JPH08330645A - Magnetic detection element - Google Patents

Magnetic detection element

Info

Publication number
JPH08330645A
JPH08330645A JP7164834A JP16483495A JPH08330645A JP H08330645 A JPH08330645 A JP H08330645A JP 7164834 A JP7164834 A JP 7164834A JP 16483495 A JP16483495 A JP 16483495A JP H08330645 A JPH08330645 A JP H08330645A
Authority
JP
Japan
Prior art keywords
magnetic
film
longitudinal direction
permeability
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7164834A
Other languages
Japanese (ja)
Inventor
Masahiro Kawase
正博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP7164834A priority Critical patent/JPH08330645A/en
Priority to US08/618,066 priority patent/US5889403A/en
Publication of JPH08330645A publication Critical patent/JPH08330645A/en
Priority to US09/229,112 priority patent/US6351119B1/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To provide a magnetic detection element in which an element body is constituted of a thin film, which can detect magnetism by an MI(magnetic impedance) effect and can be handled easily with higher function than those of an element constituted of an amorphous wire. CONSTITUTION: A high-permeability magnetic film 12 is formed on the whole surface of a rectangular nonmagnetic substrate 10, conductive films 14 as terminals are formed at both ends in its length direction, and wires 18 are connected to the films by solder 16. The length direction of an element, i.e., the length direction of the magnetic film 12, is arranged so as to be along the application direction of an external magnetic field to an object to be detected. In addition, the magnetic film 12 is endowed with magnetic anisotropy in such a way that the direction of an axis of easy magnetization is perpendicular to the length direction inside a film face. A high-frequency current is applied to the magnetic film 12 via the wires 18 from both end parts in the length direction, a change in an impedance generated across both end parts in the length direction of the magnetic film 12 by the external magnetic field is converted into an electric signal, and an output can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気検出素子に関し、
特に磁気インピーダンス効果を利用して外部磁界を検出
する磁気検出素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensing element,
In particular, the present invention relates to a magnetic detection element that detects an external magnetic field by utilizing the magnetic impedance effect.

【0002】[0002]

【従来の技術】最近の磁気センサーは、情報機器や計測
・制御機器等の急速な発展に伴い多様化してきたが、今
後更に小型、高精度化が期待されている。磁気ヘッドの
分野では、ディジタル磁気記録機器の小型化が進み、例
えば、コンピュータの外部記憶装置のハードディスクや
ディジタルオーディオのディジタルコンパクトカセット
(DCC)に於いて、従来の誘導型の磁気ヘッドではト
ラック幅及び相対速度の減少によるS/Nの低下が生じ
るため、再生ヘッドに磁気抵抗効果素子(以下、MR素
子と略す)が使われている。しかし、MR素子は媒体の
速度依存性が無く、低速での出力の取り出しに向いてい
るが、抵抗変化率が数%しかないため、将来の高密度化
の為には更に感度の高い素子の開発が望まれている。
2. Description of the Related Art Recently, magnetic sensors have been diversified with the rapid development of information equipment, measurement / control equipment, etc., but further miniaturization and higher precision are expected in the future. In the field of magnetic heads, miniaturization of digital magnetic recording devices is progressing. For example, in a hard disk of an external storage device of a computer or a digital compact cassette (DCC) of a digital audio, a conventional inductive magnetic head has a track width and Since a decrease in S / N occurs due to a decrease in relative speed, a magnetoresistive effect element (hereinafter abbreviated as MR element) is used in the reproducing head. However, the MR element does not depend on the speed of the medium and is suitable for taking out the output at a low speed, but since the resistance change rate is only a few percent, the MR element having a higher sensitivity is required for future high density. Development is desired.

【0003】また、磁気エンコーダー等のセンサーの分
野でも、着磁媒体の磁化ピッチの縮小により、外部に漏
れる磁束が極端に小さくなり、MR素子でも感度不足が
問題となりつつある。
Also in the field of sensors such as magnetic encoders, the magnetic flux leaking to the outside is extremely reduced due to the reduction of the magnetization pitch of the magnetized medium, and the sensitivity insufficiency of MR elements is becoming a problem.

【0004】そこで、最近注目を集めているのが、特開
平6−281712号に開示されている磁気インピーダ
ンス(以下、MIと略す)効果を利用した磁気検出素子
である。これは磁性体のワイヤーにMHz帯域の高周波
電流を流し、円周方向磁化の磁壁が動きづらい状態か
ら、外部磁界印加により磁化が回転することで透磁率が
大きく変化することを利用したもので、透磁率変化がイ
ンピーダンスの変化を引き起こす。
Therefore, a magnetic detection element utilizing the magnetic impedance (hereinafter abbreviated as MI) effect disclosed in Japanese Patent Application Laid-Open No. 6-281712 has recently been attracting attention. This is because a high frequency current in the MHz band is passed through the wire of the magnetic material, and the magnetic permeability changes greatly due to the rotation of the magnetization due to the application of an external magnetic field from the state where the magnetic domain wall of the circumferential direction is hard to move. Changes in permeability cause changes in impedance.

【0005】この素子の利点は、磁性体の長さ方向に励
磁しないため反磁界の影響が無く、素子の長さを1mm
以下程度に短くでき小型化に適していること、また、磁
束検出の分解能が、MR素子が0.1Oeの低感度に対
して、10-5Oe程度の高感度が得られることである。
また、インピーダンス変化量もMR素子が3%程度に対
し、MI効果を利用した素子は数10%オーダーの変化
が得られる。
The advantage of this element is that it is not excited in the lengthwise direction of the magnetic material, so there is no influence of the demagnetizing field, and the length of the element is 1 mm.
It is suitable for miniaturization because it can be shortened to the level below, and the resolution of magnetic flux detection can be as high as 10 −5 Oe with respect to MR element having a low sensitivity of 0.1 Oe.
Further, the amount of impedance change is about 3% in the MR element, whereas the element using the MI effect can be changed in the order of several tens of percent.

【0006】このMI効果を利用した素子はインピーダ
ンスのインダクタンス成分が大きく変化することから、
図7に示すコルピッツ発振器や図8に示すマルチバイブ
レータ発振器のインダクタLとして組み込まれ、外部磁
界によるインダクタンスの変化を振幅変調に変換し、検
波後出力を取り出している。
In the element utilizing the MI effect, the inductance component of impedance changes greatly,
It is incorporated as the inductor L of the Colpitts oscillator shown in FIG. 7 and the multivibrator oscillator shown in FIG. 8, and changes in inductance due to an external magnetic field is converted into amplitude modulation, and the output after detection is taken out.

【0007】[0007]

【発明が解決しようとする課題】上記MI効果による素
子の機能はアモルファスワイヤーで見い出されたもので
あり、アモルファスワイヤーは材料としての生産性には
優れている。しかし、磁気センサーへの応用では、ワイ
ヤーの断面が円形であり径が数十ミクロンである場合、
取り扱いで困難な場合が生ずる。
The function of the element due to the MI effect is found in the amorphous wire, and the amorphous wire is excellent in productivity as a material. However, in the application to magnetic sensors, if the wire has a circular cross section and a diameter of several tens of microns,
It may be difficult to handle.

【0008】具体的には、記録波長が数ミクロン以下の
記録媒体に対して数十ミクロン径の円形の先端では、先
端部で形状的損失により磁束を素子に吸収できない。ま
た、数十ミクロンの径ではワイヤーが曲がりやすく、素
子の位置合わせ等取り扱いに困難が生ずる。
Specifically, for a recording medium having a recording wavelength of several microns or less, a circular tip having a diameter of several tens of microns cannot absorb the magnetic flux in the element due to a geometric loss at the tip. In addition, when the diameter is several tens of microns, the wire is easily bent, which makes it difficult to handle the element such as positioning.

【0009】そこで、MI効果を利用した磁気検出素子
を薄膜で構成できれば、基板上で自由に厚さや幅,長さ
が選択できるため小型素子に適すると考えられる。しか
し、素子の薄膜化には、以下の点が必要である。
Therefore, if a magnetic detection element utilizing the MI effect can be formed of a thin film, the thickness, width, and length can be freely selected on the substrate, which is considered to be suitable for a small element. However, the following points are necessary for thinning the device.

【0010】1)アモルファスワイヤー以上のMI効果
が得られること。
1) A MI effect higher than that of an amorphous wire can be obtained.

【0011】2)発振回路に組み込める静特性(高いQ
値)を持っていること。
2) Static characteristics (high Q
Value).

【0012】そこで本発明の課題は、この条件をクリア
し、素子本体が薄膜で構成されてMI効果による磁気検
出を行なえ、アモルファスワイヤーで構成された素子よ
りも高性能で取り扱いが容易な磁気検出素子を提供する
ことにある。
Therefore, the object of the present invention is to satisfy this condition, to realize magnetic detection by the MI effect when the element body is made of a thin film, and which has higher performance and is easier to handle than an element made of amorphous wire. It is to provide an element.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
め、本発明によれば、MI効果を利用した磁気検出素子
であって、非磁性基板上に略長方形の高透磁率磁性膜を
成膜して構成され、前記高透磁率磁性膜は、長手方向が
検出対象の外部磁界の印加方向に沿うように配され、且
つ磁化容易軸の方向が膜面内で長手方向に垂直な方向と
なるように磁気異方性がつけられており、前記高透磁率
磁性膜に長手方向両端部から高周波電流を印加して外部
磁界により前記高透磁率磁性膜の長手方向両端部間に発
生するインピーダンスの変化を電気信号に変換して出力
が得られるようにした第1の構成、及び、MI効果を利
用した磁気検出素子であって、非磁性基板上に、下から
順にそれぞれ略長方形の高透磁率磁性膜、絶縁膜、導電
膜を積層して構成され、前記各膜の積層は長手方向が検
出対象の外部磁界の印加方向に沿うように配され、前記
高透磁率磁性膜は磁化容易軸の方向が膜面内で長手方向
に垂直な方向となるように磁気異方性がつけられてお
り、前記導電膜に長手方向両端部から高周波電流を印加
して外部磁界により前記導電膜の長手方向両端部間に発
生するインピーダンスの変化を電気信号に変換して出力
が得られるようにした第2の構成、更に、上記第2の構
成の導電膜上にさらに絶縁膜と高透磁率磁性膜を積層し
た第3の構成を採用した。
In order to solve the above problems, according to the present invention, there is provided a magnetic detection element utilizing the MI effect, wherein a substantially rectangular high permeability magnetic film is formed on a non-magnetic substrate. The high-permeability magnetic film is arranged so that the longitudinal direction is along the application direction of the external magnetic field to be detected, and the direction of the easy axis of magnetization is perpendicular to the longitudinal direction in the film plane. The magnetic anisotropy is added so that the high magnetic permeability magnetic film is applied with a high-frequency current from both longitudinal end portions thereof, and an impedance is generated between both longitudinal end portions of the high magnetic permeability magnetic film by an external magnetic field. A magnetic detecting element using the first structure, in which the change in is converted into an electric signal to obtain an output, and a MI effect, which is a substantially rectangular high transparent member on a non-magnetic substrate in order from the bottom. Constructed by stacking magnetic susceptibility magnetic film, insulating film, and conductive film The laminated layers of the respective films are arranged such that the longitudinal direction is along the application direction of the external magnetic field to be detected, and the high permeability magnetic film has a direction of easy magnetization axis perpendicular to the longitudinal direction in the film plane. Magnetic anisotropy is added so that a high-frequency current is applied to the conductive film from both ends in the longitudinal direction, and a change in impedance generated between both ends in the longitudinal direction of the conductive film by an external magnetic field is converted into an electric signal. A second configuration is adopted in which the output is obtained by conversion, and a third configuration in which an insulating film and a high-permeability magnetic film are further laminated on the conductive film of the second configuration is adopted.

【0014】また、上記第2と第3の構成のそれぞれに
おいて、高透磁率磁性膜の電気比抵抗を導電膜より大幅
に高いものとして絶縁膜を省略した第4と第5の構成を
採用した。
Further, in each of the second and third configurations, the fourth and fifth configurations in which the insulating film is omitted are adopted because the electrical resistivity of the high-permeability magnetic film is significantly higher than that of the conductive film. .

【0015】[0015]

【作用】上記いずれの構成にしてもMI効果を利用した
外部磁界の検出を行なうことができる。そして、高透磁
率磁性膜の材料による長手方向の透磁率、膜厚、ないし
は絶縁膜、導電膜の膜厚等の選択によってアモルファス
ワイヤーで構成された素子よりも高性能を得ることがで
きる。また、各膜の膜厚、幅、長さを自由に選択でき、
取り扱いが容易で小型化に優れている。
With any of the above configurations, the external magnetic field can be detected by utilizing the MI effect. Then, by selecting the longitudinal magnetic permeability and film thickness of the high magnetic permeability magnetic film material, or the film thickness of the insulating film and the conductive film, it is possible to obtain higher performance than that of an element composed of an amorphous wire. In addition, you can freely select the thickness, width, and length of each film,
Easy to handle and excellent in miniaturization.

【0016】第1の構成では外部磁界によりインピーダ
ンスの抵抗分とインダクタンス分の両方が変化するが、
第2,第3の構成では、インダクタンス分を維持して抵
抗分を下げることができる。また、第3の構成では第2
の構成よりインダクタンスを上げることができる。
In the first configuration, both the resistance component and the inductance component of the impedance change due to the external magnetic field,
In the second and third configurations, the inductance can be maintained and the resistance can be reduced. Also, in the third configuration, the second
Inductance can be increased by the above configuration.

【0017】さらに第4と第5の構成によれば、絶縁膜
を省略した簡単な構成で第2と第3の構成とほぼ同様の
作用が得られる。
Further, according to the fourth and fifth structures, the same operation as the second and third structures can be obtained with a simple structure without the insulating film.

【0018】[0018]

【実施例】以下、図を参照して本発明の実施例の詳細を
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】[第1実施例]図1はMI効果を利用した
磁気検出素子の第1実施例の構造を示している。
[First Embodiment] FIG. 1 shows the structure of a first embodiment of a magnetic sensor utilizing the MI effect.

【0020】本実施例の磁気検出素子の構成では、細長
い長方形の非磁性基板10の上面全面に高透磁率磁性膜
12が形成されており、その長手方向の両端部のそれぞ
れの上に端子としての導電膜14が形成され、導電膜1
4のそれぞれに半田16によりワイヤー18が接続さ
れ、外部接続用に引き出されている。
In the structure of the magnetic sensing element of this embodiment, the high magnetic permeability magnetic film 12 is formed on the entire upper surface of the elongated rectangular non-magnetic substrate 10, and a terminal is formed on each of both ends in the longitudinal direction. Conductive film 14 is formed, and conductive film 1
A wire 18 is connected to each of the four by solder 16 and is drawn out for external connection.

【0021】非磁性基板10は、チタン酸カルシウム
(Ti−Ca系セラミック),酸化物ガラス,チタニ
ア,アルミナ等で形成されている。
The non-magnetic substrate 10 is made of calcium titanate (Ti-Ca type ceramic), oxide glass, titania, alumina or the like.

【0022】図1において矢印Hexが磁気検出素子に
対して検出対象の外部磁界が印加される磁界検知方向で
あり、非磁性基板10の長手方向、すなわち基板10に
対応して長方形の高透磁率磁性膜12の長手方向が磁界
検知方向に沿うように配置される。また、磁性膜12は
磁化容易軸の方向が図1中両方向の矢印で示すように磁
性膜12の膜面内で長手方向に垂直な方向になるよう
に、すなわち磁界検知方向に垂直な方向になるように磁
気異方性がつけられている。
In FIG. 1, an arrow Hex is a magnetic field detection direction in which an external magnetic field to be detected is applied to the magnetic detection element, and has a long magnetic permeability in the longitudinal direction of the nonmagnetic substrate 10, that is, a rectangular shape corresponding to the substrate 10. The magnetic film 12 is arranged so that its longitudinal direction is along the magnetic field detection direction. Further, in the magnetic film 12, the direction of the easy axis of magnetization is perpendicular to the longitudinal direction within the film surface of the magnetic film 12 as shown by the double-headed arrow in FIG. 1, that is, in the direction perpendicular to the magnetic field detection direction. Magnetic anisotropy is added so that

【0023】この構成で、ワイヤー18,導電膜14を
介して磁性膜12に対し長手方向両端部から高周波のド
ライブ電流を印加して外部磁界により磁性膜12の長手
方向両端部間に発生するインピーダンスの変化を電気信
号に変換して出力が得られるようになっている。
With this structure, a high-frequency drive current is applied to both ends of the magnetic film 12 in the longitudinal direction via the wire 18 and the conductive film 14 to generate an impedance between the both ends of the magnetic film 12 in the longitudinal direction by an external magnetic field. Is converted into an electric signal to obtain an output.

【0024】ところで、磁性膜12を形成する高透磁率
材料による透磁率とその厚さにより、磁気検出素子のM
I特性が決まる。その材料と厚さを検討するために行な
った試験とその結果を以下に説明する。
By the way, the magnetic permeability of the high magnetic permeability material forming the magnetic film 12 and the thickness thereof make it possible to determine the M of the magnetic sensing element.
The I characteristic is determined. The test performed to examine the material and the thickness and the result are described below.

【0025】まず、透磁率とMI特性の関係を見るため
に、長手方向の透磁率を異ならせた磁性膜12の複数の
サンプルを用意し、1MHzでの長手方向の透磁率とM
I特性との関係を調べた。サンプルのサイズは、幅W=
0.2mm,厚さt=5μm,長さL=4mmとし、ヘ
ルムホルツコイルで±10Oe程度の外部磁界を変化さ
せて印加し、インピーダンスの最大変化量を測定した。
First, in order to see the relationship between the magnetic permeability and the MI characteristic, a plurality of samples of the magnetic film 12 having different magnetic permeability in the longitudinal direction are prepared, and the magnetic permeability in the longitudinal direction at 1 MHz and M
The relationship with the I characteristic was investigated. Sample size is width W =
The maximum change amount of impedance was measured by changing the external magnetic field of about ± 10 Oe with a Helmholtz coil while applying 0.2 mm, thickness t = 5 μm and length L = 4 mm.

【0026】この結果を図2のグラフに示す。この図2
から明らかなように、長手方向の透磁率とインピーダン
ス最大変化量は相関がある。そして、インピーダンス最
大変化量がアモルファスワイヤーと同等以上の25%
(約2dB)以上の数値を目安とすると、グラフ上から
は透磁率が2500以上必要であることが判る。この数
値をクリアするためには、センダスト等の結晶構造の磁
性膜より高透磁率であるFe−Co−B系アモルファス
膜やFe−N系,Fe−C系等の微結晶膜が磁性膜12
に適している。
The results are shown in the graph of FIG. This figure 2
As is clear from the above, there is a correlation between the magnetic permeability in the longitudinal direction and the maximum impedance change amount. And the maximum change in impedance is 25%, which is equal to or higher than that of amorphous wire.
If a numerical value of (about 2 dB) or more is used as a guide, it can be seen from the graph that the magnetic permeability needs to be 2500 or more. In order to clear this numerical value, an Fe—Co—B-based amorphous film, which has a higher magnetic permeability than a magnetic film having a crystal structure such as Sendust, or a microcrystalline film such as an Fe—N-based or Fe—C-based magnetic film is used as the magnetic film 12.
Suitable for

【0027】また、Fe−Ta−C系微結晶膜を使用
し、膜厚によるMI特性を測定した。磁性膜の長手方向
の透磁率は1MHzで4100である。これで膜厚をそ
れぞれ2,5,8μmとした3種類のサンプルを用意
し、ドライブ電流100MHzで外部磁界を±10Oe
程度変化させてインピーダンスの変化量を測定した。
Further, an Fe-Ta-C-based microcrystalline film was used, and MI characteristics depending on the film thickness were measured. The magnetic permeability in the longitudinal direction of the magnetic film is 4100 at 1 MHz. Three kinds of samples with film thicknesses of 2, 5 and 8 μm were prepared, and the external magnetic field was ± 10 Oe at a drive current of 100 MHz.
The amount of change in impedance was measured by varying the degree.

【0028】その結果を図3に示す。図3から膜厚tが
5μmに対して、2μmではピークの値が低くなること
が判り、8μmではピークが少し外側に広がることで変
化の傾斜が少し緩くなり始める。最適な範囲は試験結果
より3μm〜8μmであるが、その範囲の外でもピーク
低さや傾斜の低下が影響しない使い方であれば特別に限
定する必要はない。
The results are shown in FIG. It can be seen from FIG. 3 that when the film thickness t is 5 μm, the peak value becomes lower at 2 μm, and at 8 μm, the peak spreads slightly outward, and the slope of change begins to become slightly gentle. The optimum range is 3 μm to 8 μm according to the test results, but it is not particularly limited as long as it is used outside the range as long as the peak height and the decrease in slope do not affect the usage.

【0029】以上のように、磁性膜12は1MHzでの
長手方向の透磁率が2500以上のFe−Co−B系ア
モルファス膜やFe−N系,Fe−C系等の微結晶膜と
し、膜厚を3μm〜8μmとするのが良く、そうするこ
とで小型でアモルファスワイヤー以上のMI効果が得ら
れる高感度の磁気検出素子を提供できる。
As described above, the magnetic film 12 is an Fe-Co-B system amorphous film having a magnetic permeability in the longitudinal direction at 1 MHz of 2500 or more, or a microcrystalline film of Fe-N system, Fe-C system, etc. It is preferable that the thickness is 3 μm to 8 μm, and by doing so, it is possible to provide a small-sized and highly sensitive magnetic detection element that can obtain the MI effect more than that of the amorphous wire.

【0030】[第2実施例]第1実施例では、アモルフ
ァスワイヤーと同様にインピーダンスの抵抗分とインダ
クタンス分の両方が、外部磁界による透磁率の変化によ
り変化するが、発振器に組み込んで使う場合は、抵抗分
の変化が無い方がよい。
[Second Embodiment] In the first embodiment, both the resistance component and the inductance component of the impedance change due to the change of the magnetic permeability due to the external magnetic field as in the case of the amorphous wire. , It is better that there is no change in resistance.

【0031】そこで、そのように構成した本発明の第2
実施例を図4により説明する。
Therefore, the second aspect of the present invention having such a configuration
An embodiment will be described with reference to FIG.

【0032】図4に示す第2実施例の磁気検出素子の構
成では、長方形の非磁性基板20の上面全面に高透磁率
磁性膜22が形成されており、その上に絶縁膜24が積
層され、さらにその上に,導電膜26が積層されてい
る。そして導電膜26の長手方向の両端部のそれぞれに
外部接続用のワイヤー28が半田27で接続され、引き
出されている。また、第1実施例と同様に、全体の長手
方向が外部磁界の検知方向に沿うように配される。
In the structure of the magnetic sensing element of the second embodiment shown in FIG. 4, a high magnetic permeability magnetic film 22 is formed on the entire upper surface of a rectangular non-magnetic substrate 20, and an insulating film 24 is laminated thereon. Further, a conductive film 26 is laminated on the above. Wires 28 for external connection are connected to the respective ends of the conductive film 26 in the longitudinal direction with solder 27 and drawn out. Further, as in the first embodiment, the entire longitudinal direction is arranged along the detection direction of the external magnetic field.

【0033】それぞれの詳細を言うと、非磁性基板20
は第1実施例と同様に、チタン酸カルシウム(Ti−C
a系セラミック),酸化物ガラス,チタニア,アルミナ
等で形成される。
The details of each are as follows.
Is calcium titanate (Ti-C) as in the first embodiment.
a-based ceramic), oxide glass, titania, alumina, etc.

【0034】磁性膜22は、第1実施例で述べたFe−
Co−B系アモルファス膜あるいはFe−C系,Fe−
N系の微結晶膜等とし、真空成膜技術により成膜する。
また、同様に磁性膜22は、磁化容易軸の方向が図4中
両方向の矢印で示すように磁性膜22の膜面内で長手方
向に垂直になるように磁気異方性がつけられている。こ
の異方性は成膜後の磁場中冷却等によりつけられる。
The magnetic film 22 is made of Fe--as described in the first embodiment.
Co-B system amorphous film or Fe-C system, Fe-
An N-based microcrystalline film or the like is formed by a vacuum film forming technique.
Similarly, the magnetic film 22 is provided with magnetic anisotropy so that the direction of the easy axis of magnetization is perpendicular to the longitudinal direction within the film surface of the magnetic film 22 as indicated by the double-headed arrow in FIG. . This anisotropy is imparted by cooling in a magnetic field after film formation.

【0035】絶縁膜24は、SiO2,Cr23,Ti
2等の酸化物絶縁膜であり、真空成膜技術等により形
成する。厚さは、絶縁効果が得られる0.05μmを下
限とし、上限は導電膜26と高透磁率磁性膜22とで生
ずるインダクタンス値が小さくならないように1μm以
下にするのが望ましい。
The insulating film 24 is made of SiO 2 , Cr 2 O 3 , Ti.
It is an oxide insulating film such as O 2 and is formed by a vacuum film forming technique or the like. The lower limit of the thickness is 0.05 μm at which the insulating effect is obtained, and the upper limit is preferably 1 μm or less so that the inductance value generated between the conductive film 26 and the high-permeability magnetic film 22 does not become small.

【0036】さらに絶縁膜24上の導電膜26はCu,
Au等の比抵抗の小さい金属からなる。
Further, the conductive film 26 on the insulating film 24 is made of Cu,
It is made of a metal having a low specific resistance such as Au.

【0037】このような構成において検出時には、ワイ
ヤー28を介して導電膜26に長手方向両端部から高周
波のドライブ電流が印加される。第1実施例のように磁
性膜に直接電流を流す場合と違い、ドライブ電流による
磁束は磁性膜22の断面内で還流せず貫通する形となる
が、その磁束の方向が磁性膜22の磁化容易軸方向に沿
っているため、インダクタンス変化のメカニズムは失わ
れず、外部磁界により導電膜26の長手方向両端部間に
インピーダンスの変化が発生する。当然のことながら、
磁性膜22に電流を流さないため渦電流に伴う表皮効果
の影響が現れないため、抵抗分の変化はほとんど現れな
い。
In such a structure, at the time of detection, a high frequency drive current is applied to the conductive film 26 from both ends in the longitudinal direction via the wire 28. Unlike the case where a current is directly applied to the magnetic film as in the first embodiment, the magnetic flux due to the drive current penetrates in the cross section of the magnetic film 22 without returning, but the direction of the magnetic flux is the magnetization of the magnetic film 22. Since it is along the easy axis direction, the mechanism for changing the inductance is not lost, and the change in impedance occurs between both ends of the conductive film 26 in the longitudinal direction due to the external magnetic field. As a matter of course,
Since no current is passed through the magnetic film 22, the influence of the skin effect due to the eddy current does not appear, and the resistance component hardly changes.

【0038】本実施例の素子の特性の実際のデータを以
下に示す。
Actual data of the characteristics of the device of this example are shown below.

【0039】高透磁率磁性膜にFe−Ta−C系の微結
晶磁性膜を使用し、サイズを厚さ5μm,幅0.2m
m,長さ4mmとし、磁性膜に直接ドライブ電流を流す
第1実施例のサンプルと、磁性膜上にCr23からなる
厚さ0.1μmの絶縁膜を介して、Cuの導電膜を厚さ
1μmで形成した第2実施例のサンプルを比較した。測
定条件は100MHzのドライブ電流を流し外部磁界に
対するインピーダンスの変化量を比較した。その結果を
下記の表1に示す。
An Fe—Ta—C type microcrystalline magnetic film is used as the high permeability magnetic film, and the size is 5 μm thick and the width is 0.2 m.
m, length 4 mm, a sample of the first embodiment in which a drive current is directly applied to the magnetic film, and a Cu conductive film is formed on the magnetic film via an insulating film of Cr 2 O 3 having a thickness of 0.1 μm. The samples of the second embodiment formed with a thickness of 1 μm were compared. As the measurement conditions, a drive current of 100 MHz was passed and the amount of change in impedance with respect to an external magnetic field was compared. The results are shown in Table 1 below.

【0040】[0040]

【表1】 [Table 1]

【0041】上記表1の結果で判るように、磁性膜上に
絶縁膜を介し導電膜を設けて導電膜にドライブ電流を流
すことにより、インダクタンスL分を維持してインピー
ダンスの変化量ΔZ/Zを維持しつつ、抵抗R分を著し
く低減でき、高いQ値が得られる。
As can be seen from the results in Table 1 above, a conductive film is provided on the magnetic film via an insulating film and a drive current is passed through the conductive film, so that the inductance L is maintained and the impedance variation ΔZ / Z. While maintaining the above, the resistance R can be significantly reduced, and a high Q value can be obtained.

【0042】また、本実施例では、高透磁率磁性膜22
にドライブ電流が流されないので、この磁性膜22から
外部への漏れ電流の心配が無く、磁性膜22が磁気記録
媒体や着磁媒体に接触しても問題が無く、特別な構造上
の工夫を必要としない。
Further, in this embodiment, the high magnetic permeability magnetic film 22 is used.
Since no drive current is applied to the magnetic film 22, there is no concern about leakage current from the magnetic film 22 to the outside, and there is no problem even if the magnetic film 22 contacts a magnetic recording medium or a magnetizing medium. do not need.

【0043】なお、本実施例の変形例として、磁性膜2
2を絶縁膜と交互に複数層積層した積層膜にすれば、本
実施例の効果をさらに向上させることができる。
As a modification of the present embodiment, the magnetic film 2
If 2 is a laminated film in which a plurality of layers are alternately laminated with an insulating film, the effect of this embodiment can be further improved.

【0044】また、本実施例の構成において、高透磁率
磁性膜22の電気比抵抗を導電膜26より大幅に高いも
のとし、例えば100μΩ-cm以上とすれば、絶縁膜
24は不要となり省略できる。導電膜26は例えばCu
の場合、比抵抗が2μΩ-cmである。これに対して高
透磁率磁性膜22の比抵抗を100μΩ-cm以上とす
れば、高透磁率磁性膜22の比抵抗が導電膜26の50
倍以上高くなり、導電膜26にドライブ電流を印加する
場合、絶縁膜24が無くてもドライブ電流の殆どが導電
膜26を流れ、高透磁率磁性膜22にはごく僅かしか流
れず、上記とほぼ同様の作用が得られる。
In the structure of this embodiment, if the electrical resistivity of the high-permeability magnetic film 22 is significantly higher than that of the conductive film 26, for example, 100 μΩ-cm or more, the insulating film 24 is unnecessary and can be omitted. . The conductive film 26 is, for example, Cu
In the case of, the specific resistance is 2 μΩ-cm. On the other hand, when the specific resistance of the high magnetic permeability magnetic film 22 is 100 μΩ-cm or more, the specific resistance of the high magnetic permeability magnetic film 22 is 50% of that of the conductive film 26.
When the drive current is applied to the conductive film 26, almost all of the drive current flows through the conductive film 26 without the insulating film 24 and only a very small amount flows into the high magnetic permeability magnetic film 22. Almost the same effect can be obtained.

【0045】[第3実施例]第2実施例では、導電膜2
6と高透磁率磁性膜22とでインダクタンスが形成され
るが、ドライブ電流による磁界に対して磁性膜22の磁
路が開いているためインダクタンスが低く回路上扱いづ
らい場合が生ずる。その点を考慮した第3実施例の構成
を図5に示す。
[Third Embodiment] In the second embodiment, the conductive film 2 is used.
Inductance is formed by 6 and the high-permeability magnetic film 22. However, since the magnetic path of the magnetic film 22 is opened with respect to the magnetic field due to the drive current, the inductance is low and the circuit may be difficult to handle. The configuration of the third embodiment in consideration of that point is shown in FIG.

【0046】図5の構成では、非磁性基板20上に下か
ら順に高透磁率磁性膜22,絶緑膜24,導電膜26を
積層して成膜した第2実施例と同じ構造の上に、更に導
電膜26のワイヤー28を半田27で接続する両端部を
除く中間部上に絶縁膜24′を成膜し、その上に高透磁
率磁性膜22′を積層して成膜している。磁性膜22′
は磁性膜22と同様に磁化容易軸の方向が膜面内で長手
方向に垂直となるように磁気異方性がつけられている。
そして、第1,第2実施例と同様に、全体の長手方向が
外部磁界の検知方向に沿うように配される。
In the structure shown in FIG. 5, the high magnetic permeability magnetic film 22, the insulating film 24, and the conductive film 26 are laminated on the non-magnetic substrate 20 in this order from the bottom to form the same structure as that of the second embodiment. Further, an insulating film 24 'is formed on an intermediate portion except both ends where the wire 28 of the conductive film 26 is connected by the solder 27, and a high magnetic permeability magnetic film 22' is laminated on the insulating film 24 '. . Magnetic film 22 '
Similar to the magnetic film 22, has magnetic anisotropy so that the direction of the easy axis of magnetization is perpendicular to the longitudinal direction in the film plane.
Then, as in the first and second embodiments, the entire longitudinal direction is arranged along the detection direction of the external magnetic field.

【0047】この構成では、導電膜26の上下に高透磁
率磁性膜22,22′を形成することで、ドライブ電流
印加による磁束が流れる磁性体の磁路をほぼ閉磁路とす
る事ができる。
In this structure, by forming the high-permeability magnetic films 22 and 22 'above and below the conductive film 26, the magnetic path of the magnetic body through which the magnetic flux due to the drive current application flows can be made a substantially closed magnetic path.

【0048】絶縁膜24,24′の厚さは第2実施例と
同様に0.05μm〜1μmで設定するが、導電膜26
と上下の絶縁膜24,24′の合計の厚さは、上下2枚
の高透磁率磁性膜22,22′の間の磁気ギャップに対
応し、インダクタンスを高める上でできるだけ薄く設定
する必要があり、0.2μm〜3μm程度が適当であ
る。
The thickness of the insulating films 24 and 24 'is set to 0.05 .mu.m to 1 .mu.m as in the second embodiment, but the conductive film 26 is used.
The total thickness of the upper and lower insulating films 24 and 24 'corresponds to the magnetic gap between the upper and lower two high-permeability magnetic films 22 and 22', and must be set as thin as possible to increase the inductance. , 0.2 μm to 3 μm is suitable.

【0049】本実施例の素子の特性について実際のデー
タを以下に示す。
Actual data on the characteristics of the device of this example are shown below.

【0050】高透磁率磁性膜22,22′としてFe−
Ta−C系の微結晶磁性膜を使用し、サイズを厚さ5μ
m,幅0.2mm,長さは上側の磁性膜22′を3m
m、下側の磁性膜22を4mmとし、絶縁膜24,2
4′はCr23で厚さを0.1μmとし、導電膜26は
Cuで厚さ0.5μmとして本実施例の素子を構成し
た。そしてドライブ電流100MHzで特性を調べた結
果を下記の表2に示す。
Fe-- is used as the high-permeability magnetic films 22 and 22 '.
A Ta-C based microcrystalline magnetic film is used, and the size is 5 μm.
m, width 0.2 mm, length 3 m above the upper magnetic film 22 '
m, the lower magnetic film 22 is 4 mm, and the insulating films 24, 2
4'is made of Cr 2 O 3 and has a thickness of 0.1 μm, and the conductive film 26 is made of Cu and has a thickness of 0.5 μm to form the element of this embodiment. Table 2 below shows the results of examining the characteristics at a drive current of 100 MHz.

【0051】[0051]

【表2】 [Table 2]

【0052】この表2から判るように、本実施例によれ
ば第2実施例に対してインダクタンスLが約2倍に向上
し、インピーダンス変化量ΔZ/Zも増加し、Q値も増
加した。
As can be seen from Table 2, according to the present embodiment, the inductance L is approximately doubled as compared with the second embodiment, the impedance change amount ΔZ / Z is increased, and the Q value is also increased.

【0053】なお、本実施例においても第2実施例と同
様に、高透磁率磁性膜22,22′の電気比抵抗を導電
膜26より大幅に高く、例えば100μΩ-cm以上と
して、絶縁膜24,24′を省略してもよい。
In this embodiment as well, as in the second embodiment, the electrical resistivity of the high-permeability magnetic films 22 and 22 'is significantly higher than that of the conductive film 26, for example, 100 μΩ-cm or more, and the insulating film 24 is formed. , 24 'may be omitted.

【0054】また、本実施例の変形として、図6に示す
ように、導電膜26の膜面内で長手方向に垂直な方向の
幅Wrを高透磁率磁性膜22,22′の同方向の幅Wm
より小さくすれば、上下の磁性膜22,22′の幅Wm
方向の両端部がより接近して磁性膜22,22′がより
完全に近い閉磁路を構成し、さらにインダクタンスを向
上できる。なお、ここで上記のように絶縁膜24,2
4′を省略すれば、磁性膜22,22′は完全な閉磁路
を構成し、インダクタンスを向上できる。
Further, as a modification of this embodiment, as shown in FIG. 6, the width Wr in the direction perpendicular to the longitudinal direction in the film surface of the conductive film 26 is set to the same direction as the high magnetic permeability magnetic films 22 and 22 '. Width Wm
If it is made smaller, the width Wm of the upper and lower magnetic films 22, 22 '
Both ends in the direction are closer to each other, and the magnetic films 22 and 22 'form a closed magnetic path that is closer to perfection, and the inductance can be further improved. Here, as described above, the insulating films 24, 2
If 4'is omitted, the magnetic films 22 and 22 'form a complete closed magnetic path, and the inductance can be improved.

【0055】また、本実施例でも磁性膜22,22′を
絶縁膜と交互に複数層積層した積層膜とすれば、さらに
効果の向上が期待できる。
Further, in this embodiment as well, if the magnetic films 22 and 22 'are laminated by alternately laminating a plurality of layers with the insulating films, the effect can be further improved.

【0056】[0056]

【発明の効果】以上の説明から明らかなように、本発明
によれば、非磁性基板上に略長方形の高透磁率磁性膜を
成膜した第1の構成、下から順にそれぞれ略長方形の高
透磁率磁性膜、絶縁膜、導電膜を積層した第2の構成、
更に前記導電膜上に絶縁膜と高透磁率磁性膜を積層した
第3の構成、あるいは更に第2と第3の構成において高
透磁率磁性膜の電気比抵抗を導電膜より大幅に高いもの
として絶縁膜を省略した第4と第5の構成により、MI
効果を利用した磁気検出を行なうことができ、各膜の材
料、膜厚などの選択によりアモルファスワイヤーから構
成される素子よりも高性能を得ることができる。また各
膜の膜厚、幅、長さを自由に選択でき、取り扱いが容易
であり、小型化に適している。
As is apparent from the above description, according to the present invention, a first structure in which a substantially rectangular high-permeability magnetic film is formed on a non-magnetic substrate, and a substantially rectangular high magnetic film is formed in order from the bottom. A second structure in which a magnetic permeability film, an insulating film, and a conductive film are laminated,
Furthermore, in the third structure in which an insulating film and a high-permeability magnetic film are laminated on the conductive film, or in the second and third structures, the electrical resistivity of the high-permeability magnetic film is significantly higher than that of the conductive film. With the fourth and fifth configurations in which the insulating film is omitted, the MI
It is possible to perform magnetic detection utilizing the effect, and it is possible to obtain higher performance than an element composed of an amorphous wire by selecting the material and film thickness of each film. In addition, the film thickness, width, and length of each film can be freely selected, easy handling, and suitable for miniaturization.

【0057】また、第1の構成では外部磁界によりイン
ピーダンスの抵抗分とインダクタンス分の両方が変化す
るが、第2,第3の構成では、インダクタンス分を維持
して抵抗分を下げることができ、さらに第3の構成では
第2の構成よりインダクタンスを上げることができる。
また第4と第5の構成では絶縁膜を省略した簡単な構成
により第2と第3の構成とほぼ同様の作用が得られる等
の優れた効果が得られる。
Further, in the first configuration, both the resistance component and the inductance component of the impedance are changed by the external magnetic field, but in the second and third configurations, the inductance component can be maintained and the resistance component can be lowered. Furthermore, the third configuration can increase the inductance more than the second configuration.
In addition, in the fourth and fifth configurations, an excellent effect such as an effect similar to that of the second and third configurations can be obtained by a simple configuration in which the insulating film is omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気検出素子の第1実施例の構造
を示す斜視図である。
FIG. 1 is a perspective view showing the structure of a first embodiment of a magnetic sensor according to the present invention.

【図2】同実施例の高透磁率磁性膜の透磁率とインピー
ダンス最大変化量の関係を示すグラフ図である。
FIG. 2 is a graph showing the relationship between the magnetic permeability of the high-permeability magnetic film of the example and the maximum change amount of impedance.

【図3】同実施例の高透磁率磁性膜の膜厚とインピーダ
ンス変化量の関係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between the film thickness of the high magnetic permeability magnetic film and the amount of impedance change of the same example.

【図4】第2実施例の構造を示す斜視図である。FIG. 4 is a perspective view showing a structure of a second embodiment.

【図5】第3実施例の構造を示す斜視図である。FIG. 5 is a perspective view showing the structure of the third embodiment.

【図6】第3実施例の変形例の構造を示す斜視図であ
る。
FIG. 6 is a perspective view showing the structure of a modified example of the third embodiment.

【図7】コルピッツ型発振回路の回路図である。FIG. 7 is a circuit diagram of a Colpitts oscillator circuit.

【図8】マルチバイブレータ型発振回路の回路図であ
る。
FIG. 8 is a circuit diagram of a multivibrator type oscillation circuit.

【符号の説明】[Explanation of symbols]

10,20 非磁性基板 12,22,22′ 高透磁率磁性膜 14,26 導電膜 16,27 半田 18,28 ワイヤー 24,24′ 絶縁膜 10,20 Non-magnetic substrate 12,22,22 'High permeability magnetic film 14,26 Conductive film 16,27 Solder 18,28 Wire 24,24' Insulating film

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 磁気インピーダンス効果を利用した磁気
検出素子であって、 非磁性基板上に略長方形の高透磁率磁性膜を成膜して構
成され、 前記高透磁率磁性膜は、長手方向が検出対象の外部磁界
の印加方向に沿うように配され、且つ磁化容易軸の方向
が膜面内で長手方向に垂直な方向となるように磁気異方
性がつけられており、 前記高透磁率磁性膜に長手方向両端部から高周波電流を
印加して外部磁界により前記高透磁率磁性膜の長手方向
両端部間に発生するインピーダンスの変化を電気信号に
変換して出力が得られるようにしたことを特徴とする磁
気検出素子。
1. A magnetic sensing element utilizing a magneto-impedance effect, comprising a substantially rectangular high-permeability magnetic film formed on a non-magnetic substrate, wherein the high-permeability magnetic film has a longitudinal direction. It is arranged along the direction of application of the external magnetic field to be detected, and has magnetic anisotropy so that the direction of the easy axis of magnetization is perpendicular to the longitudinal direction in the film plane, and the high magnetic permeability A high-frequency current is applied to both ends of the magnetic film in the longitudinal direction to convert an impedance change generated between both ends of the high-permeability magnetic film by an external magnetic field into an electric signal to obtain an output. Magnetic sensing element characterized by.
【請求項2】 1MHzでの前記高透磁率磁性膜の長手
方向の透磁率が2500以上であることを特徴とする請
求項1に記載の磁気検出素子。
2. The magnetic sensing element according to claim 1, wherein the magnetic permeability in the longitudinal direction of the high-permeability magnetic film at 1 MHz is 2500 or more.
【請求項3】 前記高透磁率磁性膜の厚さが3μm〜8
μmの範囲内であることを特徴とする請求項1または2
に記載の磁気検出素子。
3. The high-permeability magnetic film has a thickness of 3 μm to 8 μm.
It is within the range of μm.
The magnetic detection element according to 1.
【請求項4】 磁気インピーダンス効果を利用した磁気
検出素子であって、 非磁性基板上に、下から順にそれぞれ略長方形の高透磁
率磁性膜、絶縁膜、導電膜を積層して構成され、 前記各膜の積層は長手方向が検出対象の外部磁界の印加
方向に沿うように配され、 前記高透磁率磁性膜は磁化容易軸の方向が膜面内で長手
方向に垂直な方向となるように磁気異方性がつけられて
おり、 前記導電膜に長手方向両端部から高周波電流を印加して
外部磁界により前記導電膜の長手方向両端部間に発生す
るインピーダンスの変化を電気信号に変換して出力が得
られるようにしたことを特徴とする磁気検出素子。
4. A magnetic detection element utilizing a magneto-impedance effect, comprising a non-magnetic substrate and a substantially rectangular high-permeability magnetic film, an insulating film, and a conductive film, which are laminated in this order from the bottom. The lamination of each film is arranged such that the longitudinal direction is along the direction of application of the external magnetic field to be detected, and the high permeability magnetic film is such that the direction of the easy axis of magnetization is the direction perpendicular to the longitudinal direction in the film plane. Magnetic anisotropy is added, and a high-frequency current is applied to the conductive film from both ends in the longitudinal direction to convert an impedance change generated between both ends in the longitudinal direction of the conductive film into an electric signal by an external magnetic field. A magnetic detection element characterized in that an output is obtained.
【請求項5】 磁気インピーダンス効果を利用した磁気
検出素子であって、 非磁性基板上に、下から順にそれぞれ略長方形の高透磁
率磁性膜、絶縁膜、導電膜、絶縁膜、高透磁率磁性膜を
積層して構成され、 前記各膜の積層は長手方向が検出対象の外部磁界の印加
方向に沿うように配され、 前記高透磁率磁性膜はそれぞれ磁化容易軸の方向が膜面
内で長手方向に垂直な方向となるように磁気異方性がつ
けられており、 前記導電膜に長手方向両端部から高周波電流を印加して
外部磁界により前記導電膜の長手方向両端部間に発生す
るインピーダンスの変化を電気信号に変換して出力が得
られるようにしたことを特徴とする磁気検出素子。
5. A magnetic detection element utilizing a magneto-impedance effect, comprising a non-magnetic substrate and a substantially rectangular high magnetic permeability film, an insulating film, a conductive film, an insulating film, and a high magnetic permeability magnetic film, each having a substantially rectangular shape in order from the bottom. The layers of the films are arranged such that the longitudinal direction is along the direction of application of the external magnetic field to be detected, and the high-permeability magnetic films each have an easy axis of magnetization in the film plane. Magnetic anisotropy is imparted to the film in a direction perpendicular to the longitudinal direction, and a high-frequency current is applied to the conductive film from both ends in the longitudinal direction to generate a magnetic field between both ends in the longitudinal direction of the conductive film by an external magnetic field. A magnetic detection element characterized in that a change in impedance is converted into an electric signal so that an output can be obtained.
【請求項6】 前記絶縁膜の厚さが0.05μm〜1μ
mであることを特徴とする請求項4または5に記載の磁
気検出素子。
6. The insulating film has a thickness of 0.05 μm to 1 μm.
The magnetic detection element according to claim 4 or 5, wherein m is m.
【請求項7】 前記高透磁率磁性膜は、絶縁膜と交互に
複数層積層された積層膜であることを特徴とする請求項
4から6までのいずれか1項に記載の磁気検出素子。
7. The magnetic sensing element according to claim 4, wherein the high-permeability magnetic film is a laminated film in which a plurality of layers are alternately laminated with an insulating film.
【請求項8】 前記下から順に積層された内の絶縁膜、
導電膜、絶縁膜の合計の厚さが0.2μm〜3μmであ
ることを特徴とする請求項5に記載の磁気検出素子。
8. An inner insulating film laminated in order from the bottom,
The magnetic detection element according to claim 5, wherein the total thickness of the conductive film and the insulating film is 0.2 µm to 3 µm.
【請求項9】 磁気インピーダンス効果を利用した磁気
検出素子であって、 非磁性基板上に、下から順にそれぞれ略長方形の高透磁
率磁性膜と導電膜を積層して構成され、 前記高透磁率磁性膜と導電膜の積層は長手方向が検出対
象の外部磁界の印加方向に沿うように配され、 前記高透磁率磁性膜は、電気比抵抗が前記導電膜より大
幅に高いとともに、磁化容易軸の方向が膜面内で長手方
向に垂直な方向となるように磁気異方性がつけられてお
り、 前記導電膜に長手方向両端部から高周波電流を印加して
外部磁界により前記導電膜の長手方向両端部間に発生す
るインピーダンスの変化を電気信号に変換して出力が得
られるようにしたことを特徴とする磁気検出素子。
9. A magnetic sensing element using a magneto-impedance effect, comprising a non-magnetic substrate and a rectangular high-permeability magnetic film and a conductive film, which are laminated in this order from the bottom, respectively. The lamination of the magnetic film and the conductive film is arranged such that the longitudinal direction is along the direction of application of the external magnetic field to be detected, and the high permeability magnetic film has a significantly higher electrical resistivity than the conductive film and an easy magnetization axis. Magnetic anisotropy is applied so that the direction of is perpendicular to the longitudinal direction in the film plane, and a high-frequency current is applied to the conductive film from both ends in the longitudinal direction, and the longitudinal direction of the conductive film is increased by an external magnetic field. A magnetic detection element, characterized in that a change in impedance occurring between both ends in a direction is converted into an electric signal to obtain an output.
【請求項10】 磁気インピーダンス効果を利用した磁
気検出素子であって、 非磁性基板上に、下から順にそれぞれ略長方形の高透磁
率磁性膜、導電膜、高透磁率磁性膜を積層して構成さ
れ、 前記各膜の積層は長手方向が検出対象の外部磁界の印加
方向に沿うように配され、 前記高透磁率磁性膜は、それぞれ電気比抵抗が前記導電
膜より大幅に高いとともに、磁化容易軸の方向が膜面内
で長手方向に垂直な方向となるように磁気異方性がつけ
られており、 前記導電膜に長手方向両端部から高周波電流を印加して
外部磁界により前記導電膜の長手方向両端部間に発生す
るインピーダンスの変化を電気信号に変換して出力が得
られるようにしたことを特徴とする磁気検出素子。
10. A magnetic detection element utilizing a magneto-impedance effect, comprising a high magnetic permeability magnetic film, a conductive film, and a high magnetic permeability magnetic film, which are substantially rectangular and are stacked in order from the bottom on a non-magnetic substrate. The stacked layers of the respective films are arranged such that the longitudinal direction is along the direction of application of the external magnetic field to be detected, and the high magnetic permeability magnetic film has a significantly higher electric resistivity than the conductive film and is easy to magnetize. Magnetic anisotropy is provided so that the direction of the axis is perpendicular to the longitudinal direction in the film surface, and a high-frequency current is applied to the conductive film from both ends in the longitudinal direction to apply an external magnetic field to the conductive film. A magnetic detection element characterized in that a change in impedance occurring between both ends in the longitudinal direction is converted into an electric signal so that an output can be obtained.
【請求項11】 前記高透磁率磁性膜の電気比抵抗が1
00μΩ-cm以上であることを特徴とする請求項9ま
たは10に記載の磁気検出素子。
11. The electrical resistivity of the high-permeability magnetic film is 1
The magnetic detection element according to claim 9 or 10, wherein the magnetic detection element has a resistance of 00 µΩ-cm or more.
【請求項12】 前記導電膜の膜面内で長手方向に垂直
な方向の幅が前記高透磁率磁性膜の同方向の幅よりも小
さいことを特徴とする請求項5,8,または10に記載
の磁気検出素子。
12. The width of the conductive film in the direction perpendicular to the longitudinal direction in the film plane is smaller than the width of the high magnetic permeability magnetic film in the same direction, according to claim 5, 8, or 10. The magnetic detection element described.
JP7164834A 1995-03-31 1995-06-30 Magnetic detection element Pending JPH08330645A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7164834A JPH08330645A (en) 1995-03-31 1995-06-30 Magnetic detection element
US08/618,066 US5889403A (en) 1995-03-31 1996-03-25 Magnetic detecting element utilizing magnetic impedance effect
US09/229,112 US6351119B1 (en) 1995-03-31 1999-01-13 Magnetic detecting element utilizing magnetic impedance effect

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7558295 1995-03-31
JP7-75582 1995-03-31
JP7164834A JPH08330645A (en) 1995-03-31 1995-06-30 Magnetic detection element

Publications (1)

Publication Number Publication Date
JPH08330645A true JPH08330645A (en) 1996-12-13

Family

ID=26416723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7164834A Pending JPH08330645A (en) 1995-03-31 1995-06-30 Magnetic detection element

Country Status (1)

Country Link
JP (1) JPH08330645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183889B1 (en) 1997-08-28 2001-02-06 Alps Electric Co., Ltd. Magneto-impedance element, and magnetic head, thin film magnetic head, azimuth sensor and autocanceler using the same
US6232775B1 (en) 1997-12-26 2001-05-15 Alps Electric Co., Ltd Magneto-impedance element, and azimuth sensor, autocanceler and magnetic head using the same
US7218494B2 (en) 2001-02-16 2007-05-15 Fuji Electric Co., Ltd. Overload current protection device using magnetic impedance element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183889B1 (en) 1997-08-28 2001-02-06 Alps Electric Co., Ltd. Magneto-impedance element, and magnetic head, thin film magnetic head, azimuth sensor and autocanceler using the same
US6232775B1 (en) 1997-12-26 2001-05-15 Alps Electric Co., Ltd Magneto-impedance element, and azimuth sensor, autocanceler and magnetic head using the same
US7218494B2 (en) 2001-02-16 2007-05-15 Fuji Electric Co., Ltd. Overload current protection device using magnetic impedance element

Similar Documents

Publication Publication Date Title
US6351119B1 (en) Magnetic detecting element utilizing magnetic impedance effect
JP3022023B2 (en) Magnetic recording / reproducing device
US5705926A (en) Magnetic sensor and magnetic field sensing method of using same based on impedance changes of a high frequency supplied conductor
JP3356585B2 (en) Magnetic detection element and magnetic head
JP3360168B2 (en) Magnetic impedance element
JPH08330645A (en) Magnetic detection element
JPH08285930A (en) Magnetism detection element and magnetic head
JPH1027317A (en) Magnetic head
US6590740B2 (en) Shielded magnetic head and magnetic reproducing apparatus
JP3523834B2 (en) Magnetic field sensor and magnetic field sensing system
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPH08316547A (en) Magneto-detecting element and manufacture thereof
JPH07262523A (en) Magnetic head
JP2000200405A (en) Magneto-resistive element and magnetic head
KR100378553B1 (en) Magnetic reproduction device, magnetic head using the device and method for producing the magnetic head
US6205007B1 (en) Thin-film magnetic head and method of manufacturing the magnetic head
JP3474806B2 (en) Magnetic reproducing element, method of manufacturing the same, and magnetic reproducing apparatus using the same
JPH08263811A (en) Magnetic head and its production
JP3529668B2 (en) Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same
JP3132113B2 (en) High density magnetic recording / reproducing head
JP2000156317A (en) Magnetic recording and reproducing device
JPH08321013A (en) Magnetic head and its production
JPS6236710A (en) Magnetic head device
JPH07326023A (en) Magnetic head and magnetic storage device using the same
JPH07110921A (en) Magnetoresistance effect type thin film head