JPH0232279A - Magneto-resistance effect element - Google Patents

Magneto-resistance effect element

Info

Publication number
JPH0232279A
JPH0232279A JP63181898A JP18189888A JPH0232279A JP H0232279 A JPH0232279 A JP H0232279A JP 63181898 A JP63181898 A JP 63181898A JP 18189888 A JP18189888 A JP 18189888A JP H0232279 A JPH0232279 A JP H0232279A
Authority
JP
Japan
Prior art keywords
width
sensor
sensor section
magnetoresistive element
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63181898A
Other languages
Japanese (ja)
Other versions
JP2749066B2 (en
Inventor
Yoshihisa Kamo
加茂 喜久
Kazuhiro Shigemata
茂俣 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63181898A priority Critical patent/JP2749066B2/en
Publication of JPH0232279A publication Critical patent/JPH0232279A/en
Application granted granted Critical
Publication of JP2749066B2 publication Critical patent/JP2749066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To make the size relation between sensor parts of electrode parts clear and to produce an excellent bias magnetic field by setting the length of a part where a sensor part which senses an external magnetic field and a lead line contact each other equal to or longer than the width of the sensor part. CONSTITUTION:The sensor part 10 has an MR(magneto-resistance effect) film and a conductor film which is formed on its flank and comes into electric contact and senses the external magnetic field to provide MR. Then the MR element is formed of this sensor part and two lead wires 20 for leading variation in resistance out of both sides of the sensor part. In general, when a current flows through a conductor, its distribution depends upon the ratio of the conductor width and when the current flows from a narrow conductor to a wide conductor, the current is concentrated inside and comes not to flow uniformly in the wide conductor. For the purpose, the width W of the contacting between the sensor part 10 and lead wires 20 is set equal to or greater than the width L of the sensor part 10 to make the current nearly uniform.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気抵抗効果素子(以下MR素子と略す)の
構造に係り、特に磁気抵抗効果膜(以下MR膜と略す)
と導体膜が電気的に接触して成るシャントバイアス型M
R素子に−様な電流を流すための素子構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of a magnetoresistive effect element (hereinafter abbreviated as MR element), and particularly relates to a magnetoresistive effect film (hereinafter abbreviated as MR film).
A shunt bias type M in which the conductor film is in electrical contact with the
This invention relates to an element structure for passing a -like current through an R element.

[従来の技術] 磁気抵抗効果膜を用いた磁気ヘッド(以下MRヘッドと
略す)が用いられつつある。MRヘッドにおいてはMR
膜の感度と線型性を改善するために外部より一定の磁界
を印加する必要がある。この磁界をバイアス磁界と呼び
その方法には、(1)MR膜に近傍に永久磁石を配置す
る方法、(2)MR膜に接触して導体膜を配置する方法
、(3)MR膜の近傍に軟磁性膜を配置する方法等数多
く提案されている。特に(2)の方法はシャントバイア
ス法と呼ばれ、例えば特開昭49−74522の第2図
に記載のように、外部磁界に感応して磁気抵抗効果を示
すセンサ部10と、センサ部に一定の電流を流してバイ
アス磁界を発生させてから抵抗変化を電圧変化としてと
り出すリード線20.25を共にMR膜と導体膜とで形
成する構造が提案されている。しかし、本構造において
はMR素子の記録媒体対向面15とは逆の面に設けられ
た電極部の@W、W′について何ら考慮されていなかっ
た。
[Prior Art] Magnetic heads (hereinafter abbreviated as MR heads) using magnetoresistive films are being used. In the MR head, MR
In order to improve the sensitivity and linearity of the film, it is necessary to apply a constant magnetic field from the outside. This magnetic field is called a bias magnetic field, and its methods include (1) placing a permanent magnet near the MR film, (2) placing a conductive film in contact with the MR film, and (3) placing a conductive film near the MR film. Many methods have been proposed for placing soft magnetic films on the magnetic field. In particular, the method (2) is called the shunt bias method, and as shown in FIG. A structure has been proposed in which lead wires 20 and 25 are formed of both an MR film and a conductor film, which generate a bias magnetic field by passing a constant current and then extract the resistance change as a voltage change. However, in this structure, no consideration was given to @W and W' of the electrode portions provided on the surface opposite to the recording medium facing surface 15 of the MR element.

[発明が解決しようとする問題点コ 上記従来技術においては、リード線とセンサ部の関係が
何ら考慮されておらず、このため、センサ部に−様な電
流が流れない場合が起り、MR膜に好適なバイアス磁界
が印加できなかった。
[Problems to be Solved by the Invention] In the above-mentioned prior art, no consideration is given to the relationship between the lead wire and the sensor section, and as a result, a current may not flow through the sensor section, and the MR film A suitable bias magnetic field could not be applied.

本発明の目的は、電極部のセンサ部の間に寸法関係を明
らかにし、センサ部に−様な電流を流し好適なバイアス
磁界を発生させ得るMR素子構造を提供することにある
An object of the present invention is to provide an MR element structure in which the dimensional relationship between the electrode part and the sensor part can be clarified, and a -like current can be passed through the sensor part to generate a suitable bias magnetic field.

[問題点を解決するための手段] 上記目的は、第2図に示す如く外部磁界に感応するセン
サ部10とリード、120が接している部分の長さWを
、センサ部の幅りに対して等しいか、それ以上にするこ
とで達成される。中間端子については両側の端子の2倍
の電流が流れるためW′は、センサ部の@Lの2倍もし
くはそれ以上の幅とすることで上記目的が達成される。
[Means for Solving the Problems] The above object is to adjust the length W of the part where the sensor section 10 sensitive to an external magnetic field and the lead 120 are in contact with each other with respect to the width of the sensor section, as shown in FIG. This is achieved by making it equal to or greater than. Since twice as much current flows through the intermediate terminal as in the terminals on both sides, the above object is achieved by making W' twice or more wide than @L of the sensor section.

[作用] 一般に直角に曲った導体内を電流が流れる時、その分布
は導体幅の比に依存する。第3図(a)はこのような場
合の、電流の流れを計算機シミュレーションによって解
いたもので、図中の曲線30の密度が電流密度を表わす
。同図のように、一方の導体40が狭く、他方の導体5
0が広い時、広い導体50の内側の部分60に電流は集
中し、広い導体に均質に流れなくなる。
[Operation] Generally, when current flows in a conductor bent at right angles, its distribution depends on the ratio of the conductor widths. FIG. 3(a) shows the current flow in such a case solved by computer simulation, and the density of the curve 30 in the figure represents the current density. As shown in the figure, one conductor 40 is narrow and the other conductor 5
When 0 is wide, the current is concentrated in the inner part 60 of the wide conductor 50 and does not flow uniformly through the wide conductor.

これは、導体内の等電位線70(電流はこの線に直角に
流れる)が第3図(b)に示す如くなり、幅広い導体部
分の方が導電位置が大きく変化するためである。
This is because the equipotential line 70 (current flows perpendicularly to this line) within the conductor is as shown in FIG. 3(b), and the conductive position changes more in the wider conductor portion.

第4図は、導体幅比W/Lに対して、第3図(a)の導
体5oのA−A’ を通過する電流のうち内側の部分(
幅Lu)に全体の電流のどの程度流れるかを求めたもの
であり1丁度50%が均一に流れていることを意味する
。同図からW/Lが1以上であれば、電流はほぼ均一に
流れているとみなせるようになる。この結果から、第1
図に示す如く導体50がシャントバイアスMR素子のセ
ンサ部10.導体4oが同リード線20と考えればセン
サ部に均一な電流を流すためにはW/Lは1以上が必要
となる。
FIG. 4 shows the inner portion (of the current passing through A-A' of the conductor 5o in FIG.
This is a calculation of how much of the total current flows through the width Lu), which means that exactly 50% of the current flows uniformly. From the figure, if W/L is 1 or more, it can be considered that the current is flowing almost uniformly. From this result, the first
As shown in the figure, a conductor 50 is a sensor section 10 of a shunt bias MR element. Considering that the conductor 4o is the same lead wire 20, W/L must be 1 or more in order to cause a uniform current to flow through the sensor section.

W/Lの値は、あまり大きすぎると、MR素子を複数個
数べてマルチトラックとした時、そのトラックピッチの
下限を決めるためトラック密度を上げることが困難とな
る。また、リード線20とセンサ部10とで囲まれた領
域35(斜線で表示)は電流がトラック幅Tの方向に流
れていないためバイアスが好適でなく、MR素子として
の感度は低い。しかし、この部分(領域35)にも磁性
薄膜であるMR膜は存在しており、本MR素子を情報を
重ね書きする磁気記憶装置では、ヘッドが記録されたト
ラックからの位置ずれを起すと先に記録した磁化が雑音
となってこの斜線部35のMR膜部分を磁化し、その雑
音による磁化がセンサ部に伝わり、雑音として再生して
しまう。その結果ヘッドからの信号のS/Nを低下させ
る。従って、W/Lは必要以上に大きくすることが望ま
しくなく、通常2〜2.5程度までにとどめるのが良い
If the value of W/L is too large, when a plurality of MR elements are used to form a multi-track, the lower limit of the track pitch is determined, making it difficult to increase the track density. Furthermore, since current does not flow in the direction of the track width T in a region 35 (indicated by diagonal lines) surrounded by the lead wire 20 and the sensor section 10, the bias is not suitable, and the sensitivity as an MR element is low. However, an MR film, which is a magnetic thin film, is present in this part (area 35), and in a magnetic storage device that overwrites information on this MR element, if the head deviates from the recorded track, The magnetization recorded in the sensor becomes noise and magnetizes the MR film portion in the shaded area 35, and the magnetization due to the noise is transmitted to the sensor section and reproduced as noise. As a result, the S/N of the signal from the head is reduced. Therefore, it is not desirable to make W/L larger than necessary, and it is usually best to keep it within a range of about 2 to 2.5.

以上は、センサ部両端の電極20について述べて来たが
、第1図に示す如く、中間端子電極25を設けて差動型
のシャントバイアス型MR素子として使用する場合、電
極25には、両側の電極20の各々に流れる電流の2倍
の電流が流れるため、電流を均質に流すためにはその4
1W’ とLの関係はWとLの関係の2倍にする必要が
ある。すなわち、W’/Lは2もしくはそれ以上とすれ
ば均質な電流分布が得られることは明らかである。
The above has described the electrodes 20 at both ends of the sensor section, but as shown in FIG. Since twice the current flows through each of the electrodes 20, in order to flow the current uniformly, it is necessary to
The relationship between 1W' and L needs to be twice the relationship between W and L. That is, it is clear that a homogeneous current distribution can be obtained by setting W'/L to 2 or more.

中間端子電極25の幅W′も、必要以上に大きくすると
不都合が生じる。すなわち、第1図でW′の幅のセンサ
の部分(第1図の斜線部36の領域)は電流がトラック
帽方向に流れていないため、トラック幅TのうちW′の
長さの領域36は不感応帯となり、信号再生に寄与せず
、低出力の原因となる。
Also, if the width W' of the intermediate terminal electrode 25 is made larger than necessary, there will be a problem. That is, in the part of the sensor having a width of W' in FIG. 1 (the shaded area 36 in FIG. 1), current does not flow in the direction of the track cap. becomes a dead zone, does not contribute to signal reproduction, and causes low output.

以上第1図から第4図まで電極部が矩形となっている場
合について説明したが例えば第5図の如くセンサ部と接
している部分は狭くそこから離れるに従って広くなる電
極部についてもセンサ部と接している幅をw、w’ と
考えれば、上記関係がセンサ部に均質な電流を流すため
の条件であることは明らかである。
The case where the electrode part is rectangular has been explained above from Fig. 1 to Fig. 4, but for example, as shown in Fig. 5, the part where the electrode part is in contact with the sensor part is narrow and widens as it moves away from the sensor part. If we consider the contact widths to be w and w', it is clear that the above relationship is a condition for uniform current to flow through the sensor section.

[実施例] 以下、本発明の実施例について述べる。本発明を実施し
たシャントバイアスMRヘッドの概略図を第6図に示す
。本MRヘッドの作製方法は、基本的には特開昭49−
74522に示されている方法と同じである。すなわち
、フェライトの基体100上に、アルミナ等の絶縁膜1
10をスパッタする。その上に導体膜120としてチタ
ンを真空蒸着し、さらにMR膜130を図中の矢印の方
向に磁化容易軸が形成されるようにつける。この上にア
ルミナ等の絶縁膜を保護膜として形成しく図示せず)、
引出し導体(図示せず)を付けてMR素子を形成する。
[Examples] Examples of the present invention will be described below. A schematic diagram of a shunt bias MR head embodying the present invention is shown in FIG. The manufacturing method of this MR head is basically
This method is the same as that shown in No. 74522. That is, an insulating film 1 made of alumina or the like is placed on a ferrite base 100.
Sputter 10. Titanium is vacuum-deposited thereon as a conductor film 120, and an MR film 130 is further attached so that an axis of easy magnetization is formed in the direction of the arrow in the figure. On top of this, an insulating film such as alumina is formed as a protective film (not shown).
A lead conductor (not shown) is attached to form an MR element.

MRヘッドとするために、上記素子上に基本100と同
一材質もしくはパーマロイ等の薄膜で形成したブロック
140をつける。このブロックは基体100と磁気回路
を成し、シールドとして作用して、MRヘッドを高分解
能化する。
In order to form an MR head, a block 140 made of the same material as the basic 100 or a thin film such as permalloy is attached on the above element. This block forms a magnetic circuit with the base 100, acts as a shield, and increases the resolution of the MR head.

MR素子の形状は第7図に示したように、中間端子のあ
る第1図に示した形状と同一である。実施例では、Tw
=20μm、L=10μmであり、電極幅Wとしては、
本発明を適用した値として20ILm、比較のための5
μmの2種とした。中間端子の電極幅W′はW’=2W
とした。他のMR膜厚600人、導体膜厚1800人等
は極力2種のヘッド間で同じ値とした。
The shape of the MR element, as shown in FIG. 7, is the same as the shape shown in FIG. 1 with the intermediate terminal. In the example, Tw
= 20 μm, L = 10 μm, and the electrode width W is:
20ILm as the value to which the present invention is applied, 5ILm for comparison
There were two types: μm. The electrode width W' of the intermediate terminal is W'=2W
And so. Other values such as MR film thickness of 600 and conductor film thickness of 1800 were made to be the same between the two types of heads as much as possible.

このようにして作成したシャントバイアスMRヘッドを
同一装置で記録した市販の一インチ磁気テープを再生し
た。この時、MR素子への電流は両側の端子より中間端
子に流れ込む構成とした。
A commercially available one-inch magnetic tape recorded with the shunt bias MR head thus prepared was reproduced using the same device. At this time, the current to the MR element was configured to flow from the terminals on both sides to the intermediate terminal.

磁気テープ150は、MRヘッドより微少な間隔(通常
1μm以下)で配置され図中白抜きの矢印の方向に移動
させている。
The magnetic tape 150 is arranged at a smaller interval (usually 1 μm or less) than the MR head and is moved in the direction of the white arrow in the figure.

本発明を適用してW=20μmとしたMRヘソドはW=
5μmとしたヘッドに比べて、同一の電流を素子に流し
た時、出力で4dB向上した。これは、本発明の適用に
より、MR素子を流れる電流、特に導体膜120を流れ
る電流が均一するためである。これを第7図で説明する
。横軸はMR膜の高さ方向の位置を縦軸はバイアスおよ
び信号磁界を示す■は信号磁界分布、■は均一な電流が
流れた時のバイアス磁界分布、■は電流が後端に片寄っ
た時のバイアス磁界分布である。
The MR hesode with W=20μm by applying the present invention has W=
Compared to a head with a diameter of 5 μm, the output was improved by 4 dB when the same current was passed through the element. This is because the current flowing through the MR element, particularly the current flowing through the conductor film 120, becomes uniform by applying the present invention. This will be explained with reference to FIG. The horizontal axis shows the position in the height direction of the MR film, and the vertical axis shows the bias and signal magnetic field. ■ is the signal magnetic field distribution, ■ is the bias magnetic field distribution when a uniform current flows, and ■ is when the current is biased toward the rear end. This is the bias magnetic field distribution at the time.

このように■は■に比べて信号磁界が大きい磁気テープ
対向面側がバイアス磁界が大きくなる。
In this way, in case (1), the bias magnetic field is larger on the side facing the magnetic tape where the signal magnetic field is larger than in case (2).

このため第8図のMR膜の抵抗変化特性に示すように、
より大きな信号磁界が好適なバイアス磁界の下でより大
きな抵抗変化となり、結果として出力が増大する。
Therefore, as shown in the resistance change characteristics of the MR film in Figure 8,
A larger signal field results in a larger resistance change under a suitable bias field, resulting in increased output.

[発明の効果コ 本発明によれば、シャントバイアスMR素子のセンサ部
に均質な電流が流せるため、MR膜に好適なバイアス磁
界が印加でき、再生出力を高め、かつ線型性の良い出力
が得られる。さらに、センサ部、電極部とも電流の集中
がないため、MR素子の寿命を長くする。
[Effects of the Invention] According to the present invention, since a homogeneous current can flow through the sensor section of the shunt bias MR element, a suitable bias magnetic field can be applied to the MR film, increasing the reproduction output and providing an output with good linearity. It will be done. Furthermore, since there is no concentration of current in either the sensor section or the electrode section, the life of the MR element is extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したMR素子パターンを示す図、
第2図は従来技術を説明するためのMR素子パターンを
示す図、第3図は第2図のB部の拡大図であり、同時に
電流の流れを示す図、第4図は導体幅と電流集中の関係
を示す図、第5図は電極形状の一変形を示す図、第6図
は実施例のMRヘッドを説明するための図、第7図はバ
イアス電流分布によるMR膜内のバイアス磁界および信
号磁界の分布を説明するための図、第8図はMR膜の抵
抗変化と外部磁界の関係を示す図である。 10・・・MR素子の磁気抵抗効果を示すセンサ部、2
0.25・・・電極部、30・・・電流の流れ、35゜
36・・・電極下部領域、40.50・・・導体、60
・・・導体内側の領域。 第7目 第2@ 第9目 第3図 第Δ目 ’1.21.rツノ 1t/ !
FIG. 1 is a diagram showing an MR element pattern to which the present invention is applied;
Fig. 2 is a diagram showing the MR element pattern for explaining the conventional technology, Fig. 3 is an enlarged view of part B in Fig. 2, and also a diagram showing the flow of current, and Fig. 4 is a diagram showing the conductor width and current. FIG. 5 is a diagram showing a modification of the electrode shape. FIG. 6 is a diagram for explaining the MR head of the example. FIG. 7 is a diagram showing the bias magnetic field in the MR film due to the bias current distribution. FIG. 8 is a diagram for explaining the distribution of the signal magnetic field, and FIG. 8 is a diagram showing the relationship between the resistance change of the MR film and the external magnetic field. 10...Sensor section showing the magnetoresistive effect of the MR element, 2
0.25... Electrode part, 30... Current flow, 35° 36... Electrode lower region, 40.50... Conductor, 60
...The area inside the conductor. 7th eye 2 @ 9th eye 3rd figure Δ eye '1.21. r horn 1t/!

Claims (1)

【特許請求の範囲】 1、磁気抵抗効果膜と、この膜の側面に形成され電気的
に接触してなる導体膜とを有する外部磁界に感応して磁
気抵抗効果を示すセンサ部と、上記センサ部の両側から
引き出され、上記センサ部の抵抗変化をとり出すための
第1及び第2のリード線とを具備した磁気抵抗効果素子
であって、 上記センサ部とリード線とが接触する幅(W)が上記セ
ンサ部の幅(L)に対してL≦Wであることを特徴とす
る磁気抵抗効果素子。 2、特許請求の範囲第1項の磁気抵抗効果素子において
上記センサ部とリード線とか接触する幅(W)が上記セ
ンサ部の幅(L)に対して、W≦2.5L であることを特徴とする磁気抵抗効果素子。 3、特許請求の範囲第1項記載の磁気抵抗効果素子にお
いて上記センサ部の中間位置から引き出され上記センサ
の抵抗変化をとり出すための第3のリード線を有しこの
リード線と、上記センサ部とが接触する幅(W′)が、
2L≦W′であることを特徴とする磁気抵抗効果素子。 4、特許請求の範囲第3項記載の磁気抵抗効果素子にお
いて 上記第3のリード線とセンサ部とが接触する幅(W′)
がW′≦5Lであることを特徴とする磁気抵抗効果素子
。 5、磁気記録媒体上に配置され、上記媒体の磁界の変化
を検出するための磁気抵抗効果膜を有するセンサ部と、 上記センサ部の両側から上記媒体とは反対方向の引き出
され、上記センサ部の磁気抵抗変化をとり出すためのリ
ード線とを有し、 上記センサ部の上記媒体面側から上記センサの幅(L)
の距離にある面により切ったときの上記リード線の幅(
W)はL≦Wであることを特徴とする磁気抵抗効果素子
。 6、特許請求の範囲第5項記載の磁気抵抗効果素子にお
いて、上記センサの幅(L)と上記リード線の幅(W)
はW≦2Lをみたすことを特徴とする磁気抵抗効果素子
。 7、特許請求の範囲第5項記載の磁気抵抗効果素子にお
いて上記センサ部の中間の位置から上記媒体とは反対方
向に引き出され、上記センサ部の磁気抵抗変化をとり出
すための第3のリード線を有し、上記センサ部の上記媒
体面側から上記センサ幅(L)の距離にある面により切
ったときの上記リード線の幅(W′)は2L≦W′であ
る。 8、特許請求の範囲第7項記載の磁気抵抗効果素子上記
センサ幅(L)と上記リード線の幅 (W′)はW′≦5Lをみたすことを特徴とする磁気抵
抗効果素子。
[Claims] 1. A sensor section that exhibits a magnetoresistive effect in response to an external magnetic field, which has a magnetoresistive film and a conductor film that is formed on the side surface of the film and is in electrical contact with the sensor; A magnetoresistive element comprising first and second lead wires that are drawn out from both sides of the sensor section and for extracting a resistance change of the sensor section, the width of which the sensor section and the lead wires are in contact with each other ( A magnetoresistive element characterized in that W) satisfies L≦W with respect to the width (L) of the sensor section. 2. In the magnetoresistive element according to claim 1, the width (W) of the contact between the sensor section and the lead wire satisfies W≦2.5L with respect to the width (L) of the sensor section. Characteristic magnetoresistive element. 3. The magnetoresistive element according to claim 1, which includes a third lead wire drawn out from an intermediate position of the sensor portion and for extracting a resistance change of the sensor, and the lead wire and the sensor The width (W') where the parts come into contact with each other is
A magnetoresistive element characterized in that 2L≦W'. 4. Width (W') of contact between the third lead wire and the sensor section in the magnetoresistive element according to claim 3
A magnetoresistive element characterized in that W'≦5L. 5. A sensor section disposed on a magnetic recording medium and having a magnetoresistive film for detecting changes in the magnetic field of the medium; and a sensor section extending from both sides of the sensor section in a direction opposite to the medium; A width (L) of the sensor from the medium surface side of the sensor section;
Width of the above lead wire when cut by a plane at a distance of (
W) is a magnetoresistive element characterized in that L≦W. 6. In the magnetoresistive element according to claim 5, the width (L) of the sensor and the width (W) of the lead wire
is a magnetoresistive element characterized by satisfying W≦2L. 7. In the magnetoresistive element according to claim 5, a third lead is pulled out from an intermediate position of the sensor section in a direction opposite to the medium, and is for extracting a change in magnetoresistance of the sensor section. The lead wire has a width (W') of 2L≦W' when cut by a plane at a distance of the sensor width (L) from the medium surface side of the sensor section. 8. A magnetoresistive element according to claim 7, wherein the sensor width (L) and the lead wire width (W') satisfy W'≦5L.
JP63181898A 1988-07-22 1988-07-22 Magnetoresistance effect element Expired - Lifetime JP2749066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63181898A JP2749066B2 (en) 1988-07-22 1988-07-22 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63181898A JP2749066B2 (en) 1988-07-22 1988-07-22 Magnetoresistance effect element

Publications (2)

Publication Number Publication Date
JPH0232279A true JPH0232279A (en) 1990-02-02
JP2749066B2 JP2749066B2 (en) 1998-05-13

Family

ID=16108813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63181898A Expired - Lifetime JP2749066B2 (en) 1988-07-22 1988-07-22 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JP2749066B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974522A (en) * 1972-10-11 1974-07-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974522A (en) * 1972-10-11 1974-07-18

Also Published As

Publication number Publication date
JP2749066B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US4052748A (en) Magnetoresistive magnetic head
US5402292A (en) Magnetoresistance effect type thin film magnetic head using high coercion films
JPS6138525B2 (en)
EP0021392A1 (en) Magnetic transducing head assemblies
US4141051A (en) Variable dynamic range magneto-resistive head
US4065797A (en) Multi-element magnetic head
JP3356585B2 (en) Magnetic detection element and magnetic head
CA1055155A (en) Magnetoresistive head with oblique equipotential strips
JPS638531B2 (en)
JP2662334B2 (en) Thin film magnetic head
US4821012A (en) Magnetoresistive element
CA1101120A (en) Magneto-resistive reading head
JPH0232279A (en) Magneto-resistance effect element
JPH0375925B2 (en)
KR920001129B1 (en) Magnetic resistance effect magnetic head
JPS6326450B2 (en)
KR100532377B1 (en) Unbiased magnetoresistive head
JPH02128313A (en) Magneto-resistance effect type thin film magnetic head
JPH05266437A (en) Magnetoresistance effect type head
JPS5939308Y2 (en) magnetic head
JPS58100216A (en) Magnetoresistance effect head
JPH1145413A (en) Composite thin film magnetic head
JP2513689B2 (en) Magnetoresistive magnetic head
JPS5925282B2 (en) magnetoresistive head
JP2602203B2 (en) Magnetoresistive magnetic head