JPH08288557A - Theroelectric conversion device - Google Patents
Theroelectric conversion deviceInfo
- Publication number
- JPH08288557A JPH08288557A JP7245807A JP24580795A JPH08288557A JP H08288557 A JPH08288557 A JP H08288557A JP 7245807 A JP7245807 A JP 7245807A JP 24580795 A JP24580795 A JP 24580795A JP H08288557 A JPH08288557 A JP H08288557A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- temperature side
- side heat
- expansion
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 22
- 239000004065 semiconductor Substances 0.000 claims abstract description 48
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 4
- 230000008646 thermal stress Effects 0.000 abstract description 13
- 230000006866 deterioration Effects 0.000 abstract 1
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 13
- 230000005611 electricity Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000005679 Peltier effect Effects 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000008642 heat stress Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気を熱または熱
を電気に変換する熱電気変換装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric converter for converting electricity into heat or heat into electricity.
【0002】[0002]
【従来の技術】従来、ペルチェ効果を利用して電気を熱
に、ゼーベック効果を利用して熱を電気に変換する熱電
気変換装置がある。この熱電気変換装置は、図5に示す
ように、相対向するよう配設された略平板状の高温側熱
交換器1 及び低温側熱交換器3と、その熱交換器1,3 の
間にあって碁盤目状に並設される複数個のP型半導体5
とN型半導体6 を有する熱電素子4 と、熱電素子4 のP
型半導体5 とN型半導体6 とが交互に直列に配設される
よう連結するとともに熱交換器1,3 に取着される電極7
と、を具備している。そして、図5に示すように電流を
流すことにより、高温側熱交換器1 で放熱が、低温側熱
交換器3 で吸熱が行われる。また、この熱電素子4 のP
型半導体5 とN型半導体6 は、焼結等で形成された重金
属製の略直方体状であって、P型半導体5 及びN型半導
体6 と電極7 は、半田等で接合されている。そして、そ
の電極7 は、高温側熱交換器1 または低温側熱交換器3
と接着剤等で固着されている。2. Description of the Related Art Conventionally, there is a thermoelectric converter that converts electricity into heat using the Peltier effect and heat into electricity using the Seebeck effect. As shown in FIG. 5, this thermoelectric conversion device is provided between a high temperature side heat exchanger 1 and a low temperature side heat exchanger 3, which are substantially flat plate-shaped and arranged to face each other, and the heat exchangers 1 and 3. P-type semiconductors arranged side by side in a grid pattern 5
And thermoelectric element 4 having N-type semiconductor 6 and P of thermoelectric element 4
-Type semiconductors 5 and N-type semiconductors 6 are connected so that they are alternately arranged in series and are attached to the heat exchangers 1, 3.
It is equipped with. Then, as shown in FIG. 5, by passing an electric current, the high temperature side heat exchanger 1 releases heat and the low temperature side heat exchanger 3 absorbs heat. In addition, P of this thermoelectric element 4
The type semiconductor 5 and the N-type semiconductor 6 are substantially rectangular parallelepiped made of heavy metal formed by sintering or the like, and the P-type semiconductor 5 and the N-type semiconductor 6 and the electrode 7 are joined by solder or the like. The electrode 7 is connected to the high temperature side heat exchanger 1 or the low temperature side heat exchanger 3
It is fixed with an adhesive or the like.
【0003】このものは、各熱交換器の熱伝導を良好に
するために、熱交換器の材質としてアルミニウムがよく
用いられている。しかし、アルミニウムは熱膨張率が大
きいため、その熱膨張、熱収縮からなる変形により接合
されている異なる材質の熱電素子や半田等に熱ストレス
が発生し、それが繰り返されることにより熱電素子や半
田等にクラックが発生し、断線に至って寿命が短くなる
ことがある。それを改善するものとして、熱交換器を分
割したり、特開平4−85974号(図6)に開示され
るように、熱交換器に石英ガラスのような熱膨張係数が
小さい材料を用いているものがある。In this case, aluminum is often used as the material of the heat exchanger in order to improve the heat conduction of each heat exchanger. However, since aluminum has a large coefficient of thermal expansion, thermal stress is generated in the thermoelectric element and solder of different materials that are joined due to the deformation of thermal expansion and thermal contraction, and by repeating it, thermoelectric element and solder There is a possibility that cracks will occur in the etc., leading to disconnection and shortening the life. To improve it, the heat exchanger is divided, or as disclosed in JP-A-4-85974 (FIG. 6), a material having a small coefficient of thermal expansion such as quartz glass is used for the heat exchanger. There is something.
【0004】[0004]
【発明が解決しようとする課題】前述した熱電気変換装
置は、熱交換器を複数個に分割したり、熱交換器に熱膨
張係数が小さい材料を用いることにより、熱交換器の熱
膨張、熱収縮からなる変形に伴う熱電素子や半田等の熱
ストレスを抑制し、信頼性の高いものとなっている。し
かし、熱交換器を分割構造にした場合、構造が複雑とな
って生産性が悪くなる。また、熱交換器に石英ガラスの
ような熱膨張係数が小さい材料を用いると、熱伝導率が
小さいため、熱効率が低下する。The above-mentioned thermoelectric conversion device is constructed by dividing the heat exchanger into a plurality of pieces or by using a material having a small coefficient of thermal expansion for the heat exchanger. It suppresses thermal stress on the thermoelectric element, solder, etc. due to deformation due to thermal contraction, and has high reliability. However, when the heat exchanger has a divided structure, the structure becomes complicated and the productivity deteriorates. Further, when a material having a small coefficient of thermal expansion such as quartz glass is used for the heat exchanger, the thermal conductivity is small, and thus the thermal efficiency is reduced.
【0005】本発明は、かかる事由に鑑みてなしたもの
で、その目的とするところは、熱ストレスを抑制すると
ともに、簡単な構造で熱効率のよい熱電気変換装置を提
供することである。The present invention has been made in view of the above circumstances, and an object thereof is to provide a thermoelectric conversion device which suppresses thermal stress and has a simple structure and high thermal efficiency.
【0006】[0006]
【課題を解決するための手段】かかる課題を解決するた
めに、請求項1記載の熱電気変換装置は、相対向するよ
う配設された略平板状の高温側及び低温側熱交換器と、
該熱交換器の間にあって並設される少なくとも1対のP
型半導体とN型半導体を有する熱電素子と、該熱電素子
のP型半導体とN型半導体とが交互に直列に配設される
よう連結するとともに熱交換器に取着される電極と、を
具備する熱電気変換装置において、前記高温側熱交換器
の熱膨張による変形を抑制する膨張抑制手段を設けた構
成としている。In order to solve the above-mentioned problems, the thermoelectric conversion device according to claim 1 is a substantially flat plate-shaped high-temperature side and low-temperature side heat exchanger arranged so as to face each other.
At least one pair of Ps arranged in parallel between the heat exchangers
A thermoelectric element having a N-type semiconductor and a P-type semiconductor and an N-type semiconductor, and an electrode connected to the P-type semiconductor and the N-type semiconductor of the thermoelectric element so as to be alternately arranged in series and attached to a heat exchanger. In this thermoelectric conversion device, expansion suppressing means for suppressing deformation of the high temperature side heat exchanger due to thermal expansion is provided.
【0007】また、請求項2記載の熱電気変換装置は、
請求項1記載の膨張抑制手段を、高温側熱交換器と一体
に形成されるものであって熱膨張率の小さい略平板状の
低膨張板からなる構成としている。Further, the thermoelectric converter according to claim 2 is
The expansion suppressing means according to claim 1 is formed integrally with the high temperature side heat exchanger and is constituted by a substantially flat plate-shaped low expansion plate having a small coefficient of thermal expansion.
【0008】また、請求項3記載の熱電気変換装置は、
請求項2記載の低膨張板に、高温側熱交換器の長手方向
と係合する係合片を設けた構成としている。The thermoelectric converter according to claim 3 is
The low expansion plate according to claim 2 is provided with an engaging piece that engages with the longitudinal direction of the high temperature side heat exchanger.
【0009】また、請求項4記載の熱電気変換装置は、
請求項1記載の膨張抑制手段を、高温側熱交換器の外周
を取り囲むものであって熱膨張率の小さい略リング状の
低膨張環からなる構成としている。The thermoelectric converter according to claim 4 is
The expansion suppressing means according to claim 1 is constituted by a substantially ring-shaped low expansion ring which surrounds the outer periphery of the high temperature side heat exchanger and has a small coefficient of thermal expansion.
【0010】また、請求項5記載の熱電気変換装置は、
請求項1記載の膨張抑制手段を、低温側熱交換器に連結
されるものであって高温側熱交換器の長手方向の端部を
係止する係止部からなる構成としている。The thermoelectric converter according to claim 5 is
The expansion suppressing means according to claim 1 is configured to be connected to the low temperature side heat exchanger and to include a locking portion that locks an end portion in the longitudinal direction of the high temperature side heat exchanger.
【0011】また、請求項6記載の熱電気変換装置は、
請求項1乃至5記載の膨張抑制手段を、所定温度に上昇
すると収縮する形状記憶合金で形成した構成としてい
る。The thermoelectric converter according to claim 6 is
The expansion suppressing means according to any one of claims 1 to 5 is formed of a shape memory alloy that contracts when the temperature rises to a predetermined temperature.
【0012】[0012]
【発明の実施の形態】以下、本発明の第1の実施形態を
図1に基づいて説明する。なお、従来の技術で説明した
ものと基本的な機能が同じ部材には、同一の符号を付し
てある。図1は熱電気変換装置の断面図であり、熱電気
変換装置は、高温側熱交換器1 と、低膨張板2 と、低温
側熱交換器3 と、P型半導体5,5 …及びN型半導体6,6
…からなる熱電素子4 と、電極7 とを主要構成部材とし
ている。BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIG. Members having the same basic functions as those described in the related art are designated by the same reference numerals. FIG. 1 is a cross-sectional view of a thermoelectric conversion device. The thermoelectric conversion device includes a high temperature side heat exchanger 1, a low expansion plate 2, a low temperature side heat exchanger 3, P-type semiconductors 5, 5, ... Type semiconductor 6,6
The thermoelectric element 4 consisting of ... And the electrode 7 are the main constituent members.
【0013】高温側熱交換器1 は、後述する熱電素子4
の一方の端部で発熱した熱を外部に放熱するもので、外
方面1a及び内方面1bを有する略平板状にアルミニウム等
の熱伝導の良好な材料で形成される。この外方面1aは、
熱を伝達したい気体や固体等と接触する。また、高温側
熱交換器1 の内部には、後述する低膨張板2 を収納する
ものであって、外方面1a及び内方面1bより露出しないよ
う形成される収納部1cを有する。The high temperature side heat exchanger 1 includes a thermoelectric element 4 which will be described later.
It radiates the heat generated at one end to the outside, and is formed of a material having good heat conduction such as aluminum in a substantially flat plate shape having an outer surface 1a and an inner surface 1b. This outer surface 1a is
Contact with gases or solids that want to transfer heat. Further, inside the high temperature side heat exchanger 1, a low expansion plate 2 to be described later is stored, and a storage portion 1c formed so as not to be exposed from the outer surface 1a and the inner surface 1b is provided.
【0014】低膨張板2 は、膨張抑制手段であって、高
温側熱交換器1 の熱膨張による変形、特に高温側熱交換
器1 の長手方向に伸びようとする変形を抑制する。この
低膨張板2 は、石英ガラス等の熱膨張率の小さな材料製
で略平板状に形成され、高温側熱交換器1 の収納部1c
に、高温側熱交換器1 と一体となるように内蔵される。
この一体化は、接着材等を用いてもよいし、同時成型に
よることもできる。The low expansion plate 2 is expansion suppressing means and suppresses deformation of the high temperature side heat exchanger 1 due to thermal expansion, particularly deformation of the high temperature side heat exchanger 1 which tends to extend in the longitudinal direction. The low expansion plate 2 is made of a material having a small coefficient of thermal expansion such as quartz glass and is formed in a substantially flat plate shape.
Incorporated into the high temperature side heat exchanger 1.
This integration may be performed by using an adhesive or the like, or by simultaneous molding.
【0015】低温側熱交換器3 は、後述する熱電素子4
の他方の端部が冷却されることに伴い外部より吸熱する
もので、高温側熱交換器1 と同様に外方面3a及び内方面
3bを有する略平板状にアルミニウム等の熱伝導の良好な
材料で形成される。この外方面3aも、熱を吸収したい気
体や固体等と接触する。そして、この低温側熱交換器3
と高温側熱交換器1 は、その対向する内方面3b,1b が略
平行で、後述する熱電素子4 、及び電極7 が収納される
間隔を有するよう配設される。The low temperature side heat exchanger 3 includes a thermoelectric element 4 which will be described later.
It absorbs heat from the outside as the other end of the heat exchanger cools, and like the high temperature side heat exchanger 1, it has an outer surface 3a and an inner surface.
It is formed of a material having good heat conduction such as aluminum in a substantially flat plate shape having 3b. The outer surface 3a also comes into contact with a gas, a solid, or the like that wants to absorb heat. And this low temperature side heat exchanger 3
The high temperature side heat exchanger 1 is arranged such that the inner surfaces 3b, 1b facing each other are substantially parallel to each other and there is a space for accommodating a thermoelectric element 4 and an electrode 7 described later.
【0016】熱電素子4 は、電気を熱に変換するもので
あり、複数のP型半導体5,5 …とN型半導体6,6 …を有
する。各P型半導体5 及びN型半導体6 は、重金属製で
略直方体状に形成され、P型半導体5 とN型半導体6 が
交互となるように碁盤目状に並設されるとともに、その
P型半導体5 及びN型半導体6 の端面は後述する電極7
に接合される。従って、電極7 を介してP型半導体5 と
N型半導体6 とが交互となるように直列に配設される。
なお、この直列は、全てが直列になっている必要は特に
なく、直列のものが複数個ある構造でもよい。そして、
このP型半導体5 及びN型半導体6 は、P型半導体5 か
らN型半導体6 に向かって電流が流れるところでは、そ
の端部5a,6a が発熱し、N型半導体6 からP型半導体5
に向かって電流が流れるところでは、その端部5b,6b が
冷却される。The thermoelectric element 4 converts electricity into heat and has a plurality of P-type semiconductors 5,5 ... And N-type semiconductors 6,6. The P-type semiconductors 5 and the N-type semiconductors 6 are made of heavy metal and are formed in a substantially rectangular parallelepiped shape. The P-type semiconductors 5 and the N-type semiconductors 6 are arranged side by side in a grid pattern so that the P-type semiconductors 5 and the N-type semiconductors 6 are alternately arranged. The end faces of the semiconductor 5 and the N-type semiconductor 6 are electrodes 7 described later.
To be joined to. Therefore, the P-type semiconductors 5 and the N-type semiconductors 6 are alternately arranged in series through the electrodes 7.
Note that this series does not necessarily have to be all in series, and may have a structure having a plurality of series. And
In the P-type semiconductor 5 and the N-type semiconductor 6, where current flows from the P-type semiconductor 5 to the N-type semiconductor 6, the end portions 5a and 6a generate heat, and the N-type semiconductor 6 and the P-type semiconductor 5 are heated.
Where the current flows toward, the ends 5b, 6b are cooled.
【0017】電極7 は、熱電素子4 のP型半導体5 とN
型半導体6 とを連結するとともに熱交換器1,3 に取着さ
れるもので、第1電極8,8 …及び第2電極9,9 …より構
成される。この第1電極8,8 …及び第2電極9,9 …は、
銅等の導電材料でもって略平板状に形成され、第1電極
8,8 …は高温側熱交換器1 の内方面1bに、第2電極9,9
…は低温側熱交換器3 の内方面3bに、接着剤またはグリ
ース等を介して取着される。また、第1電極8,8 …及び
第2電極9,9 …は、熱電素子4 と半田等で接合される。The electrode 7 is composed of the P-type semiconductor 5 and N of the thermoelectric element 4.
, Which is connected to the mold semiconductor 6 and is attached to the heat exchangers 1, 3, and is composed of first electrodes 8, 8 ... And second electrodes 9, 9. The first electrodes 8,8 ... And the second electrodes 9,9 ...
The first electrode is formed of a conductive material such as copper into a substantially flat plate shape.
8 and 8 are the second electrodes 9 and 9 on the inner surface 1b of the high temperature side heat exchanger 1.
Are attached to the inner surface 3b of the low temperature side heat exchanger 3 with an adhesive or grease or the like. The first electrodes 8,8 ... And the second electrodes 9,9 ... Are joined to the thermoelectric element 4 by soldering or the like.
【0018】このものは、図1に示す方向に電流を流す
と、P型半導体5 及びN型半導体6の端部5a,6a が発熱
し、端部5b,6b が冷却される。したがって、端部5a,6a
で発生した熱は、第1電極8 を介して高温側熱交換器1
に伝わり、外方面1aより放熱するとともに、低温側熱交
換器3 の外方面3aより熱が吸収されて、第2電極9 を介
してP型半導体5 及びN型半導体6 の端部5b,6b に熱が
伝わる。When a current is passed in the direction shown in FIG. 1, the end portions 5a and 6a of the P-type semiconductor 5 and the N-type semiconductor 6 generate heat and the end portions 5b and 6b are cooled. Therefore, the ends 5a, 6a
The heat generated at the high temperature side heat exchanger 1 passes through the first electrode 8.
To the end portions 5b, 6b of the P-type semiconductor 5 and the N-type semiconductor 6 via the second electrode 9 while being radiated from the outer surface 1a and being radiated from the outer surface 1a. Heat is transmitted to.
【0019】また、高温側熱交換器1 では、高温になる
ために、その長手方向に熱膨張が発生しようとするが、
低膨張板2 でもってその熱膨張が高温側熱交換器1 に熱
ストレスをかけることで抑制される。したがって、剛体
で一般に強度的に弱い材質の熱電素子4 や電極7 や半田
等での熱ストレスが低減され、クラック等による断線等
が起こりにくい。さらに、このものは、石英ガラス等の
熱膨張率の小さな材料の低膨張板2 が一般に熱伝導率が
よくないが、低膨張板2 が高温側熱交換器1 の外方面1a
及び内方面1bに露出せず、アルミニウム等の熱伝導率が
良好な材料が空気や第1電極8 と接触するため、熱効率
が低下しない。Further, in the high temperature side heat exchanger 1, since the temperature becomes high, thermal expansion tends to occur in the longitudinal direction,
The thermal expansion of the low expansion plate 2 is suppressed by applying thermal stress to the high temperature side heat exchanger 1. Therefore, the thermal stress in the thermoelectric element 4, the electrode 7, and the solder, which are rigid and generally weak in strength, is reduced, and the disconnection due to cracks or the like is less likely to occur. Further, in this product, the low expansion plate 2 made of a material having a small coefficient of thermal expansion such as quartz glass generally does not have a good thermal conductivity, but the low expansion plate 2 does not have a high expansion coefficient.
Further, since the material not exposed to the inner surface 1b and having a good thermal conductivity such as aluminum comes into contact with the air or the first electrode 8, the thermal efficiency does not decrease.
【0020】なお、低膨張板2 の構造はこの実施形態に
限定されるものではなく、要は膨張率の小さい材料を熱
伝導率の良好な高温側熱交換器1 と一体に設ければよ
く、例えば、高温側熱交換器1 の内部に蛇行状に配設す
る構造でもよい。The structure of the low expansion plate 2 is not limited to this embodiment, and in short, a material having a small expansion coefficient may be provided integrally with the high temperature side heat exchanger 1 having a good thermal conductivity. For example, the structure may be arranged inside the high temperature side heat exchanger 1 in a meandering shape.
【0021】次に、第1の実施形態の変形を図2に基づ
いて説明する。このものは、低膨張板2 に高温側熱交換
器1 の長手方向と係合する係合片2a,2a …を設けたもの
である。この係合片2a,2a …は、低膨張板2 と一体であ
って、高温側熱交換器1 の長手方向に対して略垂直な段
形状のものであり、その長手方向の熱膨張がその係合片
2a,2a …でもって、さらに抑制される。なお、この低膨
張板2 は、紙面と垂直方向には、同じ断面を有する構造
となっている。Next, a modification of the first embodiment will be described with reference to FIG. In this structure, the low expansion plate 2 is provided with engaging pieces 2a, 2a ... Which engage with the longitudinal direction of the high temperature side heat exchanger 1. The engaging pieces 2a, 2a ... Are integrally formed with the low expansion plate 2 and have a step shape substantially perpendicular to the longitudinal direction of the high temperature side heat exchanger 1, and the thermal expansion in the longitudinal direction thereof is Engaging piece
2a, 2a ..., and is further suppressed. The low expansion plate 2 has a structure having the same cross section in the direction perpendicular to the plane of the drawing.
【0022】次に、本発明の第2の実施形態を図3に基
づいて説明する。このものは、高温側熱交換器1 の外周
に膨張抑制手段を設けることで、高温側熱交換器1 の熱
膨張を抑制するものである。Next, a second embodiment of the present invention will be described with reference to FIG. This one suppresses thermal expansion of the high temperature side heat exchanger 1 by providing expansion suppressing means on the outer periphery of the high temperature side heat exchanger 1.
【0023】10は低膨張環で、膨張抑制手段であって、
高温側熱交換器1 の熱膨張による外周方向への変形を抑
制する。この低膨張環10は、低膨張板2 と同様に石英ガ
ラス等の熱膨張率の小さな材料製でロ字状をした略リン
グ状に形成され、高温側熱交換器1 の外周を取り囲むよ
うに配設される。Reference numeral 10 denotes a low expansion ring, which is expansion suppressing means,
The deformation of the high temperature side heat exchanger 1 in the outer peripheral direction due to the thermal expansion is suppressed. Like the low expansion plate 2, the low expansion ring 10 is made of a material having a small coefficient of thermal expansion, such as quartz glass, and is formed in a substantially ring-like shape so as to surround the outer periphery of the high temperature side heat exchanger 1. It is arranged.
【0024】このものは、低膨張環10でもって、高温側
熱交換器1 の外周方向の変形が抑制されるため、熱電素
子4 等の熱ストレスを低減するとともに、構造が簡単な
ために生産性がよい。The low expansion ring 10 suppresses the deformation of the high temperature side heat exchanger 1 in the outer peripheral direction, so that the heat stress of the thermoelectric element 4 and the like is reduced and the structure is simple, so that it is produced. Good sex.
【0025】次に、第3の実施形態を図4に基づいて説
明する。このものは、低温側熱交換器3 に連結される係
止部20でもって、高温側熱交換器1 の熱膨張を抑制する
ものである。Next, a third embodiment will be described with reference to FIG. In this structure, the locking portion 20 connected to the low temperature side heat exchanger 3 suppresses thermal expansion of the high temperature side heat exchanger 1.
【0026】係止部20,20 は、膨張抑制手段であって、
低温側熱交換器3 の端面3c,3c に連結されて高温側熱交
換器1 の長手方向の端面1d,1d を係止するもので、低温
側熱交換器3 と一体にアルミニウム等の熱伝導の良好な
材料で形成され、略平板状の形状を有する。21,21 は断
熱材で、高温側熱交換器1 から係止部20,20 を介して低
温側熱交換器3 に熱が伝導することを防止する。The locking portions 20, 20 are expansion suppressing means,
It is connected to the end faces 3c, 3c of the low temperature side heat exchanger 3 and locks the longitudinal end faces 1d, 1d of the high temperature side heat exchanger 1. Is formed of a good material and has a substantially flat plate shape. Reference numerals 21 and 21 denote heat insulating materials that prevent heat from being transferred from the high temperature side heat exchanger 1 to the low temperature side heat exchanger 3 via the locking portions 20 and 20.
【0027】このものは、高温側熱交換器1 の熱膨張が
係止部20,20 で抑制され、熱電素子4 等の熱ストレスを
低減するとともに、構造が簡単のために生産性がよい。
なお、係止部20,20 で高温側熱交換器1 の端面1d,1d を
係止したが、高温側熱交換器1 の端面1d,1d の近傍に溝
を設けて係止部20をはめ込むような構造にしてもよい。
また、この実施形態では、低温側熱交換器3 と係止部2
0,20 で略コ字状に形成したが、係止部20をリング状に
して、低温側熱交換器3 と係止部20で有底筒状にしても
よい。This product has good productivity because the thermal expansion of the high temperature side heat exchanger 1 is suppressed by the locking portions 20 and 20, the thermal stress of the thermoelectric element 4 and the like is reduced, and the structure is simple.
Although the end faces 1d, 1d of the high temperature side heat exchanger 1 are locked by the locking parts 20, 20, a groove is provided near the end faces 1d, 1d of the high temperature side heat exchanger 1 and the locking part 20 is fitted. You may make it a structure like this.
Further, in this embodiment, the low temperature side heat exchanger 3 and the locking portion 2 are
Although the number 0 and 20 are formed in a substantially U shape, the locking portion 20 may be formed in a ring shape, and the low temperature side heat exchanger 3 and the locking portion 20 may be in a bottomed tubular shape.
【0028】また、第4の実施形態として、第1乃至第
3の実施形態の膨張抑制手段を形状記憶合金で形成す
る。この形状記憶合金は、Ni−Ti系の合金で、例え
ば、約50℃に温度が上昇すると収縮するよう形成され
る。As the fourth embodiment, the expansion suppressing means of the first to third embodiments is formed of a shape memory alloy. This shape memory alloy is a Ni—Ti alloy and is formed so as to shrink when the temperature rises to, for example, about 50 ° C.
【0029】このものは、膨張抑制手段が、所定温度に
上昇すると収縮するため、高温側熱交換器1 の変形が抑
制され、一層熱電素子4 等にかかる熱ストレスを抑制す
ることができる。In this case, the expansion suppressing means contracts when the temperature rises to a predetermined temperature, so that the deformation of the high temperature side heat exchanger 1 is suppressed and the thermal stress applied to the thermoelectric element 4 and the like can be further suppressed.
【0030】なお、本発明の熱電気変換装置は、ペルチ
ェ効果を利用して電気を熱に変換するものについて説明
したが、ゼーベック効果を利用して熱を電気に変換する
のに用いることもできる。また、各実施形態の断面図
は、その断面が紙面に垂直な方向に連続する構造を示し
ているが、そのものに限定されるものではなく、また、
長手方向とは、略平板状の熱交換器に略平行な方向をい
うものとする。Although the thermoelectric converter of the present invention has been described as one that converts electricity into heat by utilizing the Peltier effect, it can also be used by converting heat into electricity by utilizing the Seebeck effect. . Further, the cross-sectional views of the respective embodiments show a structure in which the cross-section is continuous in the direction perpendicular to the paper surface, but the present invention is not limited to this, and
The longitudinal direction means a direction substantially parallel to the substantially plate-shaped heat exchanger.
【0031】[0031]
【発明の効果】請求項1記載の熱電気変換装置は、膨張
抑制手段が高温側熱交換器の熱膨張による変形を低減す
るため、熱電素子等にかかる熱ストレスを抑制すること
ができるので、断線が起こりにくく信頼性が向上する。In the thermoelectric conversion device according to the first aspect of the present invention, since the expansion suppressing means reduces the deformation of the high temperature side heat exchanger due to the thermal expansion, it is possible to suppress the thermal stress applied to the thermoelectric element and the like. Breakage hardly occurs and reliability is improved.
【0032】また、請求項2記載の熱電気変換装置は、
請求項1の効果に加えて、高温側熱交換器の熱膨張によ
る変形は、略平板状の低膨張板により低減されるため、
簡単な構造で熱ストレスの抑制が実現できるので、生産
性が向上するとともに、高温側熱交換器の熱伝導率が低
減されにくいので、熱効率がよい。Further, the thermoelectric conversion device according to claim 2 is
In addition to the effect of claim 1, deformation due to thermal expansion of the high temperature side heat exchanger is reduced by the substantially flat low expansion plate,
Since thermal stress can be suppressed with a simple structure, productivity is improved, and the thermal conductivity of the high temperature side heat exchanger is difficult to reduce, resulting in good thermal efficiency.
【0033】また、請求項3記載の熱電気変換装置は、
請求項2の効果に加えて、低膨張板の係合片により、高
温側熱交換器の長手方向の変形がさらに低減されるた
め、一層熱ストレスを抑制することができるので、さら
に信頼性が向上する。The thermoelectric converter according to claim 3 is
In addition to the effect of claim 2, since the deformation of the high temperature side heat exchanger in the longitudinal direction is further reduced by the engagement piece of the low expansion plate, it is possible to further suppress the thermal stress, so that the reliability is further improved. improves.
【0034】また、請求項4記載の熱電気変換装置は、
請求項1の効果に加えて、略リング状の低膨張環により
高温側熱交換器の端部の変形が抑制されるため、簡単な
構造で熱ストレスの抑制が実現できるので、生産性が向
上するとともに、高温側熱交換器の熱伝導率が低減され
にくいので、熱効率がよい。The thermoelectric converter according to claim 4 is
In addition to the effect of claim 1, since the deformation of the end portion of the high temperature side heat exchanger is suppressed by the substantially ring-shaped low expansion ring, it is possible to suppress heat stress with a simple structure, and thus productivity is improved. In addition, since the thermal conductivity of the high temperature side heat exchanger is hard to be reduced, the thermal efficiency is good.
【0035】また、請求項5記載の熱電気変換装置は、
請求項1の効果に加えて、低温側熱交換器に連結される
係止部で、高温側熱交換器の端部を係止するため、その
長手方向の変形がさらに低減されるため、一層熱ストレ
スを抑制することができるので、さらに信頼性が向上す
るとともに、高温側熱交換器の熱伝導率が低減されにく
いので、熱効率がよい。The thermoelectric converter according to claim 5 is
In addition to the effect of claim 1, since the end portion of the high temperature side heat exchanger is locked by the locking portion connected to the low temperature side heat exchanger, the deformation in the longitudinal direction thereof is further reduced. Since the thermal stress can be suppressed, the reliability is further improved, and the thermal conductivity of the high temperature side heat exchanger is hard to be reduced, so that the thermal efficiency is good.
【0036】また、請求項6記載の熱電気変換装置は、
請求項1乃至5のいずれかの効果に加えて、膨張抑制手
段は所定温度に上昇すると収縮するため、一層高温側熱
交換器の変形が抑制され、熱電素子等にかかる熱ストレ
スを抑制する。Further, the thermoelectric converter according to claim 6 is
In addition to the effect of any one of claims 1 to 5, since the expansion suppressing means contracts when the temperature rises to a predetermined temperature, the deformation of the high temperature side heat exchanger is further suppressed, and the thermal stress applied to the thermoelectric element and the like is suppressed.
【図1】本発明の第1の実施形態を示す熱電気変換装置
の断面図である。FIG. 1 is a cross-sectional view of a thermoelectric conversion device showing a first embodiment of the present invention.
【図2】その変形を示す熱電気変換装置の断面図であ
る。FIG. 2 is a cross-sectional view of a thermoelectric conversion device showing the modification.
【図3】本発明の第2の実施形態を示す熱電気変換装置
の断面図である。FIG. 3 is a sectional view of a thermoelectric conversion device showing a second embodiment of the present invention.
【図4】本発明の第3の実施形態を示す熱電気変換装置
の断面図である。FIG. 4 is a sectional view of a thermoelectric conversion device showing a third embodiment of the present invention.
【図5】本発明の従来の技術を示す熱電気変換装置の断
面図である。FIG. 5 is a cross-sectional view of a thermoelectric conversion device showing a conventional technique of the present invention.
【図6】本発明の別の従来の技術を示す熱電気変換装置
の斜視図である。FIG. 6 is a perspective view of a thermoelectric conversion device showing another conventional technique of the present invention.
1 高温側熱交換器 2 低膨張板(膨張抑制手段) 2a 係合片 3 低温側熱交換器 4 熱電素子 5 P型半導体 6 N型半導体 7 電極 8 第1接合部 9 第2接合部 10 低膨張環(膨張抑制手段) 20 係止部(膨張抑制手段) 21 断熱材 1 High temperature side heat exchanger 2 Low expansion plate (expansion suppressing means) 2a Engagement piece 3 Low temperature side heat exchanger 4 Thermoelectric element 5 P-type semiconductor 6 N-type semiconductor 7 Electrode 8 First joint 9 Second joint 10 Low Expansion ring (expansion suppressing means) 20 Locking part (expansion suppressing means) 21 Heat insulating material
Claims (6)
高温側及び低温側熱交換器と、該熱交換器の間にあって
並設される少なくとも1対のP型半導体とN型半導体を
有する熱電素子と、該熱電素子のP型半導体とN型半導
体とが交互に直列に配設されるよう連結するとともに熱
交換器に取着される電極と、を具備する熱電気変換装置
において、 前記高温側熱交換器の熱膨張による変形を抑制する膨張
抑制手段を設けたことを特徴とする熱電気変換装置。1. A substantially flat plate-shaped high-temperature-side and low-temperature-side heat exchanger arranged to face each other, and at least one pair of P-type semiconductor and N-type semiconductor arranged in parallel between the heat exchangers. A thermoelectric conversion device comprising: a thermoelectric element having; and an electrode connected to a heat exchanger and connected so that P-type semiconductors and N-type semiconductors of the thermoelectric element are alternately arranged in series, A thermoelectric conversion device comprising expansion suppressing means for suppressing deformation of the high temperature side heat exchanger due to thermal expansion.
と一体に形成されるものであって熱膨張率の小さい略平
板状の低膨張板からなることを特徴とする請求項1記載
の熱電気変換装置。2. The expansion suppressing means is formed integrally with the high temperature side heat exchanger and is composed of a substantially flat plate-like low expansion plate having a small coefficient of thermal expansion. Thermoelectric converter.
手方向と係合する係合片を設けたことを特徴とする請求
項2記載の熱電気変換装置。3. The thermoelectric conversion device according to claim 2, wherein the low expansion plate is provided with an engagement piece that engages with a longitudinal direction of the high temperature side heat exchanger.
の外周を取り囲むものであって熱膨張率の小さい略リン
グ状の低膨張環からなることを特徴とする請求項1記載
の熱電気変換装置。4. The thermoelectric generator according to claim 1, wherein the expansion suppressing means surrounds an outer periphery of the high temperature side heat exchanger and is formed of a substantially ring-shaped low expansion ring having a small coefficient of thermal expansion. Converter.
に連結されるものであって高温側熱交換器の長手方向の
端部を係止する係止部からなることを特徴とする請求項
1記載の熱電気変換装置。5. The expansion suppressing means is connected to the low temperature side heat exchanger and comprises a locking portion for locking the longitudinal end of the high temperature side heat exchanger. Item 2. The thermoelectric conversion device according to item 1.
すると収縮する形状記憶合金で形成したことを特徴とす
る請求項1乃至5記載の熱電気変換装置。6. The thermoelectric converter according to claim 1, wherein the expansion suppressing means is formed of a shape memory alloy that contracts when the temperature rises to a predetermined temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7245807A JPH08288557A (en) | 1995-02-17 | 1995-09-25 | Theroelectric conversion device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-29575 | 1995-02-17 | ||
JP2957595 | 1995-02-17 | ||
JP7245807A JPH08288557A (en) | 1995-02-17 | 1995-09-25 | Theroelectric conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08288557A true JPH08288557A (en) | 1996-11-01 |
Family
ID=26367792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7245807A Withdrawn JPH08288557A (en) | 1995-02-17 | 1995-09-25 | Theroelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08288557A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5959240A (en) * | 1996-12-04 | 1999-09-28 | Ngk Insulators, Ltd. | Thermoelectric converter for heat-exchanger |
KR20150013326A (en) * | 2012-06-06 | 2015-02-04 | 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 | Thermoelectric module and method for operating same |
-
1995
- 1995-09-25 JP JP7245807A patent/JPH08288557A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5959240A (en) * | 1996-12-04 | 1999-09-28 | Ngk Insulators, Ltd. | Thermoelectric converter for heat-exchanger |
KR20150013326A (en) * | 2012-06-06 | 2015-02-04 | 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 | Thermoelectric module and method for operating same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3129116A (en) | Thermoelectric device | |
JP5336373B2 (en) | Thermoelectric conversion module | |
US8648246B2 (en) | Thermoelectric module and power generation apparatus | |
JP2775410B2 (en) | Thermoelectric module | |
JP2010245265A (en) | Thermoelectric module | |
US3301714A (en) | Compliant thermoelectric assembly | |
JPH08288557A (en) | Theroelectric conversion device | |
US10897001B2 (en) | Thermoelectric conversion module | |
JP3472593B2 (en) | Thermoelectric device | |
JPH0992890A (en) | Thermoelectric converter | |
US10971670B2 (en) | Thermoelectric conversion device | |
TW201351733A (en) | Semiconductor element for a thermoelectric module, and thermoelectric module | |
US11081633B2 (en) | Thermoelectric generation device | |
JP3062754B1 (en) | Thermoelectric generation module | |
US20190252593A1 (en) | Thermoelectric conversion device and manufacturing method thereof | |
JPH08293628A (en) | Thermoelectricity conversion device | |
JPH0333082Y2 (en) | ||
WO2018181933A1 (en) | Heat sink | |
JPH09214005A (en) | Thermoelectric transducer | |
JP2014110245A (en) | Thermoelectric conversion device | |
JPH08204241A (en) | Thermoelectric conversion system | |
JP2659775B2 (en) | Thermoelectric energy direct conversion device | |
JP6858379B2 (en) | Calibration thermoelectric power generation module | |
KR102673621B1 (en) | Phonon-Glass Electron-Crystal for power generation | |
US20170077378A1 (en) | Thermoelectric generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021203 |