JP3356585B2 - Magnetic detection element and magnetic head - Google Patents

Magnetic detection element and magnetic head

Info

Publication number
JP3356585B2
JP3356585B2 JP12988895A JP12988895A JP3356585B2 JP 3356585 B2 JP3356585 B2 JP 3356585B2 JP 12988895 A JP12988895 A JP 12988895A JP 12988895 A JP12988895 A JP 12988895A JP 3356585 B2 JP3356585 B2 JP 3356585B2
Authority
JP
Japan
Prior art keywords
magnetic
film
permeability
magnetic film
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12988895A
Other languages
Japanese (ja)
Other versions
JPH08330644A (en
Inventor
正博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP12988895A priority Critical patent/JP3356585B2/en
Priority to US08/618,066 priority patent/US5889403A/en
Publication of JPH08330644A publication Critical patent/JPH08330644A/en
Priority to US09/229,112 priority patent/US6351119B1/en
Application granted granted Critical
Publication of JP3356585B2 publication Critical patent/JP3356585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁界検出を行なう磁気
検出素子、及び磁気記録媒体に記録された磁気記録情報
の再生を行なう磁気ヘッドに関し、特に磁気インピーダ
ンス効果を利用した磁気検出素子および磁気ヘッドに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detecting element for detecting a magnetic field and a magnetic head for reproducing magnetically recorded information recorded on a magnetic recording medium, and more particularly to a magnetic detecting element and a magnetic element utilizing a magnetic impedance effect. It concerns the head.

【0002】[0002]

【従来の技術】最近の磁気センサーは、情報機器や計測
・制御機器等の急速な発展に伴い、多様化してきたが、
今後更に小型高精度化が期待されている。
2. Description of the Related Art Recent magnetic sensors have been diversified with the rapid development of information devices, measurement and control devices, and the like.
Further miniaturization and high precision are expected in the future.

【0003】磁気ヘッドの分野ではディジタル磁気記録
機器の小型化が進み、例えば、コンピュータの外部記憶
装置のハードディスクやディジタルオーディオのディジ
タルコンパクトカセット(DCC)に於いて、従来の誘
導型の磁気ヘッドではトラック幅及び相対速度の減少に
よるS/Nの低下が生じるため、再生ヘッドにMR素子
(磁気抵抗効果素子)が使われている。しかし、MR素
子は媒体の速度依存性が無く、低速での出力の取り出し
に向いているが、抵抗変化率が数%しかないため、将来
の高密度化の為には更に感度の高い素子の開発が望まれ
ている。
[0003] In the field of magnetic heads, digital magnetic recording equipment has been miniaturized. For example, in a hard disk of an external storage device of a computer or a digital compact cassette (DCC) of digital audio, a conventional inductive magnetic head uses a track. Since the S / N ratio decreases due to the decrease in the width and the relative speed, an MR element (magnetoresistive element) is used for the reproducing head. However, the MR element has no speed dependence of the medium and is suitable for taking out the output at a low speed. However, since the resistance change rate is only a few%, an element having higher sensitivity is required for higher density in the future. Development is desired.

【0004】また、磁気エンコーダー等のセンサーの分
野でも着磁媒体の磁化ピッチの縮小により、外部に漏れ
る磁束が極端に小さくなり、MR素子でも感度不足が問
題となりつつある。
Also, in the field of sensors such as magnetic encoders, the magnetic flux leaking to the outside becomes extremely small due to the reduction of the magnetization pitch of the magnetized medium.

【0005】そこで、最近注目を集めているのが特開平
6−281712号に開示されているアモルファスワイ
ヤーによる磁気インピーダンス効果(以下、MI効果と
略す)を利用した素子である。MI効果とは、磁性体に
MHz帯域の高周波電流を流すと外部磁界により磁性体
のインピーダンスが変化し、それにより磁性体の両端の
電圧の振幅が数ガウスの微小磁界で数十%変化する現象
である。
Therefore, an element utilizing a magneto-impedance effect (hereinafter, abbreviated as MI effect) using an amorphous wire disclosed in Japanese Patent Application Laid-Open No. 6-281712 has recently attracted attention. The MI effect is a phenomenon in which when a high-frequency current in the MHz band is applied to a magnetic material, the impedance of the magnetic material changes due to an external magnetic field, whereby the amplitude of the voltage at both ends of the magnetic material changes by several tens of% with a small magnetic field of several Gauss. It is.

【0006】MI効果を利用した素子の利点は、磁性体
の長さ方向に励磁しないため反磁界の影響が無く素子の
長さを1mm以下程度に短くでき小型化に適しているこ
と、また、磁束検出の分解能が、MR素子が0.1Oe
の低感度に対して、10-5Oe程度の高感度が得られる
ことである。また、インピーダンス変化量もMR素子が
3%程度に対し、MI効果を利用した素子は数10%オ
ーダーの変化が得られる。
The advantage of the element utilizing the MI effect is that the element is not excited in the length direction of the magnetic body and is not affected by a demagnetizing field, so that the element length can be reduced to about 1 mm or less, which is suitable for miniaturization. Magnetic flux detection resolution is 0.1 Oe for MR element
Is to obtain a high sensitivity of about 10 -5 Oe with respect to the low sensitivity. Also, the impedance change amount of the MR element is about 3%, whereas the change utilizing the MI effect is about several tens%.

【0007】[0007]

【発明が解決しようとする課題】上記MI効果による素
子の機能はアモルファスワイヤーで見いだされたもので
あり、アモルファスワイヤーは材料として生産性は優れ
ている。しかし、磁気ヘッドの様な微小磁化を扱う場
合、断面が円であることや径が30ミクロン程度にしか
小さくできないため、誘導型磁気ヘッドの磁気ギャップ
に当たる磁気記録媒体接触部で適切な形状が得られず、
要求されるトラック幅が得られず、ギャップ幅に対応す
る厚さも得られない。
The function of the element by the above-mentioned MI effect has been found with an amorphous wire, and the amorphous wire has excellent productivity as a material. However, when dealing with micromagnetization such as a magnetic head, since the cross section is circular and the diameter can be reduced to only about 30 microns, an appropriate shape can be obtained at the magnetic recording medium contact portion corresponding to the magnetic gap of the induction type magnetic head. I ca n’t
The required track width cannot be obtained, and the thickness corresponding to the gap width cannot be obtained.

【0008】また、図11に示すように、磁気記録媒体
111の微小な磁化は磁束が還流しやすく、MI効果を
利用した磁気検出素子112は媒体111に対し垂直に
配置されるので、磁気検出素子112の奥に行くに従い
磁束密度が低下する。これにより、素子全体の感度(イ
ンピーダンス変化量)が得られないという問題が生ず
る。素子の長さを短くすれば、素子全体の感度は向上す
るが、インピーダンスそのものの絶対値が小さくなり、
両端電圧またはLC発振回路での出力が低下し、動作も
不安定になってしまう。
Further, as shown in FIG. 11, the minute magnetization of the magnetic recording medium 111 easily returns the magnetic flux, and the magnetic detecting element 112 utilizing the MI effect is disposed perpendicularly to the medium 111. The magnetic flux density decreases toward the back of the element 112. This causes a problem that the sensitivity (impedance variation) of the entire device cannot be obtained. If the length of the element is shortened, the sensitivity of the whole element improves, but the absolute value of the impedance itself decreases,
The voltage at both ends or the output of the LC oscillation circuit decreases, and the operation becomes unstable.

【0009】さらに取り扱いの点でもアモルファスワイ
ヤーは、数10ミクロンの径では曲がりやすく位置出し
や端子の取り出しなどの作業が困難であり、素子の製造
が容易でないという問題があった。
Further, in terms of handling, an amorphous wire having a diameter of several tens of microns is likely to bend, and it is difficult to perform operations such as positioning and taking out a terminal, and there is a problem that it is not easy to manufacture an element.

【0010】そこで本発明の課題は、MI効果を利用し
た磁気検出素子及び磁気ヘッドにおいて上記のような問
題を解決し、安定して高い出力が得られ、素子本体の取
り扱い上の問題がなくて製造が容易であり、特に磁気ヘ
ッドでは磁気ギャップに相当する磁性体の媒体接触部で
トラック幅を所望に設定できるとともに、ギャップ幅に
対応する厚さも所望に設定できる構成を提供することに
ある。
Accordingly, an object of the present invention is to solve the above-described problems in a magnetic sensing element and a magnetic head utilizing the MI effect, to obtain a high output stably, and to avoid a problem in handling the element body. It is an object of the present invention to provide a configuration which is easy to manufacture, and in which a track width can be set as desired at a medium contact portion of a magnetic material corresponding to a magnetic gap, and a thickness corresponding to the gap width can be set as desired.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、本発明によれば、MI効果を利用した磁気検出素子
であって、非磁性基板上に高透磁率磁性膜を形成して構
成され、前記高透磁率磁性膜は、磁界検出方向に沿った
複数本の直線部分が所定間隔で平行に並び、順次折り返
すように連結され、電気的に直列接続されたつづら折り
状パターンに形成され、且つ磁化容易軸方向が磁界検出
方向に対し膜面内で垂直な方向になるように磁気異方性
が付けられており、該高透磁率磁性膜の両端部から高周
波電流を印加し外部磁界により前記両端部間に発生する
インピーダンスの変化を電気信号に変換して出力を得ら
れるようにした構成を採用した。
According to the present invention, there is provided a magnetic sensing element utilizing the MI effect, comprising a high-permeability magnetic film formed on a non-magnetic substrate. The high permeability magnetic film, a plurality of linear portions along the magnetic field detection direction are arranged in parallel at a predetermined interval, connected so as to be sequentially folded, formed in a zigzag pattern electrically connected in series, Magnetic anisotropy is provided so that the direction of the easy axis of magnetization is perpendicular to the direction of magnetic field detection in the film plane. A high-frequency current is applied from both ends of the high-permeability magnetic film, and an external magnetic field is applied. A configuration is adopted in which a change in impedance generated between the both ends is converted into an electric signal to obtain an output.

【0012】また、本発明によれば、MI効果を利用し
た再生用の磁気ヘッドであって、先端面が磁気記録媒体
摺動面として形成された非磁性基板の前記摺動面に対し
略垂直な表面に第1と第2の高透磁率磁性膜を形成して
構成され、第1の高透磁率磁性膜は、前記摺動面から離
間して、前記摺動面に対し垂直な方向に沿った複数本の
直線部分が所定間隔で平行に並び、順次折り返すように
連結され、電気的に直列接続されたつづら折り状パター
ンに形成され、且つ磁化容易軸方向が膜面内で前記摺動
面に略平行な方向になるように磁気異方性が付けられて
おり、第2の高透磁率磁性膜は、前記第1の高透磁率磁
性膜のつづら折り状パターンの前記摺動面側の折り返し
部と絶縁膜を挟んで重なり、前記摺動面まで延びるよう
に形成され、前記第1の高透磁率磁性膜の両端部より高
周波電流を印加し、磁気記録媒体から前記第2の高透磁
率磁性膜を介して前記第1の高透磁率磁性膜に印加され
る磁界により前記第1の高透磁率磁性膜の両端部間に発
生するインピーダンスの変化を電気信号に変換して再生
出力を得られるようにした構成を採用した。
Further, according to the present invention, there is provided a reproducing magnetic head utilizing the MI effect, wherein a front end surface is substantially perpendicular to the sliding surface of a non-magnetic substrate formed as a sliding surface of a magnetic recording medium. The first and second high permeability magnetic films are formed on an appropriate surface, and the first high permeability magnetic film is separated from the sliding surface and is perpendicular to the sliding surface. A plurality of linear portions are arranged in parallel at a predetermined interval, are connected so as to be sequentially folded, are formed in a serpentine pattern electrically connected in series, and the direction of the axis of easy magnetization is the sliding surface in the film plane. The second high magnetic permeability magnetic film is formed by folding the first high magnetic permeability magnetic film on the sliding surface side in the serpentine pattern of the first high magnetic permeability magnetic film. Part and an insulating film sandwiched therebetween, formed to extend to the sliding surface, the A high-frequency current is applied from both ends of the first high-permeability magnetic film, and the magnetic field is applied to the first high-permeability magnetic film from the magnetic recording medium via the second high-permeability magnetic film. In this configuration, a change in impedance generated between both ends of the high-permeability magnetic film is converted into an electric signal to obtain a reproduction output.

【0013】[0013]

【作用】上記本発明の磁気検出素子の構成によれば、素
子本体としての高透磁率磁性膜をつづら折り状パターン
とすることで、MI効果の感度を上げるために素子本体
の磁界検出方向の長さを短くしても、インピーダンスの
絶対値を稼ぐことができ、安定した高い出力が得られ
る。
According to the structure of the magnetic sensing element of the present invention, the high magnetic permeability magnetic film as the element body is formed into a zigzag pattern, so that the length of the element body in the magnetic field detecting direction can be increased in order to increase the sensitivity of the MI effect. Even if the length is shortened, the absolute value of the impedance can be obtained, and a stable high output can be obtained.

【0014】また、素子本体は非磁性基板上に成膜され
た高透磁率磁性膜からなるので、アモルファスワイヤー
の様な取り扱い上の問題はない。
Further, since the element body is made of a high-permeability magnetic film formed on a non-magnetic substrate, there is no problem in handling like an amorphous wire.

【0015】また、上記本発明の磁気ヘッドの構成によ
れば、上記本発明の磁気検出素子と同様の作用により安
定した高い出力が得られる。また、媒体摺動面に露出す
る第2の高透磁率磁性膜の端部の幅と厚さの設定によ
り、トラック幅とギャップ幅に対応する寸法を所望に設
定できる。
Further, according to the configuration of the magnetic head of the present invention, a stable and high output can be obtained by the same operation as that of the magnetic detecting element of the present invention. Further, by setting the width and thickness of the end of the second high permeability magnetic film exposed on the medium sliding surface, dimensions corresponding to the track width and the gap width can be set as desired.

【0016】[0016]

【実施例】以下、図を参照して本発明の実施例を説明す
る。なお、各実施例の図において共通ないし対応する部
分には共通の符号を付してある。第2実施例以下で第1
実施例と共通の部分の説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the drawings of the embodiments, common or corresponding parts are denoted by common reference numerals. First in the second embodiment and below
The description of the parts common to the embodiment is omitted.

【0017】[第1実施例]図1〜図3は本発明の第1
実施例として、MI効果を利用した磁気検出素子の実施
例を説明するもので、まず図1は素子全体の構造を示し
ている。
[First Embodiment] FIGS. 1 to 3 show a first embodiment of the present invention.
As an embodiment, an embodiment of a magnetic sensing element utilizing the MI effect will be described. First, FIG. 1 shows the entire structure of the element.

【0018】図1において、10は非磁性基板であり、
チタン酸カルシウム(Ti−Ca系セラミック)、酸化
物ガラス、チタニア、アルミナ等で形成される。
In FIG. 1, reference numeral 10 denotes a nonmagnetic substrate;
It is formed of calcium titanate (Ti-Ca based ceramic), oxide glass, titania, alumina, or the like.

【0019】非磁性基板10の上面に、磁気検出素子本
体として、つづら折り状パターンの高透磁率磁性膜(以
下、磁性膜と略す)12がFe−Co−B系アモルファ
ス、Fe−C系、Fe−N系の微結晶膜等の磁性膜とし
て真空成膜技術により形成されている。磁性膜12の厚
さは薄すぎるとMI効果が低下し、また厚すぎるとイン
ピーダンスが低下するため1μm〜20μmの間で設定
するのがよい。
On the upper surface of the non-magnetic substrate 10, as a magnetic sensing element body, a high permeability magnetic film (hereinafter abbreviated as “magnetic film”) 12 in a serpentine pattern is made of Fe—Co—B amorphous, Fe—C, It is formed by a vacuum film forming technique as a magnetic film such as a -N based microcrystalline film. If the thickness of the magnetic film 12 is too small, the MI effect is reduced. If the thickness is too large, the impedance is reduced.

【0020】磁性膜12のつづら折り状パターンは、図
2に示すように、検出対象の外部磁界Hexが印加される
方向である磁界検出方向に沿った複数本の所定長の直線
部分が所定間隔で平行に並び、順次折り返すように隣り
合う直線部分の端部が折り返し部12C,12Dとして
垂直に屈曲して連結され、全体として電気的に直列接続
されたパターンとなっている。そのパターンの両端には
長方形の端子部12A,12Bが形成されている。
As shown in FIG. 2, the serpentine pattern of the magnetic film 12 includes a plurality of linear portions having a predetermined length at predetermined intervals along a magnetic field detection direction in which an external magnetic field Hex to be detected is applied. The ends of the adjacent linear portions that are arranged in parallel and are sequentially folded are bent and connected vertically as folded portions 12C and 12D, so that the pattern is electrically connected in series as a whole. Rectangular terminals 12A and 12B are formed at both ends of the pattern.

【0021】また磁性膜12は、磁化容易軸方向が外部
磁界Hexの印加される磁界検出方向に対し膜面内で垂直
な方向である図1中の矢印B方向になるように、成膜後
の磁場中冷却等により磁気異方性をつけておく。
The magnetic film 12 is formed after the film is formed so that the direction of the axis of easy magnetization is in the direction of arrow B in FIG. 1 which is a direction perpendicular to the magnetic field detection direction to which the external magnetic field Hex is applied in the film plane. Magnetic anisotropy is provided by cooling in a magnetic field.

【0022】このような構成で、外部磁界Hexの検出時
には、磁性膜12に対し両端の端子部12A,12Bか
ら高周波電流を印加する。外部磁界Hexの強さに応じて
端子部12A,12B間のインピーダンスが変化し、こ
の変化を電気信号に変換して出力が得られるようになっ
ている。
With such a configuration, when the external magnetic field Hex is detected, a high-frequency current is applied to the magnetic film 12 from the terminal portions 12A and 12B at both ends. The impedance between the terminals 12A and 12B changes according to the strength of the external magnetic field Hex, and the change is converted into an electric signal to obtain an output.

【0023】ここで磁性膜12のつづら折り状のパター
ンでは、図1のA−A’線に沿う断面である図3に示す
とおり、隣り合うパターン直線部121,122,12
3に流れる電流は図の矢印の通り交互に逆方向となり、
パターン直線部のそれぞれの周囲に発生する磁界は符号
13A〜13Cで示す様になる。この磁界は磁性膜12
内に還流磁束を形成し、素子のインダクタンスを形成す
る。パターン直線部の間隔Dmを狭くしても磁界13A
〜13C間の干渉等の悪影響はほとんど無く、所定のイ
ンダクタンスを得るためにパターン直線部の幅Wp、厚
さtmとともに自由に選択できる。
Here, in the serpentine pattern of the magnetic film 12, as shown in FIG. 3, which is a cross section taken along the line AA 'in FIG. 1, the adjacent pattern linear portions 121, 122, 12
The current flowing in 3 alternates in the opposite direction as shown by the arrow in the figure.
The magnetic fields generated around each of the pattern linear portions are as shown by reference numerals 13A to 13C. This magnetic field is applied to the magnetic film 12
A return magnetic flux is formed therein to form an inductance of the element. 13 A magnetic field even if the distance Dm between the linear portions of the pattern is reduced
There is almost no adverse effect such as interference between .about.13C and can be freely selected along with the width Wp and the thickness tm of the pattern linear portion in order to obtain a predetermined inductance.

【0024】つづら折り状パターンにより断面積が小さ
くなることで単位体積あたりのインダクタンスが増加す
ることと、つづら折りによる総延長を稼ぐ効果より、素
子本体の全体としての磁界検出方向の長さが短くても大
きなインダクタンスを稼ぐことが可能となり、インピー
ダンスの絶対値を稼ぐことが可能となる。また、素子本
体の磁界検出方向の長さをほとんどMR素子並に短くで
き、微小磁化に対し優れたMI効果を発揮できる。
Due to the fact that the inductance per unit volume increases due to the reduced cross-sectional area due to the serpentine pattern and the effect of increasing the total extension due to the serpentine folding, even if the length of the element body as a whole in the magnetic field detection direction is short, A large inductance can be obtained, and an absolute value of the impedance can be obtained. Further, the length of the element body in the magnetic field detection direction can be almost shortened to the same level as that of the MR element, and an excellent MI effect can be exhibited with respect to minute magnetization.

【0025】次に以上のような本実施例の磁気検出素子
を試作し、特性を試験した結果を述べる。磁性膜12は
Fe−Ta−C系磁性膜とし、つづら折りの回数7回、
パターン直線部の幅10μm、厚さ5μm、パターン直
線部の間隔10μm、直線部の長さ0.2mmとして形
成した。インピーダンスの測定は、磁性膜12の両端よ
り100MHzの高周波電流を流し、両端電圧の変化を
調べた。外部磁界はヘルムホルツコイルで印加し、±2
5Oeの範囲で変化させた。
Next, the results of a trial production of the magnetic sensing element of the present embodiment as described above and a test of its characteristics will be described. The magnetic film 12 is a Fe—Ta—C based magnetic film, and has a meandering frequency of 7 times.
The width of the pattern linear portion was 10 μm, the thickness was 5 μm, the interval between the pattern linear portions was 10 μm, and the length of the linear portion was 0.2 mm. The impedance was measured by applying a high-frequency current of 100 MHz from both ends of the magnetic film 12 and examining the change in the voltage at both ends. The external magnetic field is applied by a Helmholtz coil, ± 2
It was changed in the range of 5 Oe.

【0026】結果は、まず100MHzのインダクタン
スLが58nHあり、その時のQ値は5.5であった。
これに対し従来の径30μmのFe−Co−Bアモルフ
ァスワイヤーの場合は1mmの長さでL45nH、Q
5.8であり、本実施例の素子では長さが0.2mmと
短いながら、L,Q共に高い数値が得られた。インピー
ダンスの変化量も本実施例の素子は外部磁界Hex=8O
eで62%の変化を示し、良好な変化を示した。
As a result, first, the inductance L at 100 MHz was 58 nH, and the Q value at that time was 5.5.
On the other hand, in the case of a conventional Fe—Co—B amorphous wire having a diameter of 30 μm, a length of 1 mm and L45 nH, Q
In the device of this example, although the length was as short as 0.2 mm, high values were obtained for both L and Q. The amount of change in the impedance of the element of this embodiment is also the external magnetic field Hex = 80.
e showed a 62% change, indicating a good change.

【0027】このようにして本実施例の磁気検出素子で
は安定して高い出力が得られる。また、素子本体は磁性
膜であるので、アモルファスワイヤーの場合のような取
り扱い上の問題がなく、素子の製造が容易となり、1個
のブロックから1度に多数個の素子を得る多数個取りも
可能であり、安価に製造できる。
In this way, a high output can be obtained stably in the magnetic sensing element of this embodiment. In addition, since the element body is a magnetic film, there is no problem in handling as in the case of an amorphous wire, and the manufacture of the element is easy, and a large number of elements can be obtained from one block at a time. Possible and inexpensive to manufacture.

【0028】[第2実施例]次に図4は第2実施例の磁
気検出素子の構造を示している。本実施例では、第1実
施例と同様に非磁性基板10上につづら折り状パターン
の磁性膜12を形成した上に、その端子部に12A,1
2Bと折り返し部12C,12D上にCu,Au膜等の
導電膜18A〜18Dを形成している。
[Second Embodiment] FIG. 4 shows the structure of a magnetic sensing element according to a second embodiment. In the present embodiment, as in the first embodiment, a magnetic film 12 having a zigzag pattern is formed on a non-magnetic substrate 10, and 12A, 1
Conductive films 18A to 18D such as Cu and Au films are formed on 2B and folded portions 12C and 12D.

【0029】このような構造によれば、導電膜18A〜
18Dによって端子部12A,12Bと折り返し部12
C,12Dの磁気インピーダンス効果を消し、外部磁界
Hexが印加される磁界検出方向に沿ったパターン直線部
のみの磁界検出機能を使用し、磁界検出方向の磁気イン
ピーダンス効果を忠実に引き出し、検出感度を上げるこ
とができる。
According to such a structure, the conductive films 18A to 18A
18D, the terminal portions 12A and 12B and the folded portion 12
The magnetic impedance effect of C and 12D is eliminated, and the magnetic field effect of only the linear portion of the pattern along the magnetic field detection direction to which the external magnetic field Hex is applied is used. Can be raised.

【0030】[第3実施例]次に図5は第3実施例の磁
気検出素子の構造を示している。本実施例では、第1実
施例と同様に非磁性基板10上につづら折り状パターン
の磁性膜12を形成した上に、つづら折り状パターンの
隙間のそれぞれに直線状の高透磁率磁性膜20を形成し
ている。
[Third Embodiment] FIG. 5 shows the structure of a magnetic sensing element according to a third embodiment. In the present embodiment, as in the first embodiment, a magnetic film 12 having a serpentine pattern is formed on a non-magnetic substrate 10 and a linear high magnetic permeability magnetic film 20 is formed in each gap of the serpentine pattern. are doing.

【0031】このような構造によれば、外部磁界Hexの
印加方向の素子本体全体の磁気抵抗を下げ、外部磁界H
exの検出感度を上げることができる。なお、本実施例の
つづら折り状パターンの隙間に直線状の磁性膜20を配
する構造を第2実施例の構造に適用してもよい。
According to such a structure, the magnetic resistance of the entire element body in the direction of application of the external magnetic field Hex is reduced, and the external magnetic field Hex is reduced.
ex detection sensitivity can be increased. The structure in which the linear magnetic film 20 is disposed in the gap between the serpentine patterns of the present embodiment may be applied to the structure of the second embodiment.

【0032】[第4実施例]次に、第4実施例として、
第1実施例の構成を変更して再生用の磁気ヘッドとした
実施例を図6〜図10により説明する。
[Fourth Embodiment] Next, as a fourth embodiment,
An embodiment in which the configuration of the first embodiment is changed to a magnetic head for reproduction will be described with reference to FIGS.

【0033】図6,図7に示す磁気ヘッドの構成におい
て、非磁性基板10の先端面10Aは、不図示の磁気記
録媒体が矢印で示す図中上方向に摺動する媒体摺動面と
して形成される。その基板10の媒体摺動面10Aに垂
直な表面において前述のつづら折り状パターンの磁性膜
12が第1の高透磁率磁性膜として媒体摺動面10Aか
ら離間して形成されている。磁性膜12のつづら折り状
パターンの向きは、所定間隔で複数本平行に並ぶパター
ン直線部が媒体摺動面10Aに対し垂直になる向きにさ
れている。また、磁性膜12は、磁化容易軸方向が図6
中矢印Bで示すように膜面内で媒体摺動面10Aに平行
になるように磁気異方性が付けられている。
In the configuration of the magnetic head shown in FIGS. 6 and 7, the front end face 10A of the non-magnetic substrate 10 is formed as a medium sliding surface on which a magnetic recording medium (not shown) slides upward in the figure as indicated by an arrow. Is done. On the surface of the substrate 10 perpendicular to the medium sliding surface 10A, the above-mentioned serpentine-shaped pattern magnetic film 12 is formed as a first high magnetic permeability magnetic film at a distance from the medium sliding surface 10A. The orientation of the serpentine pattern of the magnetic film 12 is such that a plurality of pattern linear portions arranged in parallel at predetermined intervals are perpendicular to the medium sliding surface 10A. The magnetic film 12 has an easy axis direction of magnetization as shown in FIG.
Magnetic anisotropy is provided so as to be parallel to the medium sliding surface 10A in the film plane as shown by the middle arrow B.

【0034】一方、磁性膜12のつづら折り状パターン
の媒体摺動面10A側の折り返し部12Cの下に、Si
2,Cr23等の酸化物の絶縁膜14を挟んで第2の
高透磁率磁性膜16が重なるように形成されており、磁
性膜12に対し磁気的に接続され、電気的には絶縁膜1
4により絶縁されている。そして磁性膜16は折り返し
部12Cの下から媒体摺動面10Aの縁まで延び、先端
が媒体摺動面10Aに露出するように形成されており、
この先端に対し不図示の磁気記録媒体がその膜面に垂直
な図中上方向に摺動する。
On the other hand, under the folded portion 12C on the medium sliding surface 10A side of the serpentine pattern of the magnetic film 12, Si
A second high-permeability magnetic film 16 is formed so as to overlap with an insulating film 14 of an oxide such as O 2 , Cr 2 O 3 or the like, is magnetically connected to the magnetic film 12, and is electrically connected to the magnetic film 12. Is the insulating film 1
4 insulated. The magnetic film 16 extends from under the folded portion 12C to the edge of the medium sliding surface 10A, and is formed such that the tip is exposed on the medium sliding surface 10A.
A magnetic recording medium (not shown) slides in the upward direction in the drawing perpendicular to the film surface with respect to this tip.

【0035】磁性膜16は、磁気記録媒体の記録磁化の
磁界を磁性膜12へ導くためのものである。磁性膜16
としては、センダスト,パーマロイ,アモルファス,F
e−N系またはFe−C系の微結晶膜等が採用される。
媒体摺動面10Aに露出する磁性膜16の先端部の厚さ
は誘導型磁気ヘッドの磁気ギャップのギャップ幅に相当
する。また、磁性膜16の先端部の幅Wtはトラック幅
となるが、第1の磁性膜12と重なる接続部の幅Wmよ
り絞り込まれている。
The magnetic film 16 is for guiding the magnetic field of the recording magnetization of the magnetic recording medium to the magnetic film 12. Magnetic film 16
Are sendust, permalloy, amorphous, F
An e-N-based or Fe-C-based microcrystalline film or the like is employed.
The thickness of the tip of the magnetic film 16 exposed on the medium sliding surface 10A corresponds to the gap width of the magnetic gap of the induction type magnetic head. Further, the width Wt of the tip portion of the magnetic film 16 becomes the track width, but is narrowed down from the width Wm of the connection portion overlapping the first magnetic film 12.

【0036】また、図7の断面図に示す第1と第2の磁
性膜12,16の重なる接続部の幅Wgは、接続部のギ
ャップの磁気抵抗増加と第1の磁性膜12の折り返し部
12Cで不要なインピーダンスが生じないように決定さ
れ、0〜100μmの範囲で選択する。
The width Wg of the overlapping portion of the first and second magnetic films 12 and 16 shown in the cross-sectional view of FIG. 7 is determined by the increase in the magnetic resistance of the gap of the connecting portion and the folded portion of the first magnetic film 12. It is determined so that unnecessary impedance does not occur at 12C, and is selected in the range of 0 to 100 μm.

【0037】なお、図6,図7では磁性膜16が磁性膜
12の折り返し部12Cの下に重なっているが、上に重
なるようにしても機能としては何ら問題は無い。
In FIGS. 6 and 7, the magnetic film 16 overlaps below the folded portion 12C of the magnetic film 12, but there is no problem in function even if it overlaps above.

【0038】また、磁性膜12,16間の絶縁膜14の
厚さは、下限は絶縁効果の得られる0.05μmとし、
磁性膜12,16の接続部の磁気抵抗が大きくならない
1μmの厚さを上限として選択するのが好ましい。
The lower limit of the thickness of the insulating film 14 between the magnetic films 12 and 16 is 0.05 μm at which the insulating effect can be obtained.
It is preferable to select a thickness of 1 μm as an upper limit so that the magnetic resistance of the connection between the magnetic films 12 and 16 does not increase.

【0039】このような構成のもとに、再生時には、不
図示の磁気記録媒体が媒体摺動面10Aに対し摺動する
とともに、第1の磁性膜12に対し両端の端子部12
A,12Bから高周波電流が印加される。そして磁気記
録媒体の記録磁化の磁界が第2の磁性膜16を介して第
1の磁性膜12に印加され、その磁界により磁性膜12
の端子部12A,12B間のインピーダンスが変化し、
この変化を電気信号に変換して再生出力が得られるよう
になっている。
Under such a configuration, at the time of reproduction, a magnetic recording medium (not shown) slides on the medium sliding surface 10A and the terminal portions 12 at both ends with respect to the first magnetic film 12.
A and 12B apply a high-frequency current. Then, the magnetic field of the recording magnetization of the magnetic recording medium is applied to the first magnetic film 12 via the second magnetic film 16 and the magnetic field
The impedance between the terminal portions 12A and 12B changes,
This change is converted into an electric signal to obtain a reproduction output.

【0040】そして第1実施例と同様の作用により本実
施例の磁気ヘッドは高感度かつインピーダンスを稼ぐこ
とができ、安定した高い再生出力が得られる。また、同
様に製造が容易であり、多数個取りも可能である。
By the same operation as in the first embodiment, the magnetic head of this embodiment can obtain high sensitivity and high impedance, and can obtain a stable and high reproduction output. In addition, it is also easy to manufacture, and it is possible to take many pieces.

【0041】なお、媒体摺動面10Aに露出する第2の
磁性膜16は絶縁膜14により第1の磁性膜12と絶縁
されているので、第1の磁性膜12に印加される高周波
電流が第2の磁性膜16を介して媒体側に流出する心配
は無い。
Since the second magnetic film 16 exposed on the medium sliding surface 10A is insulated from the first magnetic film 12 by the insulating film 14, the high-frequency current applied to the first magnetic film 12 There is no risk of flowing out to the medium side via the second magnetic film 16.

【0042】また、本実施例の磁気ヘッドでは、媒体摺
動面10Aに露出する磁性膜16の先端の幅Wtの設定
によりトラック幅を所望に設定できる。また、誘導型磁
気ヘッドのギャップ幅に対応する磁性膜16の媒体摺動
面10Aに露出する先端部の厚さも所望に設定できる。
例えば、図8に示す様に、磁性膜16の媒体摺動面10
Aに露出する先端部の厚さTgを第1の磁性膜12に重
なる残りの部分の厚さTmより薄くすることでギャップ
幅に対応する厚さを薄くし、微小磁化に対する形状ロス
を改善する事も可能である。
In the magnetic head of this embodiment, the track width can be set as desired by setting the width Wt of the tip of the magnetic film 16 exposed on the medium sliding surface 10A. In addition, the thickness of the tip of the magnetic film 16 exposed on the medium sliding surface 10A corresponding to the gap width of the induction type magnetic head can be set as desired.
For example, as shown in FIG.
By making the thickness Tg of the tip exposed to A thinner than the thickness Tm of the remaining portion overlapping the first magnetic film 12, the thickness corresponding to the gap width is reduced, and the shape loss with respect to minute magnetization is improved. Things are also possible.

【0043】なお、媒体摺動面10Aに対し垂直な方向
の第1の磁性膜12のパターン直線部の長さが短い場合
には、磁性膜12内の反磁界が大きくなり感度の低下が
生ずる場合が考えられる。その場合は、図9に示すとお
り、第3の高透磁率磁性膜22を、磁性膜12の媒体摺
動面と反対側の折り返し部12Dと端子部12A,12
Bの下に不図示の絶縁膜を挟んで重なり、媒体摺動面と
反対側に延びるように形成することで改善できる。
When the length of the pattern linear portion of the first magnetic film 12 in the direction perpendicular to the medium sliding surface 10A is short, the demagnetizing field in the magnetic film 12 becomes large and the sensitivity is reduced. The case is conceivable. In this case, as shown in FIG. 9, the third high-permeability magnetic film 22 is formed by folding the magnetic film 12 with the folded portion 12D and the terminal portions 12A and 12A opposite to the medium sliding surface.
B can be improved by forming an insulating film (not shown) that overlaps below B and extends so as to extend on the side opposite to the medium sliding surface.

【0044】また、第1の磁性膜12,第2の磁性膜1
6,絶縁膜14からなる素子本体を図10に示すように
非磁性基板10の表面に複数並設することによりマルチ
トラックヘッドも容易に構成できる。この場合、隣り合
う素子本体どうしの対向面積が非常に小さいためクロス
トークを防止することができる。
Further, the first magnetic film 12 and the second magnetic film 1
6, a multi-track head can be easily configured by arranging a plurality of element bodies composed of the insulating film 14 on the surface of the non-magnetic substrate 10 as shown in FIG. In this case, cross-talk can be prevented because the opposing area between adjacent element bodies is very small.

【0045】[0045]

【発明の効果】以上の説明から明らかなように、本発明
の磁気検出素子によれば、非磁性基板上に素子本体とし
て高透磁率磁性膜をつづら折り状パターンに形成するこ
とで、素子本体全体の磁界検出方向の長さを短くしても
インピーダンスの絶対値を確保することができ、微小磁
化に対する素子本体のインピーダンス変化効率も向上さ
せることができ、安定した高い出力が得られる。また、
従来のアモルファスワイヤーが微小磁化に対応できなか
った断面形状、取り扱い上の問題は解消でき、製造が容
易であり、多数個取りも可能で安価に提供できる。また
素子本体の磁界検出方向の長さをほとんどMR素子なみ
に短くできることで、微小磁化に対しても優れたMI効
果を発揮でき、MR素子に代わり新しい用途を拡大でき
る。
As is clear from the above description, according to the magnetic sensing element of the present invention, the high magnetic permeability magnetic film is formed in a zigzag pattern on the non-magnetic substrate as the element main body, so that the entire element main body is formed. Even if the length of the magnetic field detection direction is shortened, the absolute value of the impedance can be secured, the efficiency of impedance change of the element body with respect to minute magnetization can be improved, and a stable and high output can be obtained. Also,
Problems with the cross-sectional shape and handling of the conventional amorphous wire that could not cope with the minute magnetization can be solved, manufacturing is easy, multi-piece manufacturing is possible, and it can be provided at low cost. In addition, since the length of the element body in the magnetic field detection direction can be almost as short as that of the MR element, an excellent MI effect can be exhibited even for minute magnetization, and new applications can be expanded in place of the MR element.

【0046】また、本発明の磁気ヘッドによれば、非磁
性基板の磁気記録媒体摺動面に対し略垂直な表面に第1
と第2の高透磁率磁性膜を形成して構成され、第1の高
透磁率磁性膜は媒体摺動面から離間してつづら折り状パ
ターンに形成され、第2の高透磁率磁性膜は第1の高透
磁率磁性膜のつづら折り状パターンの媒体摺動面側の折
り返し部と絶縁膜を挟んで重なり、媒体摺動面まで延び
るように形成された構成により、本発明の磁気検出素子
と同様に安定した高い再生出力が得られ、製造も容易で
多数個取りも可能であり、安価に提供できる。またマル
チヘッド化も容易である。さらに、媒体摺動面に露出す
る第2の高透磁率磁性膜の端部の幅と厚さの設定により
トラック幅とギャップ幅に対応する寸法を所望に設定で
き、応用範囲が広いという優れた効果が得られる。
Further, according to the magnetic head of the present invention, the first surface of the non-magnetic substrate is substantially perpendicular to the sliding surface of the magnetic recording medium.
And a second high-permeability magnetic film are formed. The first high-permeability magnetic film is formed in a zigzag pattern away from the medium sliding surface, and the second high-permeability magnetic film is formed of the second high-permeability magnetic film. 1 has a configuration in which the folded portion on the medium sliding surface side of the serpentine pattern of the high-permeability magnetic film overlaps with the insulating film interposed therebetween and extends to the medium sliding surface. In addition, a stable and high reproduction output can be obtained, the production is easy, a large number of pieces can be obtained, and the apparatus can be provided at a low cost. Also, it is easy to form a multi-head. Furthermore, the dimensions corresponding to the track width and the gap width can be set as desired by setting the width and thickness of the end portion of the second high magnetic permeability magnetic film exposed on the medium sliding surface, and the excellent application range is wide. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の磁気検出素子の構造を示
す斜視図である。
FIG. 1 is a perspective view showing the structure of a magnetic sensing element according to a first embodiment of the present invention.

【図2】同素子の本体の高透磁率磁性膜のつづら折り状
パターンを示す平面図である。
FIG. 2 is a plan view showing a serpentine pattern of a high-permeability magnetic film of a main body of the element.

【図3】同素子の駆動時におけるつづら折り状パターン
の直線部における電流と磁界の様子を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a state of a current and a magnetic field in a linear portion of a serpentine pattern when the device is driven.

【図4】第2実施例の磁気検出素子の構造を示す平面図
である。
FIG. 4 is a plan view illustrating a structure of a magnetic sensing element according to a second embodiment.

【図5】第3実施例の磁気検出素子の構造を示す平面図
である。
FIG. 5 is a plan view showing the structure of a magnetic sensing element according to a third embodiment.

【図6】第4実施例の磁気ヘッドの構造を示す斜視図で
ある。
FIG. 6 is a perspective view showing the structure of a magnetic head according to a fourth embodiment.

【図7】同磁気ヘッドの媒体摺動面側の端部の断面図で
ある。
FIG. 7 is a sectional view of an end of the magnetic head on the side of the medium sliding surface.

【図8】同磁気ヘッドにおいて媒体摺動面に露出する第
2の高透磁率磁性膜の先端部の厚さを薄くした場合を示
す断面図である。
FIG. 8 is a cross-sectional view showing a case where the thickness of the tip of the second high magnetic permeability magnetic film exposed on the medium sliding surface in the magnetic head is reduced.

【図9】同磁気ヘッドの変形例を示す斜視図である。FIG. 9 is a perspective view showing a modification of the magnetic head.

【図10】同磁気ヘッドをマルチトラック化した場合を
示す斜視図である。
FIG. 10 is a perspective view showing a case where the magnetic head is multi-tracked.

【図11】従来の問題点を説明するもので、磁気検出素
子に対する磁気記録媒体の微小磁化からの磁束の印加の
様子を示す説明図である。
FIG. 11 is a diagram for explaining a conventional problem and showing how a magnetic flux is applied from a minute magnetization of a magnetic recording medium to a magnetic detecting element.

【符号の説明】[Explanation of symbols]

10 非磁性基板 12 高透磁率磁性膜 12A,12B 端子部 12C,12D 折り返し部 121〜123 パターン直線部 14 絶縁膜 16 高透磁率磁性膜 18A〜18D 導電膜 20 高透磁率磁性膜 DESCRIPTION OF SYMBOLS 10 Non-magnetic substrate 12 High magnetic permeability magnetic film 12A, 12B Terminal part 12C, 12D Folding part 121-123 Pattern linear part 14 Insulating film 16 High magnetic permeability magnetic film 18A-18D Conductive film 20 High magnetic permeability magnetic film

フロントページの続き (56)参考文献 特開 平8−75835(JP,A) 特開 平8−285930(JP,A) 特開 平8−320362(JP,A) 特開 平6−281712(JP,A) 特開 平4−102215(JP,A) 特開 平3−30108(JP,A) 電気学会マグネティクス研究会資料, 1994年,MAG−94−222,pp.35− 44 (58)調査した分野(Int.Cl.7,DB名) H01L 43/00 G01R 33/09 G11B 5/33 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-8-75835 (JP, A) JP-A-8-285930 (JP, A) JP-A 8-320362 (JP, A) JP-A-6-281712 (JP) , A) JP-A-4-102215 (JP, A) JP-A-3-30108 (JP, A) Materials of the Institute of Magnetics, IEICE, 1994, MAG-94-222, pp. 35-44 (58) Fields surveyed (Int. Cl. 7 , DB name) H01L 43/00 G01R 33/09 G11B 5/33 JICST file (JOIS)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁気インピーダンス効果を利用した磁気
検出素子であって、 非磁性基板上に高透磁率磁性膜を形成して構成され、 前記高透磁率磁性膜は、磁界検出方向に沿った複数本の
直線部分が所定間隔で平行に並び、順次折り返すように
連結され、電気的に直列接続されたつづら折り状パター
ンに形成され、且つ磁化容易軸方向が磁界検出方向に対
し膜面内で垂直な方向になるように磁気異方性が付けら
れており、 該高透磁率磁性膜の両端部から高周波電流を印加し外部
磁界により前記両端部間に発生するインピーダンスの変
化を電気信号に変換して出力を得られるようにしたこと
を特徴とする磁気検出素子。
1. A magnetic sensing element utilizing a magnetic impedance effect, comprising a high-permeability magnetic film formed on a non-magnetic substrate, wherein the high-permeability magnetic film includes a plurality of magnetic films arranged along a magnetic field detection direction. The straight line portions of the book are arranged in parallel at a predetermined interval, are connected so as to be sequentially folded, are formed in a serpentine pattern electrically connected in series, and the direction of the easy axis of magnetization is perpendicular to the magnetic field detection direction in the film plane. A high-frequency magnetic current is applied from both ends of the high-permeability magnetic film to convert an impedance change generated between the both ends by an external magnetic field into an electric signal. A magnetic detecting element characterized in that an output can be obtained.
【請求項2】 前記高透磁率磁性膜の厚さが1μm〜2
0μmであることを特徴とする請求項1に記載の磁気検
出素子。
2. The high-permeability magnetic film has a thickness of 1 μm to 2 μm.
The magnetic sensing element according to claim 1, wherein the thickness is 0 µm.
【請求項3】 前記高透磁率磁性膜のつづら折り状パタ
ーンの折り返し部上に導電膜を設けたことを特徴とする
請求項1または2に記載の磁気検出素子。
3. The magnetic sensing element according to claim 1, wherein a conductive film is provided on the folded portion of the serpentine pattern of the high magnetic permeability magnetic film.
【請求項4】 前記高透磁率磁性膜のつづら折り状パタ
ーンの両端部上に導電膜を設けたことを特徴とする請求
項1から3までのいずれか1項に記載の磁気検出素子。
4. The magnetic sensing element according to claim 1, wherein a conductive film is provided on both ends of the serpentine pattern of the high-permeability magnetic film.
【請求項5】 前記高透磁率磁性膜のつづら折り状パタ
ーンの隙間に略直線状の高透磁率磁性膜を設けたことを
特徴とする請求項1から4までのいずれか1項に記載の
磁気検出素子。
5. The magnetic device according to claim 1, wherein a substantially linear high-permeability magnetic film is provided in a gap between the serpentine patterns of the high-permeability magnetic film. Detection element.
【請求項6】 磁気インピーダンス効果を利用した再生
用の磁気ヘッドであって、 先端面が磁気記録媒体摺動面として形成された非磁性基
板の前記摺動面に対し略垂直な表面に第1と第2の高透
磁率磁性膜を形成して構成され、 第1の高透磁率磁性膜は、前記摺動面から離間して、前
記摺動面に対し垂直な方向に沿った複数本の直線部分が
所定間隔で平行に並び、順次折り返すように連結され、
電気的に直列接続されたつづら折り状パターンに形成さ
れ、且つ磁化容易軸方向が膜面内で前記摺動面に略平行
な方向になるように磁気異方性が付けられており、 第2の高透磁率磁性膜は、前記第1の高透磁率磁性膜の
つづら折り状パターンの前記摺動面側の折り返し部と絶
縁膜を挟んで重なり、前記摺動面まで延びるように形成
され、 前記第1の高透磁率磁性膜の両端部より高周波電流を印
加し、磁気記録媒体から前記第2の高透磁率磁性膜を介
して前記第1の高透磁率磁性膜に印加される磁界により
前記第1の高透磁率磁性膜の両端部間に発生するインピ
ーダンスの変化を電気信号に変換して再生出力を得られ
るようにしたことを特徴とする磁気ヘッド。
6. A reproducing magnetic head utilizing a magneto-impedance effect, wherein a front end surface is formed on a surface of a non-magnetic substrate formed as a sliding surface of a magnetic recording medium, the surface being substantially perpendicular to the sliding surface. And a second high-permeability magnetic film. The first high-permeability magnetic film is separated from the sliding surface by a plurality of magnetic films extending in a direction perpendicular to the sliding surface. The straight line parts are arranged in parallel at a predetermined interval, and are connected so as to fold sequentially,
A magnetic anisotropy is formed so as to be formed in a serpentine pattern electrically connected in series and that the direction of the axis of easy magnetization is substantially parallel to the sliding surface in the film plane; The high-permeability magnetic film is formed so as to overlap the folded portion on the sliding surface side of the serpentine pattern of the first high-permeability magnetic film with an insulating film interposed therebetween and to extend to the sliding surface. A high-frequency current is applied from both ends of the first high-permeability magnetic film, and the magnetic field is applied to the first high-permeability magnetic film from the magnetic recording medium via the second high-permeability magnetic film. 1. A magnetic head characterized in that a change in impedance generated between both ends of the high-permeability magnetic film is converted into an electric signal to obtain a reproduction output.
【請求項7】 前記絶縁膜の厚さが0.05μm〜1μ
mであることを特徴とする請求項6に記載の磁気ヘッ
ド。
7. The thickness of the insulating film is 0.05 μm to 1 μm.
7. The magnetic head according to claim 6, wherein m is m.
【請求項8】 前記第2の高透磁率磁性膜の前記摺動面
に露出する端部の幅が前記摺動面に向かって絞り込まれ
たことを特徴とする請求項6または7に記載の磁気ヘッ
ド。
8. according to claim 6 or 7, characterized in that the width of the end portion exposed to the sliding surface of the second high permeability magnetic film is narrowed toward the sliding surface Magnetic head.
【請求項9】 前記第2の高透磁率磁性膜の前記摺動面
に露出する端部の厚さが前記第1の高透磁率磁性膜に重
なる部分の厚さより薄くされたことを特徴とする請求項
6からまでのいずれか1項に記載の磁気ヘッド。
9. The method according to claim 1, wherein an end of the second high magnetic permeability magnetic film exposed on the sliding surface is thinner than a thickness of a portion overlapping the first high magnetic permeability magnetic film. The magnetic head according to any one of claims 6 to 8, wherein:
【請求項10】 第3の高透磁率磁性膜が、前記第1の
高透磁率磁性膜のつづら折り状パターンの前記摺動面と
反対側の折り返し部と絶縁膜を挟んで重なり、前記摺動
面と反対側に延びるように形成されたことを特徴とする
請求項6からまでのいずれか1項に記載の磁気ヘッ
ド。
And a third high-permeability magnetic film overlapping the folded portion of the first high-permeability magnetic film on the opposite side to the sliding surface of the serpentine pattern with an insulating film interposed therebetween. the magnetic head according to any one of claims 6 to 9, characterized in that it is formed so as to extend in the surface opposite.
【請求項11】 前記第1と第2の高透磁率磁性膜と絶
縁膜からなる素子本体が前記非磁性基板の表面に複数並
設されたことを特徴とする請求項6から10までのいず
れか1項に記載の磁気ヘッド。
11. Any of claims 6, wherein the first and element body made of a second high permeability magnetic film and the insulating film is more juxtaposed to the surface of the non-magnetic substrate to 10 2. The magnetic head according to claim 1.
JP12988895A 1995-03-31 1995-05-29 Magnetic detection element and magnetic head Expired - Lifetime JP3356585B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12988895A JP3356585B2 (en) 1995-05-29 1995-05-29 Magnetic detection element and magnetic head
US08/618,066 US5889403A (en) 1995-03-31 1996-03-25 Magnetic detecting element utilizing magnetic impedance effect
US09/229,112 US6351119B1 (en) 1995-03-31 1999-01-13 Magnetic detecting element utilizing magnetic impedance effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12988895A JP3356585B2 (en) 1995-05-29 1995-05-29 Magnetic detection element and magnetic head

Publications (2)

Publication Number Publication Date
JPH08330644A JPH08330644A (en) 1996-12-13
JP3356585B2 true JP3356585B2 (en) 2002-12-16

Family

ID=15020833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12988895A Expired - Lifetime JP3356585B2 (en) 1995-03-31 1995-05-29 Magnetic detection element and magnetic head

Country Status (1)

Country Link
JP (1) JP3356585B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131342A (en) 2000-10-19 2002-05-09 Canon Electronics Inc Current sensor
EP1408562A4 (en) 2001-07-19 2009-12-23 Panasonic Corp Magnetic sensor and method for manufacturing the same
JP4695325B2 (en) * 2001-09-17 2011-06-08 キヤノン電子株式会社 Magnetic detection element, method of manufacturing the same, and portable device using the element
JP5053532B2 (en) * 2005-09-28 2012-10-17 三洋電機株式会社 Magnetic detector
WO2013136751A1 (en) 2012-03-16 2013-09-19 キヤノン電子株式会社 Measurement module, electronic apparatus, power source tap, power source unit, and embedded measurement module
JP6583208B2 (en) * 2016-10-14 2019-10-02 株式会社デンソー Magnetic detection element
JP7203490B2 (en) 2017-09-29 2023-01-13 昭和電工株式会社 Magnetic sensor assembly and magnetic sensor assembly manufacturing method
JP7203630B2 (en) * 2019-02-19 2023-01-13 昭和電工株式会社 Magnetic sensors and magnetic sensor systems
CN112038486A (en) * 2020-08-04 2020-12-04 北京大学 Method for realizing M-type magnetoresistance curve of device under external magnetic field parallel to substrate surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電気学会マグネティクス研究会資料,1994年,MAG−94−222,pp.35−44

Also Published As

Publication number Publication date
JPH08330644A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
US6351119B1 (en) Magnetic detecting element utilizing magnetic impedance effect
EP0640840A2 (en) Magnetic field sensing method and apparatus
JPH10143820A (en) Inductive/mr composite type thin film magnetic head
JP3356585B2 (en) Magnetic detection element and magnetic head
US5331491A (en) High-density magnetic recording and reproducing head
JPH10255239A (en) Inductive/mr combined thin film magnetic head
US20020089783A1 (en) Magnetic head and method of manufacturing the same
JPS62192017A (en) Magnetic head
JPH08285930A (en) Magnetism detection element and magnetic head
Valstyn et al. Performance of single-turn film heads
JPH08330645A (en) Magnetic detection element
US6888702B2 (en) Thin film magnetic head device
JP3639407B2 (en) Magnetic head
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPH06251339A (en) Magnetoresistive effect type thin film magnetic head and bias characteristics measuring method
JPH08316547A (en) Magneto-detecting element and manufacture thereof
JPH0376015A (en) Parametric playback head for perpendicular magnetic recording
JP3474806B2 (en) Magnetic reproducing element, method of manufacturing the same, and magnetic reproducing apparatus using the same
JP2932755B2 (en) Thin film magnetic head
JP2513689B2 (en) Magnetoresistive magnetic head
JP3132113B2 (en) High density magnetic recording / reproducing head
JPH07262523A (en) Magnetic head
JPH08321013A (en) Magnetic head and its production
JPH0232279A (en) Magneto-resistance effect element
US20040085671A1 (en) Magnetic reproduction device, magnetic head using the device and method for producing the magnetic head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

EXPY Cancellation because of completion of term