JPH08285930A - Magnetism detection element and magnetic head - Google Patents

Magnetism detection element and magnetic head

Info

Publication number
JPH08285930A
JPH08285930A JP7092465A JP9246595A JPH08285930A JP H08285930 A JPH08285930 A JP H08285930A JP 7092465 A JP7092465 A JP 7092465A JP 9246595 A JP9246595 A JP 9246595A JP H08285930 A JPH08285930 A JP H08285930A
Authority
JP
Japan
Prior art keywords
magnetic
film
conductive film
permeability
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7092465A
Other languages
Japanese (ja)
Inventor
Masahiro Kawase
正博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP7092465A priority Critical patent/JPH08285930A/en
Priority to US08/618,066 priority patent/US5889403A/en
Publication of JPH08285930A publication Critical patent/JPH08285930A/en
Priority to US09/229,112 priority patent/US6351119B1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a constitution in which a high output is obtained stably, whose manufacture is easy and which can be manufactured at low costs in a magnetism detection element which makes use of a magnetic impedance effect. CONSTITUTION: A magnetism detection element is constituted in such a way that a high-permeability magnetic film 12, an insulating film 13, a conductive film 16, an insulating film 14' and a high-permeability magnetic film 12' are laminated sequentially from the lower part on a nonmagnetic substrate 10. At least one out of the magnetic films 12, 12' is endowed with magnetic anisotropy in such a way that an easy direction of magnetization becomes a direction perpendicular, inside a film face, to a magnetic-field detection direction. In the conductive film 16, a plurality of straight line parts along the magnetic-field detection direction are arranged in parallel at prescribed intervals, they are connected sequentially so as to be turned up, and they are formed to be a zigzag pattern in which they are electrically connected in series. A high-frequency current is applied across terminal parts 16A, 16B at both ends of the conductive film 16, and a change in an impedance generated across the terminal parts 16A, 16B by an external magnetic field Hex is converted into an electric signal so as to obtain an output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁界検出を行なう磁気
検出素子、及び磁気記録媒体に記録された磁気記録情報
の再生を行なう磁気ヘッドに関し、特に磁気インピーダ
ンス効果を利用した磁気検出素子および磁気ヘッドに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detecting element for detecting a magnetic field and a magnetic head for reproducing magnetically recorded information recorded on a magnetic recording medium, and more particularly to a magnetic detecting element and a magnetic element utilizing a magnetic impedance effect. It is about the head.

【0002】[0002]

【従来の技術】最近の磁気センサーは、情報機器や計測
・制御機器等の急速な発展に伴い、多様化してきたが、
今後更に小型高精度化が期待されている。
2. Description of the Related Art Recently, magnetic sensors have been diversified with the rapid development of information equipment, measurement / control equipment, etc.
Further miniaturization and higher precision are expected in the future.

【0003】磁気ヘッドの分野では、ディジタル磁気記
録機器の小型化が進み、例えば、コンピュータの外部記
憶装置のハードディスクやディジタルオーディオのディ
ジタルコンパクトカセット(DCC)に於いて、従来の
誘導型の磁気ヘッドではトラック幅及び相対速度の減少
によるS/Nの低下が生じるため、再生ヘッドにMR素
子(磁気抵抗効果素子)が使われている。しかし、MR
素子は媒体の速度依存性が無く、低速での出力の取り出
しに向いているが、抵抗変化率が数%しかないため、将
来の高密度化の為には更に感度の高い素子の開発が望ま
れている。
In the field of magnetic heads, downsizing of digital magnetic recording devices is progressing. For example, in a conventional inductive magnetic head in a hard disk of an external storage device of a computer or a digital compact cassette (DCC) of digital audio. An MR element (magnetoresistive effect element) is used for the reproducing head because the S / N is lowered due to the decrease of the track width and the relative speed. But MR
The element does not depend on the speed of the medium and is suitable for taking out the output at low speed, but since the resistance change rate is only a few percent, it is hoped to develop an element with higher sensitivity for future high density. It is rare.

【0004】また、磁気エンコーダー等のセンサーの分
野でも、着磁媒体の磁化ピッチの縮小により、外部に漏
れる磁束が極端に小さくなり、MR素子でも感度不足が
問題となりつつある。
Also in the field of sensors such as magnetic encoders, the magnetic flux leaking to the outside is extremely reduced due to the reduction of the magnetization pitch of the magnetizing medium, and the sensitivity insufficiency is becoming a problem even in MR elements.

【0005】そこで、最近注目を集めているのが、特開
平6−281712に開示されているアモルファスワイ
ヤーによる磁気インピーダンス効果(以下、MI効果と
略す)を利用した素子である。MI効果とは、磁性体に
MHz帯域の高周波電流を流すと、外部磁界により磁性
体のインピーダンスが変化し、それにより磁性体の両端
の電圧の振幅が数ガウスの微小磁界で数十%変化する現
象である。
Therefore, what has recently attracted attention is an element utilizing the magneto-impedance effect (hereinafter, abbreviated as MI effect) by an amorphous wire disclosed in Japanese Patent Laid-Open No. 6-281712. The MI effect is that when a high frequency current in the MHz band is applied to a magnetic material, the impedance of the magnetic material changes due to an external magnetic field, which causes the amplitude of the voltage across the magnetic material to change by several tens of percent with a minute magnetic field of several Gauss. It is a phenomenon.

【0006】MI効果を利用した素子の利点は、磁性体
の長さ方向に励磁しないため反磁界の影響が無く素子の
長さを1mm以下程度に短くでき小型化に適しているこ
と、また、磁束検出の分解能が、MR素子が0.1Oe
の低感度に対して、10-5Oe程度の高感度が得られる
ことである。また、インピーダンス変化量もMR素子が
3%程度に対し、MI効果を利用した素子は数10%オ
ーダーの変化が得られる。
The advantage of the element utilizing the MI effect is that it is not excited in the lengthwise direction of the magnetic substance, so that there is no influence of the demagnetizing field, the length of the element can be shortened to about 1 mm or less, and it is suitable for downsizing. The resolution of magnetic flux detection is 0.1 Oe for MR element
The high sensitivity of about 10 -5 Oe is obtained with respect to the low sensitivity of. Further, the amount of impedance change is about 3% in the MR element, whereas the element using the MI effect can be changed in the order of several tens of percent.

【0007】[0007]

【発明が解決しようとする課題】上記MI効果による素
子の機能はアモルファスワイヤーで見いだされたもので
あり、アモルファスワイヤーは材料として生産性は優れ
ている。しかし、磁気ヘッドの様な微小磁化を扱う場
合、断面が円であることや径が30ミクロン程度にしか
小さくできないため、誘導型磁気ヘッドの磁気ギャップ
に当たる磁気記録媒体接触部で適切な形状が得られず、
要求されるトラック幅が得られず、ギャップ幅に対応す
る厚さも得られない。
The function of the element due to the MI effect was found in the amorphous wire, and the amorphous wire is excellent in productivity as a material. However, when dealing with minute magnetization like a magnetic head, since the cross section is circular and the diameter can be reduced to only about 30 microns, an appropriate shape can be obtained at the magnetic recording medium contact portion corresponding to the magnetic gap of the induction type magnetic head. Not be
The required track width cannot be obtained and the thickness corresponding to the gap width cannot be obtained.

【0008】また、図8に示すように、磁気記録媒体8
1の微小な磁化は磁束が還流しやすく、MI効果を利用
した磁気検出素子82は媒体81に対し垂直に配置され
るので、磁気検出素子82の奥に行くに従い磁束密度が
低下する。これにより、素子全体の感度(インピーダン
ス変化量)が得られないという問題が生ずる。素子の長
さを短くすれば、素子全体の感度は向上するが、インピ
ーダンスそのものの絶対値が小さくなり、両端電圧また
はLC発振回路での出力が低下し、動作も不安定になっ
てしまう。
As shown in FIG. 8, the magnetic recording medium 8
With the minute magnetization of 1, the magnetic flux easily circulates, and since the magnetic detection element 82 utilizing the MI effect is arranged perpendicular to the medium 81, the magnetic flux density decreases as it goes deeper into the magnetic detection element 82. This causes a problem that the sensitivity (impedance change amount) of the entire device cannot be obtained. If the length of the element is shortened, the sensitivity of the entire element is improved, but the absolute value of the impedance itself is reduced, the voltage at both ends or the output of the LC oscillation circuit is reduced, and the operation becomes unstable.

【0009】さらに取り扱いの点でもアモルファスワイ
ヤーは、数10ミクロンの径では曲がりやすく、位置出
しや端子の取り出しなどの作業が困難であり、素子の製
造が容易でないという問題があった。
Further, in terms of handling, the amorphous wire is easily bent when the diameter is several tens of microns, and it is difficult to position and take out terminals, and there is a problem that the element is not easily manufactured.

【0010】そこで本発明の課題は、MI効果を利用し
た磁気検出素子及び磁気ヘッドにおいて上記のような問
題を解決し、安定して高い出力が得られ、素子本体の取
り扱い上の問題がなくて製造が容易であり、特に磁気ヘ
ッドでは磁気ギャップに相当する磁性体の媒体接触部で
トラック幅を所望に設定できるとともに、ギャップ幅に
対応する厚さも所望に設定できる構成を提供することに
ある。
Therefore, an object of the present invention is to solve the above problems in a magnetic detecting element and a magnetic head utilizing the MI effect, to obtain a stable and high output, and to have no problem in handling the element body. It is an object of the present invention to provide a structure that can be easily manufactured, and in particular, in a magnetic head, a track width can be set as desired at a medium contact portion of a magnetic body corresponding to a magnetic gap, and a thickness corresponding to the gap width can also be set as desired.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明によれば磁気インピーダンス効果を利用し
た磁気検出素子であって、非磁性基板上に下から順に第
1の高透磁率磁性膜,第1の絶縁膜,導電膜,第2の絶
縁膜,第2の高透磁率磁性膜を積層して構成され、前記
第1と第2の高透磁率磁性膜の少なくとも一方は、磁化
容易軸方向が磁界検出方向に対し膜面内で垂直な方向に
なるように磁気異方性がつけられ、前記導電膜は、磁界
検出方向に沿った複数本の直線部分が所定間隔で平行に
並び、順次折り返すように連結され、電気的に直列接続
されたつづら折り状パターンに形成され、前記導電膜の
両端部から高周波電流を印加し、外部磁界により前記導
電膜両端部間に発生するインピーダンスの変化を電気信
号に変換して出力を得られるようにした構成を採用し
た。
In order to solve the above-mentioned problems, according to the present invention, there is provided a magnetic detection element utilizing a magneto-impedance effect, which has a first high magnetic permeability in order from the bottom on a non-magnetic substrate. A magnetic film, a first insulating film, a conductive film, a second insulating film, and a second high-permeability magnetic film are laminated to form at least one of the first and second high-permeability magnetic films. Magnetic anisotropy is applied so that the easy axis of magnetization is perpendicular to the magnetic field detection direction in the film plane, and the conductive film has a plurality of linear portions parallel to each other at predetermined intervals along the magnetic field detection direction. Formed in a zigzag pattern that is connected in series and folded back in sequence and electrically connected in series, and a high-frequency current is applied from both ends of the conductive film, and an impedance generated between both ends of the conductive film by an external magnetic field. Change to electric signal and output Configuration was obtained as to the employed.

【0012】また、本発明によれば、磁気インピーダン
ス効果を利用した再生用の磁気ヘッドであって、先端面
が磁気記録媒体摺動面として形成された非磁性基板の前
記摺動面に対し略垂直な上面に下から順に第1の高透磁
率磁性膜,第1の絶縁膜,導電膜,第2の絶縁膜,第2
の高透磁率磁性膜を積層して構成され、前記第1と第2
の高透磁率磁性膜の少なくとも一方は、磁化容易軸方向
が膜面内で前記摺動面に略平行な方向になるように磁気
異方性がつけられ、前記第1の高透磁率磁性膜の端部は
前記摺動面に露出し、前記導電膜は、前記摺動面に対し
略垂直な方向に沿った複数本の直線部分が所定間隔で平
行に並び、順次折り返すように連結され、電気的に直列
接続されたつづら折り状パターンに形成され、前記導電
膜の両端部から高周波電流を印加し、磁気記録媒体から
の磁界により前記導電膜両端部間に発生するインピーダ
ンスの変化を電気信号に変換して再生出力を得られるよ
うにした構成を採用した。
Further, according to the present invention, there is provided a reproducing magnetic head utilizing the magneto-impedance effect, wherein a tip end surface of the non-magnetic substrate is formed as a sliding surface of a magnetic recording medium, and the head surface is substantially different from the sliding surface. The first high-permeability magnetic film, the first insulating film, the conductive film, the second insulating film, and the second high-permeability magnetic film are arranged in this order from the bottom on the vertical upper surface.
Of the high permeability magnetic film are laminated, and the first and second
At least one of the high-permeability magnetic films is provided with magnetic anisotropy so that the easy axis of magnetization is in a direction substantially parallel to the sliding surface within the film surface, and the first high-permeability magnetic film is formed. An end portion of is exposed to the sliding surface, the conductive film, a plurality of linear portions along a direction substantially perpendicular to the sliding surface are arranged in parallel at a predetermined interval, are connected so as to be sequentially folded back, Formed in a zigzag pattern electrically connected in series, a high-frequency current is applied from both ends of the conductive film, and a change in impedance generated between both ends of the conductive film by a magnetic field from a magnetic recording medium is converted into an electric signal. We adopted a configuration that can be converted to obtain playback output.

【0013】[0013]

【作用】上記の磁気検出素子の構成によれば、第1と第
2の高透磁率磁性膜と導電膜によりMI効果が得られ、
磁気検出を行なうことができる。特に導電膜をつづら折
り状パターンとすることで、感度を上げるために磁性膜
と導電膜からなる素子本体の磁界検出方向の長さを短く
しても、インピーダンスの絶対値を稼ぐことができ、安
定した高い出力が得られる。
According to the above structure of the magnetic detecting element, the MI effect is obtained by the first and second high-permeability magnetic films and the conductive film.
Magnetic detection can be performed. In particular, by forming the conductive film into a zigzag pattern, even if the length of the element body composed of the magnetic film and the conductive film in the magnetic field detection direction is shortened in order to increase the sensitivity, the absolute value of the impedance can be earned and stable. High output can be obtained.

【0014】また、素子本体は非磁性基板上に成膜され
た上記各薄膜からなるので、アモルファスワイヤーのよ
うな取り扱い上の問題はない。
Further, since the element body is composed of the above-mentioned thin films formed on the non-magnetic substrate, there is no problem in handling such as an amorphous wire.

【0015】また、上記磁気ヘッドの構成によれば、上
記磁気検出素子と同様の作用により安定した高い出力が
得られる。また、媒体摺動面に露出する第1の高透磁率
磁性膜の端部の幅と厚さの設定により、トラック幅とギ
ャップ幅に対応する厚さを所望に設定できる。
Further, according to the structure of the magnetic head, a stable and high output can be obtained by the same operation as that of the magnetic detecting element. Further, the thickness corresponding to the track width and the gap width can be set as desired by setting the width and thickness of the end portion of the first high-permeability magnetic film exposed on the medium sliding surface.

【0016】[0016]

【実施例】以下、図を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】[第1実施例]図1〜図3は本発明の第1
実施例として、MI効果を利用した磁気検出素子の実施
例を説明するもので、まず図1は素子全体の構造を示し
ている。
[First Embodiment] FIGS. 1 to 3 show a first embodiment of the present invention.
As an example, an example of a magnetic detection element utilizing the MI effect will be described. First, FIG. 1 shows the structure of the entire element.

【0018】図1に示す磁気検出素子の構成では、非磁
性基板10の上面に矩形状の第1の高透磁率磁性膜12
が形成されており、その上に第1の絶縁膜14が積層さ
れ、さらにその上につづら折り状パターンの導電膜16
が形成されている。そして、さらにその上に第2の絶縁
膜14′が形成され、その上に矩形状の第2の高透磁率
磁性膜12′が積層して形成されている。導電膜16の
つづら折り状パターンの両端には矩形の端子部16A,
16Bが形成されており、この端子部16A,16Bに
対し、素子の出力を取り出すための不図示の外部配線が
半田付けまたはワイヤーボンディング等で接続される。
In the structure of the magnetic sensing element shown in FIG. 1, the rectangular first high-permeability magnetic film 12 is formed on the upper surface of the non-magnetic substrate 10.
Is formed, the first insulating film 14 is laminated thereon, and the conductive film 16 having a zigzag pattern is further formed thereon.
Are formed. Then, a second insulating film 14 'is further formed thereon, and a rectangular second high-permeability magnetic film 12' is laminated on the second insulating film 14 '. A rectangular terminal portion 16A is provided at both ends of the zigzag pattern of the conductive film 16.
16B are formed, and external wiring (not shown) for taking out the output of the element is connected to the terminal portions 16A and 16B by soldering or wire bonding.

【0019】この構成で、導電膜16に対し両端の端子
部16A,16Bから高周波電流を印加すると、外部磁
界Hexにより導電膜16の端子部16A,16B間のイ
ンピーダンスが変化し、この変化を電気信号に変換して
出力が得られるようになっている。
With this structure, when a high frequency current is applied to the conductive film 16 from the terminal portions 16A and 16B at both ends, the impedance between the terminal portions 16A and 16B of the conductive film 16 is changed by the external magnetic field Hex, and this change is electrically changed. It is designed to be converted into a signal and output.

【0020】次に、素子の構成部材のそれぞれの詳細を
説明する。まず非磁性基板10はチタン酸カルシウム
(Ti−Ca系セラミック),酸化物ガラス,チタニ
ア,アルミナ等で形成される。
Next, the details of each component of the element will be described. First, the non-magnetic substrate 10 is formed of calcium titanate (Ti-Ca based ceramic), oxide glass, titania, alumina, or the like.

【0021】高透磁率磁性膜12,12′はFe−Co
−B系アモルファス膜,Fe−C系,Fe−N系の微結
晶膜等の磁性膜を真空成膜技術により形成する。高透磁
率磁性膜12,12′の少なくとも一方は、磁化容易軸
方向が外部磁界Hexの印加される磁界検出方向に対し膜
面内で垂直な方向である図の矢印B方向になるように、
成膜後の磁場中冷却等により磁気異方性をつけておく。
磁性膜12,12′の両方とも磁化容易軸方向を矢印B
方向とする磁気異方性をつけるのが望ましいが、MI効
果を得るためには少なくとも片方の磁気異方性が確保さ
れていれば問題が無い。磁性膜12,12′の厚さは薄
すぎるとMI効果が低下し、また厚すぎるとインピーダ
ンスが低下するため、それぞれ1μm〜20μmの間で
設定するのがよい。
The high permeability magnetic films 12 and 12 'are made of Fe--Co.
A magnetic film such as a -B system amorphous film, a Fe-C system, and a Fe-N system microcrystalline film is formed by a vacuum film forming technique. At least one of the high-permeability magnetic films 12 and 12 ′ has an easy axis of magnetization in the direction of arrow B in the drawing, which is a direction perpendicular to the magnetic field detection direction in which the external magnetic field Hex is applied.
After film formation, magnetic anisotropy is provided by cooling in a magnetic field.
Both the magnetic films 12 and 12 ′ are indicated by arrows B in the easy magnetization axis direction.
It is desirable to have magnetic anisotropy in the direction, but there is no problem if at least one magnetic anisotropy is secured in order to obtain the MI effect. If the thicknesses of the magnetic films 12 and 12 'are too thin, the MI effect is lowered, and if they are too thick, the impedance is lowered. Therefore, it is preferable to set the thickness between 1 μm and 20 μm.

【0022】絶縁膜14,14′は、SiO2,Cr2
3,TiO2等の酸化物絶縁膜を真空成膜技術等により形
成する。絶縁膜14,14′の厚さは、上下2層の高透
磁率磁性膜12,12′で形成される磁気回路のギャッ
プとなるが、それぞれ絶縁効果が得られる0.05μm
を下限とし、上限は高透磁率磁性膜12,12′と導電
膜16とで生ずるインダクタンス値が小さくならないよ
うに1μm以下にするのが望ましい。
The insulating films 14 and 14 'are made of SiO 2 , Cr 2 O.
An oxide insulating film of 3 , TiO 2 or the like is formed by a vacuum film forming technique or the like. The thickness of the insulating films 14 and 14 ′ is a gap of the magnetic circuit formed by the upper and lower two layers of high magnetic permeability magnetic films 12 and 12 ′, each of which has an insulating effect of 0.05 μm.
Is the lower limit, and the upper limit is preferably 1 μm or less so that the inductance value generated between the high-permeability magnetic films 12 and 12 ′ and the conductive film 16 does not become small.

【0023】絶縁膜14上に形成される導電膜16は、
比抵抗の小さいCu,Au等からなり、図2に示すパタ
ーンに形成される。すなわち、導電膜16のパターン
は、外部磁界Hexが印加される方向である磁界検出方向
に沿った複数本の所定長の直線部分が所定間隔で平行に
並び、順次折り返すように隣り合う直線部分の端部が折
り返し部16C,16Dとして垂直に屈曲して連結さ
れ、全体として電気的に直列接続されたつづら折り状パ
ターンとなっている。また、前述のように導電膜16の
つづら折り状パターンの両端には矩形の端子部16A,
16Bが形成されている。
The conductive film 16 formed on the insulating film 14 is
It is made of Cu, Au or the like having a low specific resistance and is formed in the pattern shown in FIG. That is, in the pattern of the conductive film 16, a plurality of straight line portions having a predetermined length along the magnetic field detection direction, which is the direction in which the external magnetic field Hex is applied, are arranged in parallel at predetermined intervals, and adjacent straight line portions are sequentially folded. The end portions are bent and connected vertically as folded portions 16C and 16D, and as a whole, a zigzag folded pattern electrically connected in series is formed. In addition, as described above, the rectangular terminal portions 16A are formed on both ends of the zigzag pattern of the conductive film 16.
16B is formed.

【0024】次に、図3は図1のA−A′線で切断した
素子の断面を示す。この図3に示すように、導電膜16
の直線部分161〜164のそれぞれに流れる電流の方
向は隣り合う直線部分どうしで互いに逆方向となり、そ
れにより高透磁率磁性膜12,12′内に発生する還流
磁束は符号20A〜20Dで示す様に交互に逆回転のル
ープを形成する。還流磁束20A〜20Dの様に導電膜
16の直線部分のそれぞれの周囲に小さく磁路が形成さ
れることで、導電膜16の1本あたりのインダクタンス
が大きくなり、導電膜16のつづら折りによる長さを稼
ぐ効果と合わせ、磁性膜12,12′,絶縁膜14,1
4′,導電膜16からなる素子本体の磁界検出方向の長
さが短くても大きなインダクタンスを稼ぐことが可能と
なり、インピーダンスの絶対値を稼ぐことが可能とな
る。また、素子本体の磁界検出方向の長さを殆どMR素
子並に短くでき、微小磁化に対しても優れたMI効果を
発揮できる。
Next, FIG. 3 shows a cross section of the device taken along the line AA 'in FIG. As shown in FIG. 3, the conductive film 16
The directions of the currents flowing in the straight line portions 161 to 164 are opposite to each other in the straight line portions adjacent to each other, so that the reflux magnetic fluxes generated in the high permeability magnetic films 12 and 12 'are indicated by reference numerals 20A to 20D. Reverse rotation loops are formed alternately. By forming a small magnetic path around each of the linear portions of the conductive film 16 like the return magnetic fluxes 20A to 20D, the inductance per conductive film 16 increases and the length of the conductive film 16 due to the zigzag folding. In addition to the effect of earning a profit, the magnetic films 12, 12 ', the insulating films 14, 1
Even if the length of the element body made of 4'and the conductive film 16 in the magnetic field detection direction is short, a large inductance can be obtained and an absolute value of impedance can be obtained. Further, the length of the element body in the magnetic field detection direction can be made almost as short as that of the MR element, and an excellent MI effect can be exhibited even for minute magnetization.

【0025】なお、図2に示す導電膜16のつづら折り
状パターンの両端部の折り返し部16C,16Dは、導
電膜16に電流を流すことで外部磁界Hexの検出方向と
同方向の磁界を発生するが、折り返し部16C,16D
が高透磁率磁性膜12の外側に位置するように導電膜1
6と高透磁率磁性膜12の大きさ、配置を決める事で、
高透磁率磁性膜12内での磁束の干渉が抑えられる。高
透磁率磁性膜12′に対しても同様に折り返し部16
C,16Dが外側に位置するようにしても良いが、必ず
しもそうしなくても良い。導電膜16の折り返し部16
C,16Dに対して2層の高透磁率磁性膜12,12′
の少なくとも一方が掛からなければ、その部分で図3に
示したような明確な還流磁束はできないため、素子の感
度に影響は及ぼさない。
The folded portions 16C and 16D at both ends of the zigzag pattern of the conductive film 16 shown in FIG. 2 generate a magnetic field in the same direction as the external magnetic field Hex detection direction by passing a current through the conductive film 16. But the folded portions 16C, 16D
Is located outside the high-permeability magnetic film 12.
By determining the size and arrangement of 6 and the high permeability magnetic film 12,
The interference of magnetic flux in the high-permeability magnetic film 12 is suppressed. Similarly for the high permeability magnetic film 12 ', the folded portion 16
Although C and 16D may be located outside, it is not always necessary. Folded portion 16 of conductive film 16
Two layers of high-permeability magnetic films 12, 12 'for C and 16D
If at least one of the above is not applied, the clear reflux magnetic flux as shown in FIG. 3 cannot be generated in that portion, so that the sensitivity of the element is not affected.

【0026】次に、以上のような本実施例の磁気検出素
子を試作し、特性を試験した結果を述べる。高透磁率磁
性膜12,12′はFe−Ta−C系磁性膜を上下とも
0.2mm×0.2mm、厚さ5μmで形成し、絶縁膜
14,14′は上下ともに厚さ0.1μmとした。導電
膜16は厚さ1μm、つづら折り回数7回で直線部分の
幅10μm、直線部分の間隔10μmで形成した。
Next, the results of testing the characteristics of the magnetic sensing element of this embodiment as described above will be described. The high-permeability magnetic films 12 and 12 'are Fe-Ta-C based magnetic films having a thickness of 0.2 mm x 0.2 mm and a thickness of 5 µm, and the insulating films 14 and 14' have a thickness of 0.1 µm. And The conductive film 16 was formed with a thickness of 1 μm, a zigzag number of 7 times, a linear portion width of 10 μm, and a linear portion spacing of 10 μm.

【0027】インピーダンス変化の測定は、導電膜16
に100MHzの高周波電流を流し、両端電圧の変化を
調べた。外部磁界はヘルムホルツコイルで印加し、±2
5Oeの範囲で変化させた。
The impedance change is measured by the conductive film 16
A high-frequency current of 100 MHz was passed through and the change in voltage across both ends was examined. External magnetic field is applied by Helmholtz coil, ± 2
It was changed in the range of 5 Oe.

【0028】結果は、まず100MHzのインダクタン
スで62nHあり、その時のQ値は8.2であった。こ
れに対し従来の径30μmのFe−Co−Bアモルファ
スワイヤーの場合は1mmの長さでL45nH、Q5.
8であり、本実施例の素子では、長さが0.2mmと短
いながら、L,Q共に高い数値が得られた。インピーダ
ンスの変化量も本実施例の素子は、外部磁界8Oeで68
%のインピーダンス変化を示し、良好な変化を示した。
As a result, first, the inductance at 100 MHz was 62 nH, and the Q value at that time was 8.2. On the other hand, in the case of the conventional Fe-Co-B amorphous wire having a diameter of 30 μm, L45nH, Q5.
In the device of this example, the length was as short as 0.2 mm and high values for both L and Q were obtained. The amount of change in impedance is 68 in the external magnetic field of 8 Oe in the element of this embodiment.
% Impedance change, indicating a good change.

【0029】このように本実施例の素子はインピーダン
ス変化量が大きく高感度であり、しかも、インダクタン
スを稼いでインピーダンスの絶対値を確保することがで
き、安定した高い出力が得られる。また本実施例の磁気
検出素子は素子本体が非磁性基板上に成膜された薄膜か
らなるので、素子本体にアモルファスワイヤーを用いた
素子のように曲がりの問題や位置出し、端子の取り出し
の困難さなどの問題がなく、製造が容易である。また、
共通の非磁性基板上に複数個の素子本体の薄膜を成膜し
た後、非磁性基板を切断して一度に多数個の素子を製造
でき、いわゆる多数個取りが可能である。
As described above, the element of this embodiment has a large amount of change in impedance and high sensitivity, and moreover, the absolute value of impedance can be secured by gaining the inductance, and stable high output can be obtained. Further, since the element body of the magnetic detection element of the present example is formed of a thin film formed on a non-magnetic substrate, there is a problem of bending and positioning like an element using an amorphous wire in the element body, and it is difficult to take out terminals. It is easy to manufacture without problems such as size. Also,
After forming a thin film of a plurality of element bodies on a common non-magnetic substrate, the non-magnetic substrate can be cut to manufacture a large number of elements at a time, so-called multi-cavity production is possible.

【0030】[第2実施例]次に、上述の第1実施例の
構成を変形して再生用磁気ヘッドとした第2実施例を図
4〜図7により説明する。図4〜図7において第1実施
例の図1〜図3中と共通ないし対応する部分には共通の
符号が付してあり、共通部分の説明は省略する。
[Second Embodiment] Next, a second embodiment of the magnetic head for reproduction which is a modification of the structure of the first embodiment will be described with reference to FIGS. 4 to 7, parts common to or corresponding to those in FIGS. 1 to 3 of the first embodiment are designated by common reference numerals, and description of common parts will be omitted.

【0031】第1実施例の図1の磁気検出素子の構成を
変形して再生用磁気ヘッドとするには、第1の高透磁率
磁性膜12を図4に示すように非磁性基板10の先端面
の縁まで延長する。そして、磁性膜12と他の膜1
2′,14,14′,16が形成された非磁性基板10
の上面に対し垂直な先端面を不図示の磁気記録媒体(以
下、媒体と略す)が摺動する媒体摺動面10Aとして形
成し、この媒体摺動面10Aに高透磁率磁性膜12の先
端部が露出して媒体と接触するようにする。媒体摺動方
向は矢印で示すように高透磁率磁性膜12の膜面に対し
て垂直な方向とする。媒体摺動面10Aに露出する磁性
膜12の先端部の厚さは誘導型磁気ヘッドの磁気ギャッ
プのギャップ幅に相当し、磁性膜12の先端部の幅はト
ラック幅となる。
In order to modify the structure of the magnetic sensing element of FIG. 1 of the first embodiment into a reproducing magnetic head, the first high magnetic permeability magnetic film 12 is formed on the non-magnetic substrate 10 as shown in FIG. Extend to the edge of the tip surface. Then, the magnetic film 12 and the other film 1
Non-magnetic substrate 10 having 2 ', 14, 14' and 16 formed thereon
Is formed as a medium sliding surface 10A on which an unillustrated magnetic recording medium (hereinafter abbreviated as a medium) slides, and the tip of the high-permeability magnetic film 12 is formed on the medium sliding surface 10A. The part should be exposed and in contact with the medium. The medium sliding direction is perpendicular to the film surface of the high-permeability magnetic film 12 as indicated by the arrow. The thickness of the tip of the magnetic film 12 exposed on the medium sliding surface 10A corresponds to the gap width of the magnetic gap of the inductive magnetic head, and the width of the tip of the magnetic film 12 becomes the track width.

【0032】また、媒体摺動面10Aとの位置関係によ
り、磁性膜12,12′の少なくとも片方は矢印Bの磁
化容易軸方向が膜面内で媒体摺動面10Aに平行な方向
となる。また、導電膜16のつづら折りパターンの向き
は、その平行な直線部分が媒体摺動面10Aに対し垂直
な方向に沿う向きになる。
Due to the positional relationship with the medium sliding surface 10A, the easy axis of magnetization of the arrow B of at least one of the magnetic films 12 and 12 'is parallel to the medium sliding surface 10A within the film surface. Further, the direction of the zigzag pattern of the conductive film 16 is such that the parallel straight line portions are along the direction perpendicular to the medium sliding surface 10A.

【0033】なお、導電膜16は媒体に接触すると導電
膜16に印加される高周波電流が媒体側に流出してしま
うので、非磁性基板10の上面において媒体摺動面10
Aから離間するように配置される。
When the conductive film 16 contacts the medium, the high-frequency current applied to the conductive film 16 flows out to the medium side. Therefore, the medium sliding surface 10 on the upper surface of the non-magnetic substrate 10 is exposed.
It is arranged so as to be separated from A.

【0034】また、第2の高透磁率磁性膜12′は、非
磁性基板10の上面において媒体摺動面10Aから離間
しており、導電膜16のつづら折り状パターンの両端部
の折り返し部16C,16Dに掛からないように配置と
大きさが決められている。
The second high-permeability magnetic film 12 'is separated from the medium sliding surface 10A on the upper surface of the non-magnetic substrate 10 and the folded portions 16C at both ends of the zigzag-shaped pattern of the conductive film 16 are formed. The layout and size are determined so that it does not overlap with 16D.

【0035】このような構成のもとに、再生時には、不
図示の媒体が媒体摺動面10Aに対し摺動するととも
に、導電膜16に対し両端の端子部16A,16Bから
高周波電流が印加されることにより、媒体の記録磁化か
らの磁界により導電膜16の端子部16A,16B間の
インピーダンスが変化し、この変化を電気信号に変換し
て再生出力が得られるようになっている。そして第1実
施例と同様の作用により本実施例の磁気ヘッドは高感度
かつインピーダンスを稼ぐことができ、安定した高い再
生出力が得られる。また、同様に製造が容易であり、多
数個取りも可能である。
Under such a structure, at the time of reproduction, the medium (not shown) slides on the medium sliding surface 10A, and a high frequency current is applied to the conductive film 16 from the terminal portions 16A and 16B at both ends. By doing so, the impedance between the terminal portions 16A and 16B of the conductive film 16 changes due to the magnetic field from the recording magnetization of the medium, and this change is converted into an electric signal to obtain a reproduction output. The magnetic head of this embodiment can obtain high sensitivity and impedance by the same operation as that of the first embodiment, and a stable and high reproduction output can be obtained. Further, similarly, the manufacturing is easy, and a large number can be taken.

【0036】また、本実施例の磁気ヘッドでは、媒体摺
動面10Aに露出する磁性膜12の先端部の幅の設定に
より、トラック幅を所望に設定できる。例えば、磁性膜
12の全体の幅より狭いトラック幅に対応させる場合、
図5に示すように、高透磁率磁性膜12の媒体摺動面1
0Aに露出する先端部の幅を摺動面に向かって絞り込
み、先端の幅Wtを磁性膜12の全体の幅Wmより小さ
くすることで、狭いトラック幅Wtに対応することがで
きる。
In the magnetic head of this embodiment, the track width can be set as desired by setting the width of the tip of the magnetic film 12 exposed on the medium sliding surface 10A. For example, when the track width is made narrower than the entire width of the magnetic film 12,
As shown in FIG. 5, the medium sliding surface 1 of the high permeability magnetic film 12 is shown.
By narrowing the width of the tip exposed at 0A toward the sliding surface and making the width Wt of the tip smaller than the entire width Wm of the magnetic film 12, a narrow track width Wt can be dealt with.

【0037】また、媒体摺動面10Aに露出する磁性膜
12の先端部の厚さの設定により、誘導型磁気ヘッドの
ギャップ幅に対応する厚さを所望に設定できる。例え
ば、図6に示す様に磁性膜12の媒体摺動面10Aに露
出する先端部の厚さTgを導電膜16に掛かる残りの部
分の厚さTmより薄くすることで、ギャップ幅に対応す
る厚さを薄くし、微小磁化に対する形状ロスを改善する
事も可能である。
Further, the thickness corresponding to the gap width of the induction type magnetic head can be set as desired by setting the thickness of the tip portion of the magnetic film 12 exposed on the medium sliding surface 10A. For example, as shown in FIG. 6, the thickness Tg of the tip portion of the magnetic film 12 exposed on the medium sliding surface 10A is made thinner than the thickness Tm of the remaining portion of the conductive film 16 to correspond to the gap width. It is also possible to reduce the thickness and improve the shape loss due to minute magnetization.

【0038】なお図4〜6で示した磁気ヘッドでは、い
ずれも媒体摺動面10Aに露出する磁性膜12は絶縁膜
14により導電膜16と絶縁されているので、導電膜1
6に印加される高周波電流が磁性膜12を介して媒体側
に流出する心配は無い。
In each of the magnetic heads shown in FIGS. 4 to 6, since the magnetic film 12 exposed on the medium sliding surface 10A is insulated from the conductive film 16 by the insulating film 14, the conductive film 1
There is no concern that the high-frequency current applied to 6 will flow out to the medium side through the magnetic film 12.

【0039】また、磁性膜12,12′、絶縁膜14,
14′、および導電膜16からなる素子本体を図7に示
すように非磁性基板10の上面に複数並設することによ
りマルチトラックヘッドも容易に構成できる。この場
合、隣り合う素子本体どうしの対向面積が非常に小さい
ためクロストークを防止することができる。
Further, the magnetic films 12, 12 ', the insulating film 14,
A multi-track head can be easily constructed by arranging a plurality of element bodies composed of 14 'and the conductive film 16 on the upper surface of the non-magnetic substrate 10 as shown in FIG. In this case, since the facing area between the adjacent element bodies is very small, crosstalk can be prevented.

【0040】[第3実施例]次に図9は第1実施例の端
子の構成を変形した第3実施例の磁気検出素子を示して
いる。本実施例では導電膜16のつづら折り状パターン
において、外部磁界Hexが印加される磁気検出側と反対
側で、両端部に連続して端子部16A,16Bが形成さ
れているうえに、中間部の折り返し部16Dに連続して
センタータップである端子部16Eが形成されている。
この構成によれば、素子のインピーダンス変化を2分割
してとり出せるように出力回路に接続することが可能で
ある。
[Third Embodiment] FIG. 9 shows a magnetic sensing element of a third embodiment in which the structure of the terminals of the first embodiment is modified. In the present embodiment, in the zigzag pattern of the conductive film 16, the terminal portions 16A and 16B are formed continuously at both ends on the side opposite to the magnetic detection side to which the external magnetic field Hex is applied, and in addition, in the middle portion. A terminal portion 16E, which is a center tap, is formed continuously with the folded portion 16D.
According to this configuration, it is possible to connect to the output circuit so that the impedance change of the element can be taken out in two.

【0041】具体的には、例えば図10に示すマルチバ
イブレータ型発振回路において、センタータップの端子
部16Eを電源+Eに接続し、両端の端子部16A,1
6Bを発振回路側に接続する。この構成では1つの素子
から2分割したインピーダンス変化を取り出して利用す
るため、2つの発振部の特性が極めて対称的になり、安
定した出力が得られる。
Specifically, in the multivibrator type oscillation circuit shown in FIG. 10, for example, the center tap terminal portion 16E is connected to the power source + E, and the terminal portions 16A, 1 at both ends are connected.
6B is connected to the oscillator circuit side. In this configuration, since the impedance change obtained by dividing the element into two parts is utilized, the characteristics of the two oscillating parts become extremely symmetrical, and a stable output can be obtained.

【0042】なお、前記発振回路を接続して使用する場
合には、磁気検出素子に対して外部磁界検出方向に沿っ
てDCバイアス磁界が必要となるが、バイアス用マグネ
ットあるいはDC磁界印加用コイルを磁気検出素子に対
して配置することでバイアス磁界を印加すればよい。具
体的な配置としては、マグネットの場合には検出素子の
上側あるいは端子部16A,16B,16Eの後ろ側に
配置すれば良いし、コイルの場合は検出素子の周囲を囲
むように配置しても良く、一本の細長い導電膜のパター
ンとして検出素子上に形成しても良い。
When the oscillator circuit is connected and used, a DC bias magnetic field is required for the magnetic detection element along the external magnetic field detection direction, but a bias magnet or a DC magnetic field application coil is used. The bias magnetic field may be applied by arranging the bias magnetic field with respect to the magnetic detection element. As a specific arrangement, in the case of a magnet, it may be arranged above the detection element or behind the terminals 16A, 16B, 16E, and in the case of a coil, it may be arranged so as to surround the periphery of the detection element. Alternatively, it may be formed on the detection element as a pattern of one elongated conductive film.

【0043】また、本実施例の素子においても図9の構
成において第1の高透磁率磁性膜12を非磁性基板10
の先端面の縁まで延長し、非磁性基板10の先端面を媒
体摺動面10Aとして形成すれば、再生用磁気ヘッドと
して構成できる。
Also in the device of this embodiment, the first high magnetic permeability magnetic film 12 is provided on the non-magnetic substrate 10 in the structure of FIG.
The magnetic head for reproduction can be constructed by extending the end surface of the non-magnetic substrate 10 as the medium sliding surface 10A.

【0044】[0044]

【発明の効果】以上の説明から明らかなように、本発明
の磁気検出素子によれば、非磁性基板上に下から順に第
1の高透磁率磁性膜,第1の絶縁膜,導電膜,第2の絶
縁膜,第2の高透磁率磁性膜を積層した構成で、導電膜
をつづら折り状パターンに形成することで、素子本体の
磁界検出方向の長さを短くしてもインピーダンスの絶対
値を確保することができ、微小磁化に対する素子全体の
インピーダンス変化効率も向上させることができ、安定
した高い出力が得られる。また、従来のアモルファスワ
イヤーが微小磁化に対応できなかった断面形状、取り扱
いの問題は解消でき、製造が容易であり、多数個取りも
可能で安価に提供できる。また、素子の磁界検出方向の
長さをほとんどMR並に短くできることで、微小磁化に
対しても優れたMI効果を発揮でき、MR素子に代わり
新しい用途を拡大できる。
As is apparent from the above description, according to the magnetic sensing element of the present invention, the first high magnetic permeability magnetic film, the first insulating film, the conductive film, By forming a conductive film in a zigzag pattern with a structure in which a second insulating film and a second high-permeability magnetic film are laminated, the absolute value of the impedance is obtained even if the length of the element body in the magnetic field detection direction is shortened. Can be ensured, the impedance change efficiency of the entire element with respect to minute magnetization can be improved, and stable high output can be obtained. In addition, the problems of cross-sectional shape and handling, which the conventional amorphous wire could not cope with minute magnetization, can be solved, the manufacturing is easy, and a large number can be taken, and the cost can be provided at low cost. In addition, since the length of the element in the magnetic field detection direction can be shortened to almost the same level as MR, an excellent MI effect can be exhibited even for minute magnetization, and new applications can be expanded in place of the MR element.

【0045】また、本発明の磁気ヘッドによれば、本発
明の磁気検出素子と同様の構成で、さらに非磁性基板の
媒体摺動面に第1の高透磁率磁性膜の端部を露出させる
構成により、本発明の磁気検出素子と同様に安定した高
い再生出力が得られ、製造も容易で多数個取りも可能で
あり、安価に提供できる。またマルチヘッド化も容易で
ある。さらに、媒体摺動面に露出する第1の高透磁率磁
性膜の端部の幅と厚さの設定によりトラック幅とギャッ
プ幅に対応する厚さを所望に設定でき、応用範囲が広い
という優れた効果が得られる。
Further, according to the magnetic head of the present invention, the end portion of the first high-permeability magnetic film is exposed on the medium sliding surface of the non-magnetic substrate with the same structure as the magnetic detecting element of the present invention. With the structure, a stable and high reproduction output can be obtained similarly to the magnetic detection element of the present invention, the manufacture is easy, a large number of pieces can be obtained, and the device can be provided at low cost. In addition, it is easy to use multiple heads. Further, by setting the width and thickness of the end portion of the first high-permeability magnetic film exposed on the medium sliding surface, the thickness corresponding to the track width and the gap width can be set as desired, which is an excellent application range. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の磁気検出素子の構造を示
す斜視図である。
FIG. 1 is a perspective view showing a structure of a magnetic detection element according to a first embodiment of the present invention.

【図2】同磁気検出素子の導電膜のつづら折り状パター
ンを示す平面図である。
FIG. 2 is a plan view showing a zigzag pattern of a conductive film of the magnetic detection element.

【図3】同磁気検出素子の導電膜に印加される電流によ
る還流磁束を示す図1のA−A′線に沿った断面図であ
る。
FIG. 3 is a cross-sectional view taken along the line AA ′ in FIG. 1, showing a return magnetic flux due to a current applied to the conductive film of the magnetic detection element.

【図4】本発明の第2実施例の磁気ヘッドの構造を示す
斜視図である。
FIG. 4 is a perspective view showing the structure of a magnetic head according to a second embodiment of the invention.

【図5】同磁気ヘッドの狭いトラック幅に対応した変形
例の構造を示す斜視図である。
FIG. 5 is a perspective view showing a structure of a modified example of the magnetic head corresponding to a narrow track width.

【図6】同磁気ヘッドの媒体摺動面に露出する磁性膜先
端部の厚さを薄くした変形例の構造を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing the structure of a modified example in which the thickness of the magnetic film tip portion exposed on the medium sliding surface of the magnetic head is thin.

【図7】マルチトラックヘッドとして構成した変形例を
示す斜視図である。
FIG. 7 is a perspective view showing a modified example configured as a multi-track head.

【図8】磁気記録媒体から磁気検出素子に対して磁束が
印加される様子を示す説明図である。
FIG. 8 is an explanatory diagram showing how a magnetic flux is applied from a magnetic recording medium to a magnetic detection element.

【図9】第3実施例の磁気検出素子の構造を示す斜視図
である。
FIG. 9 is a perspective view showing the structure of the magnetic detection element of the third embodiment.

【図10】同検出素子を接続したマルチバイブレータ型
発振回路の回路図である。
FIG. 10 is a circuit diagram of a multivibrator type oscillation circuit to which the detection element is connected.

【符号の説明】[Explanation of symbols]

10 非磁性基板 12,12′ 高透磁率磁性膜 14,14′ 絶縁膜 16 導電膜 16A,16B,16E 端子部 16C,16D 折り返し部 10 Non-magnetic Substrate 12, 12 'High Permeability Magnetic Film 14, 14' Insulating Film 16 Conductive Film 16A, 16B, 16E Terminal Part 16C, 16D Folding Part

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 磁気インピーダンス効果を利用した磁気
検出素子であって、 非磁性基板上に下から順に第1の高透磁率磁性膜,第1
の絶縁膜,導電膜,第2の絶縁膜,第2の高透磁率磁性
膜を積層して構成され、 前記第1と第2の高透磁率磁性膜の少なくとも一方は、
磁化容易軸方向が磁界検出方向に対し膜面内で垂直な方
向になるように磁気異方性がつけられ、 前記導電膜は、磁界検出方向に沿った複数本の直線部分
が所定間隔で平行に並び、順次折り返すように連結さ
れ、電気的に直列接続されたつづら折り状パターンに形
成され、 前記導電膜の両端部から高周波電流を印加し、外部磁界
により前記導電膜両端部間に発生するインピーダンスの
変化を電気信号に変換して出力を得られるようにしたこ
とを特徴とする磁気検出素子。
1. A magnetic sensing element utilizing a magneto-impedance effect, comprising a first high-permeability magnetic film and a first magnetic film on a non-magnetic substrate in order from the bottom.
Of the insulating film, the conductive film, the second insulating film, and the second high-permeability magnetic film are laminated, and at least one of the first and second high-permeability magnetic films is
Magnetic anisotropy is added so that the easy axis of magnetization is perpendicular to the magnetic field detection direction in the film plane, and the conductive film has a plurality of linear portions parallel to each other at predetermined intervals along the magnetic field detection direction. Formed in a zigzag pattern that is connected in series and folded back in series and electrically connected in series. A high-frequency current is applied from both ends of the conductive film, and an impedance is generated between both ends of the conductive film by an external magnetic field. A magnetic detection element characterized in that a change in the electric field is converted into an electric signal to obtain an output.
【請求項2】 前記第1と第2の高透磁率磁性膜の少な
くとも一方は、前記導電膜のつづら折り状パターンの端
部の折り返し部に掛からないように配置されたことを特
徴とする請求項1に記載の磁気検出素子。
2. The at least one of the first and second high-permeability magnetic films is arranged so as not to overlap the folded-back portion at the end of the zigzag pattern of the conductive film. 1. The magnetic detection element according to 1.
【請求項3】 前記第1と第2の絶縁膜のそれぞれの厚
さが0.05μm〜1μmであることを特徴とする請求
項1または2に記載の磁気検出素子。
3. The magnetic detecting element according to claim 1, wherein each of the first and second insulating films has a thickness of 0.05 μm to 1 μm.
【請求項4】 前記第1と第2の高透磁率磁性膜のそれ
ぞれの厚さが1μm〜20μmであることを特徴とする
請求項1から3までのいずれか1項に記載の磁気検出素
子。
4. The magnetic detection element according to claim 1, wherein each of the first and second high-permeability magnetic films has a thickness of 1 μm to 20 μm. .
【請求項5】 前記導電膜のつづら折り状パターンの両
端部のそれぞれに端子部が形成されているとともに、中
間部の折り返し部に連続してセンタータップとしての端
子部が形成されていることを特徴とする請求項1から4
までのいずれか1項に記載の磁気検出素子。
5. A terminal portion is formed at each of both ends of the meandering pattern of the conductive film, and a terminal portion as a center tap is formed continuously to the folded portion in the middle portion. Claims 1 to 4
The magnetic detection element according to any one of 1 to 6 above.
【請求項6】 磁気インピーダンス効果を利用した再生
用の磁気ヘッドであって、 先端面が磁気記録媒体摺動面として形成された非磁性基
板の前記摺動面に対し略垂直な上面に下から順に第1の
高透磁率磁性膜,第1の絶縁膜,導電膜,第2の絶縁
膜,第2の高透磁率磁性膜を積層して構成され、 前記第1と第2の高透磁率磁性膜の少なくとも一方は、
磁化容易軸方向が膜面内で前記摺動面に略平行な方向に
なるように磁気異方性がつけられ、 前記第1の高透磁率磁性膜の端部は前記摺動面に露出
し、 前記導電膜は、前記摺動面に対し略垂直な方向に沿った
複数本の直線部分が所定間隔で平行に並び、順次折り返
すように連結され、電気的に直列接続されたつづら折り
状パターンに形成され、 前記導電膜の両端部から高周波電流を印加し、磁気記録
媒体からの磁界により前記導電膜両端部間に発生するイ
ンピーダンスの変化を電気信号に変換して再生出力を得
られるようにしたことを特徴とする磁気ヘッド。
6. A reproducing magnetic head utilizing a magneto-impedance effect, wherein a top surface of a non-magnetic substrate having a tip surface formed as a sliding surface of a magnetic recording medium is substantially perpendicular to the sliding surface from below. A first high-permeability magnetic film, a first insulating film, a conductive film, a second insulating film, and a second high-permeability magnetic film are laminated in this order, and the first and second high-permeability magnetic films are formed. At least one of the magnetic films is
Magnetic anisotropy is applied so that the easy axis of magnetization is in a direction substantially parallel to the sliding surface within the film surface, and the end portion of the first high-permeability magnetic film is exposed on the sliding surface. The conductive film is formed in a zigzag pattern in which a plurality of straight line portions along a direction substantially perpendicular to the sliding surface are arranged in parallel at a predetermined interval, are sequentially folded, and are electrically connected in series. A high frequency current is applied from both ends of the conductive film, and a change in impedance generated between the both ends of the conductive film by a magnetic field from a magnetic recording medium is converted into an electric signal so that a reproduction output can be obtained. A magnetic head characterized in that
【請求項7】 前記第1の高透磁率磁性膜の前記摺動面
に露出する端部の幅が前記摺動面に向かって絞り込まれ
たことを特徴とする請求項6に記載の磁気ヘッド。
7. The magnetic head according to claim 6, wherein the width of the end of the first high-permeability magnetic film exposed on the sliding surface is narrowed toward the sliding surface. .
【請求項8】 前記第1の高透磁率磁性膜の前記摺動面
に露出する端部の厚さが前記導電膜に掛かる部分の厚さ
より薄くされたことを特徴とする請求項6または7に記
載の磁気ヘッド。
8. The thickness of an end of the first high magnetic permeability magnetic film exposed on the sliding surface is smaller than the thickness of a portion of the conductive film. The magnetic head described in 1.
【請求項9】 前記第1と第2の高透磁率磁性膜、第1
と第2の絶縁膜及び導電膜からなる素子本体が前記非磁
性基板の上面に複数並設されたことを特徴とする請求項
6から8までのいずれか1項に記載の磁気ヘッド。
9. The first and second high permeability magnetic films, the first
9. The magnetic head according to claim 6, wherein a plurality of element bodies each composed of a second insulating film and a conductive film are arranged in parallel on the upper surface of the non-magnetic substrate.
【請求項10】 前記導電膜のつづら折り状パターンの
両端部のそれぞれに端子部が形成されているとともに、
中間部の折り返し部に連続してセンタータップとしての
端子部が形成されていることを特徴とする請求項6から
9までのいずれか1項に記載の磁気ヘッド。
10. A terminal portion is formed on each of both ends of the meandering pattern of the conductive film, and
The magnetic head according to any one of claims 6 to 9, wherein a terminal portion as a center tap is formed continuously with the folded portion of the intermediate portion.
【請求項11】 前記センタータップとしての端子部は
電源に接続され、前記両端部のそれぞれの端子部はマル
チバイブレータ型発振回路に接続されることを特徴とす
る請求項10に記載の磁気ヘッド。
11. The magnetic head according to claim 10, wherein the terminal portion as the center tap is connected to a power source, and the terminal portions at both ends are connected to a multivibrator type oscillation circuit.
JP7092465A 1995-03-31 1995-04-18 Magnetism detection element and magnetic head Pending JPH08285930A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7092465A JPH08285930A (en) 1995-04-18 1995-04-18 Magnetism detection element and magnetic head
US08/618,066 US5889403A (en) 1995-03-31 1996-03-25 Magnetic detecting element utilizing magnetic impedance effect
US09/229,112 US6351119B1 (en) 1995-03-31 1999-01-13 Magnetic detecting element utilizing magnetic impedance effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7092465A JPH08285930A (en) 1995-04-18 1995-04-18 Magnetism detection element and magnetic head

Publications (1)

Publication Number Publication Date
JPH08285930A true JPH08285930A (en) 1996-11-01

Family

ID=14055102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7092465A Pending JPH08285930A (en) 1995-03-31 1995-04-18 Magnetism detection element and magnetic head

Country Status (1)

Country Link
JP (1) JPH08285930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006848A1 (en) * 1997-07-29 1999-02-11 Unitika Ltd. Magnetic impedance effect device
US7145331B2 (en) 2001-07-19 2006-12-05 Matsushita Electric Industrial Co., Ltd. Magnetic sensor having a closed magnetic path formed by soft magnetic films
CN101975934A (en) * 2010-09-27 2011-02-16 上海交通大学 Integrated bias coil type giant magneto-impedance effect (GMI) magneto-dependent sensor
JP2015133397A (en) * 2014-01-14 2015-07-23 国立研究開発法人物質・材料研究機構 Magnetic sensor element using magneto impedance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006848A1 (en) * 1997-07-29 1999-02-11 Unitika Ltd. Magnetic impedance effect device
US7145331B2 (en) 2001-07-19 2006-12-05 Matsushita Electric Industrial Co., Ltd. Magnetic sensor having a closed magnetic path formed by soft magnetic films
CN101975934A (en) * 2010-09-27 2011-02-16 上海交通大学 Integrated bias coil type giant magneto-impedance effect (GMI) magneto-dependent sensor
JP2015133397A (en) * 2014-01-14 2015-07-23 国立研究開発法人物質・材料研究機構 Magnetic sensor element using magneto impedance

Similar Documents

Publication Publication Date Title
US6351119B1 (en) Magnetic detecting element utilizing magnetic impedance effect
US7145331B2 (en) Magnetic sensor having a closed magnetic path formed by soft magnetic films
JP3356585B2 (en) Magnetic detection element and magnetic head
JPH10255239A (en) Inductive/mr combined thin film magnetic head
JPS61120318A (en) Unified thin film magnetic head
JPH08285930A (en) Magnetism detection element and magnetic head
Valstyn et al. Performance of single-turn film heads
JPH09113590A (en) Magnetic sensor
EP0613120A2 (en) Magnetoresistance thin film magnetic head and bias characteristics measuring method
JPH08330645A (en) Magnetic detection element
JPS58166527A (en) Magnetoresistance effect head
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPH08316547A (en) Magneto-detecting element and manufacture thereof
JPH08334379A (en) Magnetic sensor for magnetic encoder
JPH0376015A (en) Parametric playback head for perpendicular magnetic recording
JPS6154012A (en) Magneto-resistance effect head
JP2932755B2 (en) Thin film magnetic head
JPS63138515A (en) Thin film magnetic head and its reproduction system
JP2863552B2 (en) Thin-film magnetic head and recording / reproducing apparatus using this thin-film magnetic head
JPH08321013A (en) Magnetic head and its production
JPS60182008A (en) Thin film magnetic head
JPH07262523A (en) Magnetic head
JPS63273206A (en) Thin film magnetic head
JPH09113591A (en) Magnetic sensor
JPS58166526A (en) Magnetoresistance effect type magnetic head