEM image of a region including the crystalline carbon layer 30. From the electron diffraction pattern of the crystalline BN layer 20 shown in FIG. 2(b)(1), Debye rings consisting of minute spots due to hexagonal BN appear, indicating a high degree of crystallinity. Furthermore, B and N are mainly detected from the EDX elemental analysis regions 2 and 3 of the crystalline BN layer 20 in Table 1 below. In addition, in the electron diffraction pattern of the crystalline carbon layer 30 shown in FIG. 2(b)(2), Debye rings consisting of fine spots due to hexagonal graphite (graphite) appear, indicating a high degree of crystallinity. I understand that. Furthermore, as shown in Table 1 below, C was mainly detected from the EDX elemental analysis region 4 of the crystalline carbon layer 30.

ここで、SiC繊維10とは、SiCを主成分とする直径7~15μm程度の繊維である。主成分として、80質量パーセントから99.8質量パーセントのSiCを含有し、酸素やTi、Zr、Alなどの金属成分あるいはTiBやBCなどのセラミックス成分を含んでも良いものとする。なお、機械特性および耐熱性の観点からSiC含有量が高く、酸素含有量が低く、結晶質であることが好ましい。また、通常、単繊維が500~1600本程度束なった繊維束の形で用いられる。 Here, the SiC fiber 10 is a fiber containing SiC as a main component and having a diameter of about 7 to 15 μm. It contains 80 to 99.8 mass percent of SiC as a main component, and may also contain oxygen, metal components such as Ti, Zr, and Al, or ceramic components such as TiB 2 and B 4 C. Note that from the viewpoint of mechanical properties and heat resistance, it is preferable that the SiC content is high, the oxygen content is low, and the material is crystalline. Further, it is usually used in the form of a fiber bundle of about 500 to 1,600 single fibers.

また、SiCマトリックス40は、SiCを主成分とするバルク体であり、空隙率は2~20体積パーセント程度である。主成分としては、80質量パーセント以上のSiCを含有し、酸素、炭素、シリコン等の不純物を含んでも良いものとする。なお、機械特性および耐熱性の観点からSiC含有量が高く、結晶質であることが好ましい。特に、繊維近傍のSiCマトリックスは高結晶化度であることが好ましい。 Further, the SiC matrix 40 is a bulk body mainly composed of SiC, and has a porosity of about 2 to 20 volume percent. The main component is 80% by mass or more of SiC, and may also contain impurities such as oxygen, carbon, and silicon. Note that, from the viewpoint of mechanical properties and heat resistance, it is preferable that the SiC content is high and that it is crystalline. In particular, it is preferable that the SiC matrix near the fibers has a high degree of crystallinity.

また、結晶性BN層20は、図3(b)の点線に示すような数ナノメートル幅の紐状結晶からなる乱層構造を呈する。乱層構造とは単原子面におけるBN六方晶底面の並進と回転によって二次元的に規則化したまま三次元的に不規則化した(C軸方向の積層構造が乱れた)構造であり、C軸方向の面間隔が通常の六方晶BNの場合よりも若干大きい。 Further, the crystalline BN layer 20 exhibits a turbostratic structure consisting of string-like crystals with a width of several nanometers as shown by the dotted line in FIG. 3(b). The turbostratic structure is a structure that is two-dimensionally ordered but three-dimensionally disordered (the stacked structure in the C-axis direction is disordered) due to the translation and rotation of the BN hexagonal basal plane in the monoatomic plane. The axial spacing is slightly larger than that of normal hexagonal BN.

また、結晶性カーボン層30は、図4(b)に示すような数ナノメートル幅の紐状結晶からなっており、結晶性BN層20と同様、通常の六方晶グラファイトではなく、C軸方向の積層構造が乱れた乱層構造になっていると考えられる。 In addition, the crystalline carbon layer 30 is made of string-like crystals with a width of several nanometers as shown in FIG. It is thought that the laminated structure of the layer is disordered, resulting in a turbostratic structure.

第1実施形態であるSiC基複合材料100には、SiCマトリックス20よりもせん断強度の低い結晶性BN層20および結晶性カーボン層30から構成される界面層50が形成されている。SiC基複合材料100に引張応力が加わると、界面層50が優先的に破壊し、SiCマトリックス40からSiC繊維10の引抜きが生じる。これにより、SiC繊維10の脆性破壊が抑制され、延性と強度の高いSiC基複合材料100が得られる。 In the SiC-based composite material 100 of the first embodiment, an interface layer 50 is formed, which is composed of a crystalline BN layer 20 and a crystalline carbon layer 30, which have lower shear strength than the SiC matrix 20. When tensile stress is applied to the SiC-based composite material 100, the interfacial layer 50 is preferentially destroyed and the SiC fibers 10 are pulled out from the SiC matrix 40. As a result, brittle fracture of the SiC fibers 10 is suppressed, and a SiC-based composite material 100 with high ductility and strength can be obtained.

このSiC繊維10の引抜きメカニズムについて、詳細に説明する。SiC基複合材料100に引張応力が加わると、マトリクス中にクラックが生じ、繊維10を破断させずに通過すると、繊維がクラックを繋ぎ止めるブリッジングと呼ばれる状況が発生する。この場合、繊維10とマトリクス40間の界面が強固に結合していると、クラック進展時に繊維破断が生じ、脆性破壊に至る。一方、クラック進展時に繊維10とマトリクス40間の界面で一定長さの界面剥離が生じると、繊維10とマトリクス40間で滑りが発生し、繊維10のブリッジングが発生することにより延性が発現する。このため、界面の剥離抵抗(せん断強度)を小さくし、滑り抵抗を最適化することが重要となる。最近、この界面層として、熱CVDにより形成されるBN層が適用されている。特許文献1によると、僅かな異方性(ランダムに並べられている15nm未満のサイズの異方性領域を呈する)を示すナノメートルの配列によって形成されるBN相間層が開示されている。 The pulling mechanism of this SiC fiber 10 will be explained in detail. When tensile stress is applied to the SiC-based composite material 100, cracks occur in the matrix, and if the fibers 10 pass through without being broken, a situation called bridging occurs in which the fibers connect the cracks. In this case, if the interface between the fibers 10 and the matrix 40 is strongly bonded, fiber breakage will occur during crack propagation, leading to brittle fracture. On the other hand, if interfacial separation of a certain length occurs at the interface between the fibers 10 and the matrix 40 during crack propagation, slippage occurs between the fibers 10 and the matrix 40, and bridging of the fibers 10 occurs, resulting in ductility. . Therefore, it is important to reduce the peel resistance (shear strength) at the interface and optimize the slip resistance. Recently, a BN layer formed by thermal CVD has been used as this interface layer. According to US Pat. No. 5,302,300, a BN interphase layer formed by an array of nanometers exhibiting slight anisotropy (exhibiting randomly arranged anisotropic regions with a size of less than 15 nm) is disclosed.

しかしながら、本発明者等がBN界面層について種々研究したところ、僅かな異方性を有するBN相間層は、相間層内、相間層/繊維間および相間層/マトリクス間の結合力が高いため、引張応力負荷状態での破断時に相間層内、相間層/繊維間あるいは相間層/マトリクス間で破壊が生じ難く、該BN相間層のみではマトリクスからの繊維引抜けが不十分となり、十分な延性および強度が得られないことがわかった。 However, the present inventors conducted various studies on BN interphase layers and found that BN interphase layers with slight anisotropy have high bonding strength within the interphase layer, between interphase layers/fibers, and between interphase layers/matrix. When fracture occurs under tensile stress, it is difficult for fracture to occur within the interphase layer, between the interphase layer/fibers, or between the interphase layer/matrix, and with the BN interphase layer alone, fiber pulling out from the matrix is insufficient, and sufficient ductility and It was found that no strength was obtained.

そこで、界面層50を結晶性カーボン層30と結晶性BN層20の2層構造とした。結晶性カーボン層30のせん断強度は結晶性BN層20よりも低く、SiC基複合材料100に引張応力が加わると、結晶性カーボン層30、または、結晶性カーボン層30と結晶性BN層20との界面が優先的に破壊すると考えられる。このため、結晶性BN層20のみからなる界面層50を有するSiC基複合材料100よりも優れた繊維引抜き性を発現すると推察される。 Therefore, the interface layer 50 has a two-layer structure of the crystalline carbon layer 30 and the crystalline BN layer 20. The shear strength of the crystalline carbon layer 30 is lower than that of the crystalline BN layer 20, and when tensile stress is applied to the SiC-based composite material 100, the crystalline carbon layer 30 or the crystalline carbon layer 30 and the crystalline BN layer 20 It is thought that the interface between the two is preferentially destroyed. For this reason, it is presumed that fiber pullability is superior to that of the SiC-based composite material 100 having the interface layer 50 consisting only of the crystalline BN layer 20.

本発明のSiC基複合材料100における繊維引抜き性を検証するために、ナノインデンターによる単繊維引抜き試験を実施した。島津製ダイナミック超微小硬度計(DUH-211S)を用い、図5に示すように、ダイヤモンド製の三角錐バーコビッチ圧子(稜間角115°)を繊維断面に押し込み、圧子の変位―荷重曲線を得た。変位―荷重曲線における領域Iでは圧子60が繊維10に押し込まれ、領域IIでは繊維10がマトリクス40から引き抜かれる。その後、領域IIIにおいて、最大設定荷重まで圧子60の稜線がマトリクス40に押し込まれた後、領域IVにおいて除荷される。ここで、繊維10がマトリクス40から引き抜かれるために必要な界面せん断強度τは以下の式により算出される。 In order to verify the fiber pullability of the SiC-based composite material 100 of the present invention, a single fiber pullout test was conducted using a nanoindenter. Using a Shimadzu dynamic ultra-microhardness tester (DUH-211S), a diamond triangular pyramidal Berkovich indenter (edge angle 115°) was pressed into the fiber cross section as shown in Figure 5, and the displacement-load curve of the indenter was measured. Obtained. In region I of the displacement-load curve, the indenter 60 is pushed into the fiber 10, and in region II the fiber 10 is pulled out of the matrix 40. Thereafter, in region III, the ridge line of indenter 60 is pushed into matrix 40 to the maximum set load, and then the load is unloaded in region IV. Here, the interfacial shear strength τ necessary for pulling out the fiber 10 from the matrix 40 is calculated by the following formula.

式1Formula 1

ここで、F:図5で示した変位―荷重曲線の領域IIで生じる繊維引抜きに必要な荷重
r:繊維10の半径、t:試料厚さ、である。
Here, F is the load required for fiber pulling occurring in region II of the displacement-load curve shown in FIG. 5, r is the radius of the fiber 10, and t is the sample thickness.

繊維10とマトリクス40間の界面せん断強度のCVIによるマトリクス形成前のBN被覆層厚さ依存性を図6に示す。BN被覆層厚さが130nm以上になると、BN被覆がない場合に比べ、界面せん断強度が急激に低下し、230nm厚で最小となり、それ以上の厚さでは再増加した。BN被覆層厚さが130~230nm厚程度で繊維引抜け性が良好になることを確認した。 FIG. 6 shows the dependence of the interfacial shear strength between the fibers 10 and the matrix 40 on the thickness of the BN coating layer before matrix formation by CVI. When the thickness of the BN coating layer became 130 nm or more, the interfacial shear strength decreased rapidly compared to the case without the BN coating, reached a minimum at a thickness of 230 nm, and increased again at a thickness beyond that. It was confirmed that the fiber pull-out property was good when the BN coating layer thickness was approximately 130 to 230 nm.

以上のように、SiC繊維10表面に形成された結晶性BN層20と、SiCを主成分とするマトリックス40と、の間に、結晶性カーボン層30が形成されているSiC基複合材料100とすることで、繊維引抜け性が良好な延性と強度の高いSiC基複合材料にすることができる。 As described above, the SiC-based composite material 100 has the crystalline carbon layer 30 formed between the crystalline BN layer 20 formed on the surface of the SiC fiber 10 and the matrix 40 mainly composed of SiC. By doing so, it is possible to obtain a SiC-based composite material with high ductility and strength and good fiber pull-out property.

(第2実施形態)
次に、本発明の第2実施形態として、第1実施形態のSiC基複合材料100を容易に製造可能なBN被覆SiC繊維200、すなわち、延性と強度の高いSiC基複合材料を、容易に製造可能なBN被覆SiC繊維200と、それを用いたSiC基複合材料100の製造方法について説明する。
(Second embodiment)
Next, as a second embodiment of the present invention, a BN-coated SiC fiber 200 that can easily produce the SiC-based composite material 100 of the first embodiment, that is, a SiC-based composite material with high ductility and strength, is easily produced. A possible BN-coated SiC fiber 200 and a method for manufacturing the SiC-based composite material 100 using the same will be described.

図7に示すように、BN被覆SiC繊維200は、SiCを主成分とする繊維201上に、最外層となる第1のBN被覆層(1)202(以降、BN層(1)と称することがある)と、BN被覆層(1)202の内側の第2のBN被覆層(2)203(以降、BN層(2)と称することがある)と、の2層のBN被覆層を備えている。そして、BN層(1)202に含まれる酸素量を、BN層(2)203に含まれる酸素量よりも高くしていることが好ましい。また、BN層(1)202の結晶化度が、BN層(2)203のBN被覆層の結晶化度よりも低いことが好ましい。 As shown in FIG. 7, the BN-coated SiC fiber 200 has a first BN coating layer (1) 202 (hereinafter referred to as BN layer (1)) which is the outermost layer on the fiber 201 whose main component is SiC. and a second BN coating layer (2) 203 (hereinafter sometimes referred to as BN layer (2)) inside the BN coating layer (1) 202. ing. Further, it is preferable that the amount of oxygen contained in the BN layer (1) 202 is higher than the amount of oxygen contained in the BN layer (2) 203. Further, it is preferable that the crystallinity of the BN layer (1) 202 is lower than the crystallinity of the BN coating layer of the BN layer (2) 203.

BN被覆SiC繊維200の断面TEM像を図8(a)に示す。BN被覆層(1)の(b)高分解能TEM像において、所々、矢印で示した部分に格子縞が現れているが、その殆どが非晶質である。一方、(c)BN被覆層(2)の高分解能TEM像においては、前記したような結晶性の高い乱層構造(図中の点線部分)を呈している。さらに、以下の表2に示すEDX組成分析結果より、BN被覆層(1)の酸素含有量はBN被覆層(2)の4倍程度高いことがわかる。 A cross-sectional TEM image of the BN-coated SiC fiber 200 is shown in FIG. 8(a). In the high-resolution TEM image (b) of the BN coating layer (1), lattice fringes appear here and there in the areas indicated by arrows, but most of them are amorphous. On the other hand, in the high-resolution TEM image of (c) the BN coating layer (2), it exhibits a highly crystalline turbostratic structure (dotted line in the figure) as described above. Furthermore, the EDX composition analysis results shown in Table 2 below show that the oxygen content of the BN coating layer (1) is about four times higher than that of the BN coating layer (2).

また、このようなBN被覆層(1)とBN被覆層(2)は、例えば、図9に示すような連続式成膜装置301を用いて形成できる。巻き出し室302からボビンに巻かれた繊維束が巻き出された後、加熱ヒーター308が設置されたサイジング除去室303において、繊維に付着しているサイジング剤が加熱除去される。その後、繊維束がCVD(Chemical Vapor Deposition)炉309から構成される成膜室304を通過する間に、繊維表面にBN層が被覆され、繊維束が巻取り室305においてボビンに巻き取られる。なお、CVDプロセスガスは、B/NH/H混合ガスやBCl/NH/Ar混合ガス等であり、プロセスガス導入口307から供給され、成膜室304で消費されなかった残ガスは排気口306から炉外へ排出される。 Furthermore, such a BN coating layer (1) and a BN coating layer (2) can be formed using, for example, a continuous film forming apparatus 301 as shown in FIG. After the fiber bundle wound around the bobbin is unwound from the unwinding chamber 302, the sizing agent adhering to the fibers is removed by heating in a sizing removal chamber 303 in which a heating heater 308 is installed. Thereafter, while the fiber bundle passes through a film forming chamber 304 comprising a CVD (Chemical Vapor Deposition) furnace 309, the fiber surface is coated with a BN layer, and the fiber bundle is wound around a bobbin in a winding chamber 305. Note that the CVD process gas is a B 2 H 6 /NH 3 /H 2 mixed gas, a BCl 3 /NH 3 /Ar mixed gas, etc., and is supplied from the process gas inlet 307 and is not consumed in the film forming chamber 304. The remaining gas is discharged from the furnace through the exhaust port 306.

ここで、BN被覆層が第1のBN被覆層(1)202と、第2のBN被覆層(2)203から成る二層構造になるメカニズムについて考察する。BN膜の結晶化度は成膜温度に依存し、成膜温度が低いほど結晶化度は低下する。高結晶化度のBN被覆層(2)203は前記連続式成膜装置301における成膜室304のCVD炉309を通過する間に、繊維表面に形成され、低結晶化度のBN被覆層(1)202はCVD炉309内よりも温度の低い炉外(プロセスガス導入側のCVD炉309端とプロセスガス導入口307の間)で形成されると考えられる。 Here, the mechanism by which the BN coating layer becomes a two-layer structure consisting of the first BN coating layer (1) 202 and the second BN coating layer (2) 203 will be considered. The crystallinity of the BN film depends on the film formation temperature, and the lower the film formation temperature, the lower the crystallinity. The BN coating layer (2) 203 with high crystallinity is formed on the fiber surface while passing through the CVD furnace 309 of the film forming chamber 304 in the continuous film forming apparatus 301, and the BN coating layer (2) with low crystallinity ( 1) It is thought that 202 is formed outside the CVD furnace 309 where the temperature is lower than inside the furnace (between the end of the CVD furnace 309 on the process gas introduction side and the process gas introduction port 307).

これまで説明した、BN被覆SiC繊維200を用いることで、例えば以下のように第1の実施形態に説明したSiC基複合材料を製造できる。
まず、前記した成膜方法により作製したBN被覆SiC繊維200束を製織して2次元あるいは3次元の織物を作製する。次に、前記織物を構成するBN被覆SiC繊維200の間に、SiCを主成分とするマトリックスを形成する。
By using the BN-covered SiC fiber 200 described above, the SiC-based composite material described in the first embodiment can be manufactured, for example, as follows.
First, 200 bundles of BN-coated SiC fibers produced by the film-forming method described above are woven to produce a two-dimensional or three-dimensional fabric. Next, a matrix containing SiC as a main component is formed between the BN-covered SiC fibers 200 constituting the fabric.

SiCを主成分とするマトリックスを形成する方法として、CVI(Chemical Vapor Infiltration)法を用いる例を以下に説明する。バッチ式のCVI炉を用い、プロセスガスとしては、SiCl/CH(C)/H混合ガスを用いる。なお、2次元織物の場合、織物シート積層体を部分的に仮固定した状態でCVIを行う。 An example in which a CVI (Chemical Vapor Infiltration) method is used as a method for forming a matrix containing SiC as a main component will be described below. A batch type CVI furnace is used, and a mixed gas of SiCl 4 /CH 4 (C 3 H 8 )/H 2 is used as the process gas. In the case of a two-dimensional fabric, CVI is performed with the fabric sheet laminate partially temporarily fixed.

また、CVIによりある程度マトリクスを形成した後、SiC前駆体であるポリカルボシランの熱分解によりSiCマトリクスを形成させるPIP(Polymer Impregnation and Pyrolysis)により残りのSiCマトリクスを形成しても良い。 Alternatively, after forming a certain amount of matrix by CVI, the remaining SiC matrix may be formed by PIP (Polymer Impregnation and Pyrolysis), which forms a SiC matrix by thermal decomposition of polycarbosilane, which is a SiC precursor.

このような、BN被覆SiC繊維200とSiC基複合材料の製造方法により、SiCを主成分とするマトリックス、すなわち、CVIによりSiCマトリックス40を形成する際、SiCマトリックス40あるいはプロセスガスと、酸素含有量の高いBN被覆層(1)202との反応により、高結晶性カーボン層30が形成されると考えられる。 By such a manufacturing method of the BN-coated SiC fiber 200 and the SiC matrix composite material, when forming the SiC matrix 40 by CVI, a matrix mainly composed of SiC, the SiC matrix 40 or the process gas and the oxygen content are It is considered that the highly crystalline carbon layer 30 is formed by the reaction with the high BN coating layer (1) 202.

この反応について、詳細に説明すると、SiCマトリックス40あるいはCVIプロセスガスとBN被覆層(1)202に含まれる酸素との化学反応により、B-Si-O系ガラスと高結晶性カーボン層30が形成されると考えられる。B-Si-O系ガラスはCVI中にプロセスガスの熱分解生成物であるHClとの反応によりハロゲン化して揮発し、高結晶性カーボン層30のみが残存したものと推察される。 To explain this reaction in detail, a chemical reaction between the SiC matrix 40 or the CVI process gas and oxygen contained in the BN coating layer (1) 202 forms the B-Si-O glass and the highly crystalline carbon layer 30. It is thought that it will be done. It is presumed that the B--Si--O glass was halogenated and volatilized by reaction with HCl, which is a thermal decomposition product of the process gas, during CVI, leaving only the highly crystalline carbon layer 30.

以上のように、BN被覆SiC繊維200、および、上記製造方法を用いることで、結晶性BN層20と結晶性カーボン層30とを有するSiC基複合材料100を、容易に作製することができる。すなわち、延性と強度の高いSiC基複合材料を容易に作製することができる。 As described above, by using the BN-covered SiC fiber 200 and the above manufacturing method, the SiC-based composite material 100 having the crystalline BN layer 20 and the crystalline carbon layer 30 can be easily manufactured. That is, a SiC-based composite material with high ductility and strength can be easily produced.

なお、BN被覆SiC繊維200は、BN層(1)202の結晶化度が、BN層(2)203の結晶化度より低いことが好ましい。結晶化度が低いほどBN層はより多くの酸素を取り込みやすくなる。このようにBN層の結晶化度を制御することにより、酸素含有量が異なる、BN層(1)202とBN層(2)203を、容易に作製でき、延性と強度の高いSiC基複合材料を、容易に作製することができる。 Note that, in the BN-covered SiC fiber 200, the crystallinity of the BN layer (1) 202 is preferably lower than the crystallinity of the BN layer (2) 203. The lower the crystallinity, the easier the BN layer will take in more oxygen. By controlling the crystallinity of the BN layer in this way, the BN layer (1) 202 and the BN layer (2) 203 with different oxygen contents can be easily produced, making it possible to create a SiC-based composite material with high ductility and strength. can be easily produced.

また、BN被覆SiC繊維200におけるBN層(1)202に含まれる酸素量が、3原子パーセント以上であることが好ましい。3原子パーセント未満の酸素含有量では、CVIによるマトリックス形成後に結晶性カーボン層30が形成されない。 Further, it is preferable that the amount of oxygen contained in the BN layer (1) 202 in the BN-coated SiC fiber 200 is 3 atomic percent or more. At an oxygen content of less than 3 atomic percent, no crystalline carbon layer 30 is formed after matrix formation by CVI.

(実施例)
第2の実施形態に基づきSiC基複合材料100を作製し、室温での曲げ特性および引張特性を評価した。
(Example)
A SiC-based composite material 100 was produced based on the second embodiment, and its bending properties and tensile properties at room temperature were evaluated.

(実施例1)
サンプルは、本発明の結晶化度および酸素含有量の異なる2層構造のBN層被覆SiC繊維200からなる繊維束を製織して三次元織物(幅70mm×長さ70mm×厚さ4mm、XY方向の繊維配列ピッチ:3mm、繊維配向比X:Y:Z=1:1.1:0.2、繊維体積率=29%)にし、繊維束間および繊維間の空隙にCVI法によりSiCマトリックス20を形成して、SiC基複合材100とした。なお、BN被覆SiC繊維200のBN層(1)202とBN層(2)203は、前記連続成膜装置301により形成した。BN層全体の厚さを約400nm以下とし、BN層全体の厚さと曲げ特性および引張特性の関係を調査した。
(Example 1)
The sample was a three-dimensional fabric (width 70 mm x length 70 mm x thickness 4 mm, XY direction fiber arrangement pitch: 3 mm, fiber orientation ratio X:Y:Z = 1:1.1:0.2, fiber volume ratio = 29%), and a SiC matrix 20 was formed to obtain a SiC-based composite material 100. Note that the BN layer (1) 202 and the BN layer (2) 203 of the BN-coated SiC fiber 200 were formed by the continuous film forming apparatus 301 described above. The thickness of the entire BN layer was set to about 400 nm or less, and the relationship between the thickness of the entire BN layer, bending properties, and tensile properties was investigated.

(比較例)
また、比較サンプルとして、高結晶化度かつ酸素含有量の低いBN層(2)203のみを被覆したSiC繊維とSiCマトリクス40からなるSiC基複合材400を作製した。ここで、高結晶化度かつ低い酸素含有量のBN層(2)203のみをSiC繊維表面へ形成するため、低結晶化度かつ高い酸素含有量のBN層(1)202の成膜を防止した。具体的には、図9に示すように、プロセスガス導入側のCVD炉309端とプロセスガス導入口307の間に、繊維がプロセスガスへ暴露されるのを防止するための保護チューブ310を設けて成膜した。次に、高結晶化度かつ低酸素含有のBN層のみを被覆したSiC繊維からなる繊維束を製織して三次元織物(幅70mm×長さ70mm×厚さ4mm、XY方向の繊維配列ピッチ:3mm、繊維配向比X:Y:Z=1:1.1:0.2、繊維体積率=29%)にし、繊維束間および繊維間の空隙にCVI法によりSiCマトリックス20を形成して、SiC基複合材400とした。BN層全体の厚さを約200nm以下とし、BN層全体の厚さと曲げ特性および引張特性の関係を調査した。
(Comparative example)
Further, as a comparative sample, a SiC-based composite material 400 consisting of SiC fibers and a SiC matrix 40 coated with only the BN layer (2) 203 with high crystallinity and low oxygen content was produced. Here, since only the BN layer (2) 203 with high crystallinity and low oxygen content is formed on the SiC fiber surface, the formation of the BN layer (1) 202 with low crystallinity and high oxygen content is prevented. did. Specifically, as shown in FIG. 9, a protective tube 310 is provided between the end of the CVD furnace 309 on the process gas introduction side and the process gas introduction port 307 to prevent the fibers from being exposed to the process gas. The film was formed using Next, fiber bundles made of SiC fibers coated with only a BN layer with high crystallinity and low oxygen content are woven into a three-dimensional fabric (width 70 mm x length 70 mm x thickness 4 mm, fiber arrangement pitch in the XY direction: 3 mm, fiber orientation ratio X:Y:Z = 1:1.1:0.2, fiber volume ratio = 29%), and a SiC matrix 20 was formed between the fiber bundles and in the gaps between the fibers by the CVI method, It was set as SiC-based composite material 400. The thickness of the entire BN layer was set to about 200 nm or less, and the relationship between the thickness of the entire BN layer, bending properties, and tensile properties was investigated.

(比較サンプル用に作製したBN被覆繊維の観察及び組成評価)
比較サンプル400に用いたBN層(2)203のみを被覆したSiC繊維の断面TEM像およびEDX成分分析結果を図10に示す。BN層(2)203領域の(c)高分解能TEM像において明瞭な格子像が現れているとともに、(b)BN層の制限視野電子回折図形においても微細斑点からなるデバイリングが現れており、結晶化度が高いことを確認した。また、表3に示す通り、BN層(2)203領域のEDX成分分析結果からも酸素含有量が3原子パーセント未満と十分低いことを確認した。
(Observation and composition evaluation of BN-coated fibers prepared for comparison samples)
FIG. 10 shows a cross-sectional TEM image and EDX component analysis results of the SiC fiber coated with only the BN layer (2) 203 used in comparative sample 400. A clear lattice image appears in the (c) high-resolution TEM image of the 203 region of the BN layer (2), and Debye rings consisting of minute spots also appear in the selected area electron diffraction pattern of the BN layer (b). It was confirmed that the crystallinity was high. Further, as shown in Table 3, it was confirmed from the EDX component analysis results of the BN layer (2) 203 region that the oxygen content was sufficiently low at less than 3 atomic percent.

(比較サンプルの観察及び組成評価)
比較サンプル400におけるSiC繊維10/結晶性BN層20/SiCマトリックス40界面部のTEM像を図11に示す。また、EDX成分分析結果を表4に示す。(c)結晶性BN層20領域の高分解能TEM像において明瞭な格子像が現れていると伴に、(b)結晶性BN層20の制限視野電子回折図形においても微細斑点からなるデバイリングが現れていることから、マトリクス形成後も高結晶化度が維持されていることを確認した。一方、SiCマトリックス40と結晶性BN層20の間には、図2で示したような結晶性カーボン層の存在は認められなかった。
(Observation and composition evaluation of comparative samples)
FIG. 11 shows a TEM image of the SiC fiber 10/crystalline BN layer 20/SiC matrix 40 interface in comparative sample 400. Further, the results of EDX component analysis are shown in Table 4. (c) A clear lattice image appears in the high-resolution TEM image of the crystalline BN layer 20 region, and (b) Debye rings consisting of minute spots also appear in the selected area electron diffraction pattern of the crystalline BN layer 20. This fact confirmed that high crystallinity was maintained even after matrix formation. On the other hand, the presence of a crystalline carbon layer as shown in FIG. 2 was not observed between the SiC matrix 40 and the crystalline BN layer 20.

(室温曲げ特性評価)
本発明のSiC基複合材100と比較サンプル400について、SHIMADZU AG-IS 10KNを用いて、試験規格ASTM C1341-13にて評価した。その室温曲げ応力-変位曲線を図12に示す。なお、SiCマトリクス形成前のBN層全体厚さを約200nmとした。本発明のSiC基複合材100の曲げ破断強度が533MPaであり、比較サンプル400の297MPaに比べて高い曲げ強度を示すことを確認した。また、各複合材の曲げ試験後の破断面のSEM像を図13に示す。本発明のSiC基複合材100の破断面(a)において、SiCマトリックス30との間に滑りが発生した証拠である「繊維の引抜け」が多数確認できた。この滑りにより、強度と伸びが高い、SiC基複合材100になっていることが確認された。一方、比較サンプルの破断面(b)においては、「繊維の引抜け」が余り生じていなかった。特に、点線で囲んだ部分においては繊維の引抜けが殆ど確認できなかった。
(Room temperature bending property evaluation)
The SiC-based composite material 100 of the present invention and the comparative sample 400 were evaluated in accordance with the test standard ASTM C1341-13 using SHIMADZU AG-IS 10KN. The room temperature bending stress-displacement curve is shown in FIG. Note that the total thickness of the BN layer before forming the SiC matrix was approximately 200 nm. It was confirmed that the SiC-based composite material 100 of the present invention had a bending strength at break of 533 MPa, which was higher than that of the comparative sample 400, which was 297 MPa. Furthermore, SEM images of the fracture surfaces of each composite material after the bending test are shown in FIG. On the fracture surface (a) of the SiC-based composite material 100 of the present invention, a large number of "pulling out fibers", which is evidence of slipping between the material and the SiC matrix 30, was confirmed. This slippage confirmed that the SiC-based composite material 100 had high strength and elongation. On the other hand, in the fracture surface (b) of the comparative sample, "pulling out of fibers" did not occur much. In particular, almost no fiber pull-out was observed in the area surrounded by the dotted line.

(室温引張特性評価)
本発明のSiC基複合材100と前記比較サンプル400について、INSTRON 5982を用いて、試験規格ASTM C1275-16にて評価した。その室温引張応力-歪み曲線を図14に示す。なお、SiCマトリクス形成前のBN層全体厚さを約200nmとし、試験片サイズは70mm×10mm×1mmとした。本発明のSiC基複合材100は、引張強度が249MPa、破断歪みが0.5%と、比較サンプルの引張強度:55MPa、破断歪み:0.04%に比べて高い強度と伸びを示すことを確認した。また、各サンプルの引張試験後の破断面のSEM像を図15に示す。本発明のSiC基複合材100の破断面(a)において、SiCマトリックス30との間に滑りが発生した証拠である「繊維の引抜け」が多数確認できた。この滑りにより、強度と伸びが高い、SiC基複合材100になっていることが確認できた。一方、比較サンプルの破断面(b)においては、「繊維の引抜け」が余り生じていなかった。
(Room temperature tensile property evaluation)
The SiC-based composite material 100 of the present invention and the comparative sample 400 were evaluated using INSTRON 5982 according to the test standard ASTM C1275-16. The room temperature tensile stress-strain curve is shown in FIG. The total thickness of the BN layer before forming the SiC matrix was approximately 200 nm, and the test piece size was 70 mm x 10 mm x 1 mm. The SiC-based composite material 100 of the present invention has a tensile strength of 249 MPa and a strain at break of 0.5%, which is higher than that of the comparative sample, which has a tensile strength of 55 MPa and a strain at break of 0.04%. confirmed. Furthermore, SEM images of the fracture surfaces of each sample after the tensile test are shown in FIG. On the fracture surface (a) of the SiC-based composite material 100 of the present invention, a large number of "pulling out fibers", which is evidence of slipping between the material and the SiC matrix 30, was confirmed. This slippage confirmed that the SiC-based composite material 100 had high strength and elongation. On the other hand, in the fracture surface (b) of the comparative sample, "pulling out of fibers" did not occur much.

(BN膜厚と室温機械特性の関係)
本発明と比較サンプルのSiC基複合材におけるSiCマトリクス形成前のBN層全体厚さと、繊維とマトリクス間の界面せん断強度、曲げ強度および引張特性の関係を表5に纏めた。本発明のSiC基複合材においては、BN膜厚が230nm程度で繊維とマトリクス間の界面せん断強度が最小となり、曲げ強度および引張強度は最大となった。
(Relationship between BN film thickness and room temperature mechanical properties)
Table 5 summarizes the relationship between the overall thickness of the BN layer before forming the SiC matrix, the interfacial shear strength between the fiber and the matrix, the bending strength, and the tensile properties in the SiC-based composite materials of the present invention and comparative samples. In the SiC-based composite material of the present invention, when the BN film thickness was about 230 nm, the interfacial shear strength between the fibers and the matrix became the minimum, and the bending strength and tensile strength became the maximum.

以上、本発明の実施形態について詳細に説明してきたが、本発明は上記実施形態に限定されるものではない、特許請求の範囲の技術範囲において、変更することが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and can be modified within the technical scope of the claims.

202:第1のBN層
203:第2のBN層
10、201:SiC繊維
20:結晶性BN層
30:結晶性カーボン層
40:SiCマトリックス
50:界面層
60:ナノインデンター
100:SiC基複合材料
200:BN被覆SiC繊維
400:比較サンプルのSiC基複合材料
301:連続式成膜装置
302:巻き出し室
303:サイジング除去室
304:成膜室
305:巻取り室
306:排気口
307:プロセスガス導入口
308:加熱ヒーター
309:CVD炉

202: First BN layer 203: Second BN layer 10, 201: SiC fiber 20: Crystalline BN layer 30: Crystalline carbon layer 40: SiC matrix 50: Interface layer 60: Nanoindenter 100: SiC base composite Material 200: BN-coated SiC fiber 400: Comparative sample SiC-based composite material 301: Continuous film forming apparatus 302: Unwinding chamber 303: Sizing removal chamber 304: Film forming chamber 305: Winding chamber 306: Exhaust port 307: Process Gas inlet 308: Heater 309: CVD furnace

Claims (5)

SiCを主成分とする繊維表面に、最外層となる第1のBN被覆層と前記第1のBN被覆層の内側の第2のBN被覆層とを備え、前記第1のBN被覆層に含まれる酸素量が、前記第2のBN被覆層に含まれる酸素量よりも高いことを特徴とするBN被覆SiC繊維。 A first BN coating layer serving as the outermost layer and a second BN coating layer inside the first BN coating layer are provided on the surface of the fiber mainly composed of SiC, and the first BN coating layer contains A BN-coated SiC fiber characterized in that the amount of oxygen contained in the second BN coating layer is higher than the amount of oxygen contained in the second BN coating layer. 前記第1のBN被覆層の結晶化度が、前記第2のBN被覆層の結晶化度よりも低いことを特徴とする請求項に記載のBN被覆SiC繊維。 The BN-coated SiC fiber according to claim 1 , wherein the first BN coating layer has a lower crystallinity than the second BN coating layer. 前記第1のBN被覆層に含まれる酸素量が、3原子パーセント以上であることを特徴とする請求項または請求項に記載のBN被覆SiC繊維。 3. The BN-coated SiC fiber according to claim 1 , wherein the first BN coating layer contains at least 3 atomic percent of oxygen. 請求項ないし請求項のいずれか一項に記載のBN被覆SiC繊維を製造する工程と、前記BN被覆SiC繊維にSiCを主成分とするマトリックスを形成する間に、結晶性カーボン層を形成する工程と、
を有することを特徴とするSiC基複合材料の製造方法。
Forming a crystalline carbon layer between the step of producing the BN-coated SiC fiber according to any one of claims 1 to 3 and forming a matrix mainly composed of SiC on the BN-coated SiC fiber. The process of
A method for producing a SiC-based composite material, comprising:
前記SiCを主成分とするマトリックスを形成する方法が、化学気相含浸(CVI)法であることを特徴とする請求項に記載のSiC基複合材料の製造方法。 5. The method for producing a SiC-based composite material according to claim 4 , wherein the method for forming the matrix containing SiC as a main component is a chemical vapor impregnation (CVI) method.
JP2019165506A 2019-09-11 2019-09-11 BN-coated SiC fiber and method for producing SiC-based composite material Active JP7347045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165506A JP7347045B2 (en) 2019-09-11 2019-09-11 BN-coated SiC fiber and method for producing SiC-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165506A JP7347045B2 (en) 2019-09-11 2019-09-11 BN-coated SiC fiber and method for producing SiC-based composite material

Publications (2)

Publication Number Publication Date
JP2021042100A JP2021042100A (en) 2021-03-18
JP7347045B2 true JP7347045B2 (en) 2023-09-20

Family

ID=74861775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165506A Active JP7347045B2 (en) 2019-09-11 2019-09-11 BN-coated SiC fiber and method for producing SiC-based composite material

Country Status (1)

Country Link
JP (1) JP7347045B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183979A (en) 2001-12-13 2003-07-03 Ube Ind Ltd Boron nitride-coated silicon carbide ceramic fiber, method for producing the same and ceramic composite material reinforced with the fiber
JP2006096659A (en) 2004-09-28 2006-04-13 General Electric Co <Ge> Method for manufacturing high performance ceramic matrix composite material at low cost
JP2006225832A (en) 2005-01-06 2006-08-31 United Technol Corp <Utc> Boron nitride coated fiber and composite article comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217234A (en) * 1996-02-07 1997-08-19 Isuzu Ceramics Kenkyusho:Kk Silicon carbide-based ceramic fiber
JPH10101446A (en) * 1996-09-30 1998-04-21 Toshiba Corp Ceramic fiber-based composite material and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183979A (en) 2001-12-13 2003-07-03 Ube Ind Ltd Boron nitride-coated silicon carbide ceramic fiber, method for producing the same and ceramic composite material reinforced with the fiber
JP2006096659A (en) 2004-09-28 2006-04-13 General Electric Co <Ge> Method for manufacturing high performance ceramic matrix composite material at low cost
JP2006225832A (en) 2005-01-06 2006-08-31 United Technol Corp <Utc> Boron nitride coated fiber and composite article comprising the same

Also Published As

Publication number Publication date
JP2021042100A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
DiCarlo et al. Non-oxide (silicon carbide) fibers
DiCarlo Advances in SiC/SiC composites for aero‐propulsion
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
Udayakumar et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI
US8894918B2 (en) Methods for producing high-performance silicon carbide fibers, architectural preforms, and high-temperature composite structures
Zilong et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500° C in air
US6322889B1 (en) Oxidation-resistant interfacial coating for fiber-reinforced ceramic
JP4191247B2 (en) High temperature composite with improved oxidation resistance having a reinforcement consisting of carbon fibers or fibers coated with carbon
JP5722330B2 (en) COMPOSITE MATERIAL COMPRISING CERAMIC MATRIX AND METHOD FOR MANUFACTURING THE SAME
Chen et al. Effects of interfacial residual stress on mechanical behavior of SiC f/SiC composites
WO2019005525A1 (en) High temperature glass-ceramic matrix with embedded reinforcement fibers
Le Petitcorps et al. Modern boron and SiC CVD filaments: a comparative study
US9604886B2 (en) Ceramic matrix composite material part
EP2970016A1 (en) Ceramic matrix composite and method and article of manufacture
WO2015011371A1 (en) Process for fabricating composite parts by low melting point impregnation
Lee et al. Multilayered oxide interphase concept for ceramic‐matrix composites
JP7347045B2 (en) BN-coated SiC fiber and method for producing SiC-based composite material
JPH08505355A (en) Thermostructural composite products and methods for their manufacture
Zhang et al. Ablation behavior of CVD-TaC coatings with different crystal structures for C/C composites under oxyacetylene flame
Yang et al. Hi-NicalonTM fiber-reinforced CVI-SiC matrix composites: I effects of PyC and PyC-SiC multilayers on the fracture behaviors and flexural properties
JP6530659B2 (en) Ceramic composite and method of manufacturing the same
Jeng et al. Interface reaction studies of B4C/B and SiC/B fiber-reinforced Ti3Al matrix composites
Han et al. Influence of heat treatment on microstructure and mechanical properties of Cansas-II SiC/PyC/CVI-SiC mini-composites
Lv et al. Effect of CVI SiC interphase on tensile properties of SiC fibers with different surfaces
JP2000351676A (en) Fiber coated with silicon-doped boron nitride in composite melt-infiltrated with silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7347045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150