JP3529668B2 - Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same - Google Patents

Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same

Info

Publication number
JP3529668B2
JP3529668B2 JP13063199A JP13063199A JP3529668B2 JP 3529668 B2 JP3529668 B2 JP 3529668B2 JP 13063199 A JP13063199 A JP 13063199A JP 13063199 A JP13063199 A JP 13063199A JP 3529668 B2 JP3529668 B2 JP 3529668B2
Authority
JP
Japan
Prior art keywords
magnetic
film
conductor
pole core
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13063199A
Other languages
Japanese (ja)
Other versions
JP2000322711A (en
Inventor
明夫 村田
小百合 村松
章郎 黒江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13063199A priority Critical patent/JP3529668B2/en
Priority to KR10-2000-0019586A priority patent/KR100378553B1/en
Priority to EP00108280A priority patent/EP1045375A3/en
Publication of JP2000322711A publication Critical patent/JP2000322711A/en
Priority to US10/644,540 priority patent/US20040085671A1/en
Application granted granted Critical
Publication of JP3529668B2 publication Critical patent/JP3529668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、映像、音声、文字
等に関する情報が磁化の向きと強度で記録保持されてい
る磁気記憶媒体からその情報を再生する磁気再生素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic reproducing element for reproducing information about video, audio, characters, etc. from a magnetic storage medium in which the direction and strength of magnetization are recorded and held.

【0002】[0002]

【従来の技術】近年ますます、高記憶密度化による磁気
記憶装置の小型化と記憶容量増加の要求が強くなってい
る。記憶装置の記憶容量が大きくなればなるほど、記録
された情報へのアクセス速度や情報の転送速度などの高
速化が求められる。このような要求に対して、ハードデ
ィスク(HDD)装置では、例えば特開昭55−840
20公報に開示されているようなインダクティブ型の薄
膜磁気ヘッドが主流になりつつある。前記薄膜磁気ヘッ
ドは、バルク型磁気ヘッドに比べてインダクタンスが低
く、より高い周波数で記録再生を行うことができる。
2. Description of the Related Art In recent years, there has been an increasing demand for miniaturization and increase in storage capacity of magnetic storage devices due to higher storage densities. The larger the storage capacity of the storage device, the higher the speed of access to recorded information and the speed of transfer of information. In response to such a request, in a hard disk (HDD) device, for example, Japanese Patent Laid-Open No. 55-840.
Inductive type thin film magnetic heads such as those disclosed in Japanese Laid-Open Patent Publication No. 20-20 are becoming mainstream. The thin film magnetic head has a lower inductance than the bulk type magnetic head, and can perform recording and reproduction at a higher frequency.

【0003】例えばHDD装置では、その小型化により
ディスク径が小さくなって、ヘッドと記録媒体間の相対
速度が低下する。そのため再生ヘッドとして磁束応答型
の磁気ヘッドの採用が望まれている。磁束応答型の磁気
ヘッドとしては、狭トラック化に対しても有利であり、
単位トラック幅当たりの再生出力(感度)が高い磁気抵
抗効果素子(MR素子)を用いたMR再生ヘッドが注目
されている。実際にはこのMR再生ヘッドを記録用のイ
ンダクティブ型薄膜磁気ヘッドと組合せた形の複合型M
Rヘッドが実用化されている。さらに再生出力を向上さ
せるため、より大きな磁気抵抗効果を示す薄膜材料を用
いた巨大磁気抵抗効果素子(GMR素子)を用いた複合
型MRヘッドの研究開発も盛んに行われている。
For example, in an HDD device, the disk diameter becomes smaller due to the size reduction, and the relative speed between the head and the recording medium decreases. Therefore, it is desired to employ a magnetic flux response type magnetic head as the reproducing head. As a magnetic flux response type magnetic head, it is advantageous for narrowing the track,
An MR reproducing head using a magnetoresistive effect element (MR element) having a high reproducing output (sensitivity) per unit track width is drawing attention. Actually, this MR reproducing head is combined with an inductive thin film magnetic head for recording to form a composite type M.
The R head has been put to practical use. In order to further improve the reproduction output, research and development of a composite type MR head using a giant magnetoresistive effect element (GMR element) using a thin film material exhibiting a larger magnetoresistive effect has been actively conducted.

【0004】[0004]

【発明が解決しようとする課題】高密度かつ大容量の記
憶装置を実現するためには、記憶された高密度の情報を
正確に再生する技術が重要であり、そのためには高い再
生感度を有する再生ヘッドが必要である。この点におい
て複合型MRヘッドは有望である。しかしながら、再生
ヘッドにMR素子を用いる場合、MR素子部の回りには
シールド層や再生用のギャップが必要であるとともに、
MR素子の膜を単磁区化する必要がある。そのためヘッ
ド構造としては従来のインダクティブヘッドよりかなり
複雑である。磁気ヘッドの構造が複雑になれば、それだ
け高度な製造技術が要求され、高い歩留まりを確保する
ことが難しくなる。本発明は、比較的簡単な構造で高い
再生感度を有する磁気再生素子とそれを用いた磁気ヘッ
ド、及びその製造方法を提供することを目的とする。
In order to realize a high-density and large-capacity storage device, a technique of accurately reproducing the stored high-density information is important, and for that purpose, it has a high reproduction sensitivity. Playhead required. In this respect, the composite MR head is promising. However, when an MR element is used for the reproducing head, a shield layer and a reproducing gap are required around the MR element portion, and
It is necessary to make the film of the MR element into a single magnetic domain. Therefore, the head structure is considerably more complicated than the conventional inductive head. The more complicated the structure of the magnetic head, the more advanced manufacturing technology is required, and it becomes difficult to secure a high yield. It is an object of the present invention to provide a magnetic reproducing element having a relatively simple structure and high reproducing sensitivity, a magnetic head using the same, and a manufacturing method thereof.

【0005】本発明の磁気再生素子は、絶縁基板上に形
成された第1の非磁性絶縁膜、前記第1の非磁性絶縁膜
上に形成された、金属軟磁性膜と磁気的電気的絶縁膜と
を交互に積層し多層化した磁極コア、前記磁極コア上に
形成された第2の非磁性絶縁膜、前記絶縁基板上に形成
され、前記金属軟磁性膜の両端部にそれぞれ電気的に接
続された導体、前記導体にそれぞれ接続され、外部の定
電流源から前記導体に高周波電流を供給する第1の対の
電極端子、及び前記磁極コア内の、外部磁界の大きさに
よって変わる透磁率に応じて変化する表皮効果による抵
抗が加算されたインピーダンス、によって生じる電圧を
外部へ導出するための、前記導体にそれぞれ接続された
第2の対の電極端子を有する。
The magnetic reproducing element of the present invention comprises a first non-magnetic insulating film formed on an insulating substrate, and a magnetic soft insulating film formed on the first non-magnetic insulating film and a metal soft magnetic film. With a membrane
Are alternately laminated to form a multi-layer magnetic pole core, a second non-magnetic insulating film formed on the magnetic pole core , formed on the insulating substrate, and electrically connected to both ends of the metal soft magnetic film. A conductor, a first pair of electrode terminals respectively connected to the conductor and supplying a high frequency current from an external constant current source to the conductor, and the magnitude of the external magnetic field in the magnetic pole core.
Therefore, the resistance due to the skin effect that changes according to the changing magnetic permeability
A second pair of electrode terminals, each connected to the conductor, for deriving a voltage generated by the impedance to which the resistance is added, to the outside.

【0006】本発明によれば、金属軟磁性膜に導体を経
て高周波電流が流れている状態で磁界を与えると、金属
磁性膜のインピーダンスが変化する。このインピーダン
スの変化により、高周波電流とインピーダンスとの積の
電圧が変化する。この電圧の変化は磁界の強さに対応し
ているので、磁気記録媒体の磁化を電圧の変化として検
出することができる。金属磁性膜のインピーダンスに
は、表皮効果による抵抗が含まれている。表皮効果によ
る抵抗は外部磁界の大きさによって変わる透磁率に応じ
て変化するので、磁界の大きさの変化によるインピーダ
ンスの変化は表皮効果による抵抗分だけ大きくなり、そ
の分検出感度が高くなる。
According to the present invention, the impedance of the metal magnetic film changes when a magnetic field is applied to the metal soft magnetic film while a high-frequency current is flowing through the conductor. This change in impedance changes the voltage of the product of the high frequency current and the impedance. Since this change in voltage corresponds to the strength of the magnetic field, the magnetization of the magnetic recording medium can be detected as a change in voltage. For impedance of metal magnetic film
Contains the resistance due to the skin effect. Due to the skin effect
The resistance depends on the permeability, which changes depending on the magnitude of the external magnetic field.
Change due to the change in the magnitude of the magnetic field.
The change in resistance increases due to the resistance due to the skin effect.
Therefore, the detection sensitivity becomes higher.

【0007】本発明の他の観点の磁気再生素子は、絶縁
基板上に形成された、金属軟磁性膜と磁気的絶縁膜とを
交互に積層した多層膜の磁極、前記多層膜の磁極上に形
成され、金属軟磁性膜と磁気的電気絶縁膜とを交互
に積層し多層化した磁極コア、前記絶縁基板上に形成さ
れ、前記多層膜の磁極及び前記磁極コアの金属軟磁性膜
の両端部にそれぞれ電気的に接続された導体、前記導体
にそれぞれ接続され、外部の定電流源から前記導体に高
周波電流を与える第1の対の電極端子、及び前記磁極コ
ア内の、外部磁界の大きさによって変わる透磁率に応じ
て変化する表皮効果による抵抗が加算されたインピーダ
ンス、によって生じる電圧を外部へ導出するための、前
記導体にそれぞれ接続された第2の対の電極端子を有す
る。
According to another aspect of the present invention, there is provided a magnetic reproducing element in which a magnetic pole of a multilayer film formed on an insulating substrate by alternately laminating a metal soft magnetic film and a magnetic insulating film, and a magnetic pole of the multilayer film. formed, a metal soft magnetic film and the magnetic and electrical insulating film and the laminated alternately multi-layered magnetic pole cores are formed on the insulating substrate, the metallic soft magnetic film of the magnetic pole and the magnetic pole core of the multilayer film Conductors electrically connected to both ends, a first pair of electrode terminals respectively connected to the conductors for applying a high-frequency current to the conductors from an external constant current source, and the magnetic pole coil.
A) Depending on the magnetic permeability, which varies depending on the magnitude of the external magnetic field
Impeder with added resistance due to the changing skin effect
A second pair of electrode terminals respectively connected to the conductors for leading the voltage generated by the sensor to the outside.

【0008】主磁極コアに、磁性膜と非磁性膜を交互に
積層した多層膜の磁極を設けたことにより、各層の磁性
膜の端部の磁荷が多層膜間で打ち消し合う。従って磁極
の幅が狭い場合でも磁性膜の磁区が乱れず、高い周波数
においても透磁率を高く保つことができる。その結果、
磁気再生素子の高い周波数での特性が改善される。金属
磁性膜のインピーダンスには、表皮効果による抵抗が含
まれている。表皮効果による抵抗は外部磁界の大きさに
よって変わる透磁率に応じて変化するので、磁界の大き
さの変化によるインピーダンスの変化は表皮効果による
抵抗分だけ大きくなり、その分検出感度が高くなる。
By providing a magnetic pole of a multi-layered film in which magnetic films and non-magnetic films are alternately laminated on the main magnetic pole core, the magnetic charges at the ends of the magnetic films of the respective layers cancel each other out. Therefore, even if the width of the magnetic pole is narrow, the magnetic domain of the magnetic film is not disturbed, and the magnetic permeability can be kept high even at a high frequency. as a result,
The characteristics of the magnetic reproducing element at high frequencies are improved. metal
The impedance due to the skin effect is included in the impedance of the magnetic film.
It is rare. The resistance due to the skin effect depends on the magnitude of the external magnetic field.
Therefore, since it changes according to the magnetic permeability that changes,
The change in impedance due to the change in depth is due to the skin effect
The resistance increases, and the detection sensitivity increases accordingly.

【0009】[0009]

【0010】[0010]

【発明の実施の形態】本発明の好適な実施例を図1から
図7を参照して説明する。第1の実施例は本発明の磁気
再生素子の構造とその再生動作に関するものであり、第
2の実施例は本発明の磁気ヘッドの構造に関するもので
あり、第3の実施例は本発明の磁気ヘッドの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described with reference to FIGS. The first embodiment relates to the structure and reproducing operation of the magnetic reproducing element of the present invention, the second embodiment relates to the structure of the magnetic head of the present invention, and the third embodiment of the present invention. The present invention relates to a method of manufacturing a magnetic head.

【0011】《第1実施例》図1は、本発明の第1の実
施例の磁気再生素子の斜視図である。図3は、本発明の
磁気再生素子のインピーダンスZと外部磁界との関係を
示すグラフである。図4の(a)は、磁気再生素子を構
成する金属軟磁性膜の比透磁率の周波数特性を示し、同
(b)は出力レベルの周波数特性を示す図である。
<< First Embodiment >> FIG. 1 is a perspective view of a magnetic reproducing element according to a first embodiment of the present invention. FIG. 3 is a graph showing the relationship between the impedance Z and the external magnetic field of the magnetic reproducing element of the present invention. FIG. 4A shows the frequency characteristic of the relative permeability of the metal soft magnetic film forming the magnetic reproducing element, and FIG. 4B shows the frequency characteristic of the output level.

【0012】図1において、台形の主磁極コア2は金属
軟磁性体であるNiFe合金の単層薄膜であり、非磁性
体の基板100の上にスパッタリングにより形成されて
いる。主磁極コア2の下面と上面にはSiO2膜よりな
る非磁性絶縁膜1a、1bがスパッタリングにより形成
されて、主磁極コア2の下面及び上面を絶縁している。
In FIG. 1, the trapezoidal main magnetic pole core 2 is a single-layer thin film of a NiFe alloy, which is a metal soft magnetic material, and is formed on a nonmagnetic substrate 100 by sputtering. Nonmagnetic insulating films 1a and 1b made of a SiO 2 film are formed on the lower surface and the upper surface of the main magnetic pole core 2 by sputtering to insulate the lower surface and the upper surface of the main magnetic pole core 2.

【0013】導体3a、3bは、銅(Cu)の薄膜導体
であって、主磁極コア2の台形の斜めの側面に接して設
けられている。導体3a、3bは所定のマスクを用いて
銅の蒸着又はスパッタリングによって形成する。このと
き上部が峰状に突出するが、この突出部が本実施例の機
能に影響を与えることはない。導体3a、3bには、導
体線9a、9bの一端がそれぞれ接続されている。導体
線9a、9bの他端はそれぞれ端子5a、5bに接続さ
れている。端子5a、5bには高周波電源6が抵抗Rを
介して接続されており交流電流が主磁極コア2に供給さ
れる。図1から明らかなように、この導体3a、3bは
主磁極コア2の上面で分離しており、主磁極コア2の斜
めの側面に電気的に接続されている。導体線9a、9b
を経て供給された交流電流は、主磁極コア2の内部を図
の左右方向に流れる。導体3a、3bには、もう1組の
導体線4a、4bが接続されている。導体線4a、4b
間のインピーダンスZは式(1)で表される。
The conductors 3a and 3b are thin film conductors of copper (Cu), and are provided in contact with the trapezoidal oblique side surfaces of the main magnetic pole core 2. The conductors 3a and 3b are formed by vapor deposition or sputtering of copper using a predetermined mask. At this time, the upper part projects like a ridge, but this projecting part does not affect the function of this embodiment. One ends of conductor lines 9a and 9b are connected to the conductors 3a and 3b, respectively. The other ends of the conductor wires 9a and 9b are connected to the terminals 5a and 5b, respectively. A high frequency power supply 6 is connected to the terminals 5a and 5b via a resistor R, and an alternating current is supplied to the main magnetic pole core 2. As is apparent from FIG. 1, the conductors 3a and 3b are separated on the upper surface of the main magnetic pole core 2, and are electrically connected to the oblique side surface of the main magnetic pole core 2. Conductor wires 9a, 9b
The alternating current supplied through the above flows inside the main magnetic pole core 2 in the left-right direction in the drawing. Another pair of conductor wires 4a and 4b is connected to the conductors 3a and 3b. Conductor wire 4a, 4b
The impedance Z between is expressed by the equation (1).

【0014】[0014]

【数1】 [Equation 1]

【0015】主磁極コア2を流れる交流電流をIcとす
ると、導体線4a,4b間に式(1)のインピーダンス
Zと前記交流電流Icとの積の電圧Vcが生じる("Mag
netic Recording ", Volume (・) TECHNOLOGY,C.Denis
Mee et al,McGraw-Hill BookCompany,p342 参照)。
Assuming that the AC current flowing through the main magnetic pole core 2 is Ic, a voltage Vc which is the product of the impedance Z of the formula (1) and the AC current Ic is generated between the conductor lines 4a and 4b ("Mag
netic Recording ", Volume (・) TECHNOLOGY, C. Denis
See Mee et al, McGraw-Hill Book Company, p342).

【0016】式(1)において、Rdcは主磁極コア2の
直流抵抗、Reddyは、表皮効果による抵抗であって、い
わゆる渦電流損失を生じる抵抗である。また、μ’、
μ”は透磁率、Sは主磁極コア2を構成する磁性膜の断
面積を示す。Lは磁路長であり、図1では主磁極コア2
の矢印7方向の長さである。
In the equation (1), Rdc is a direct current resistance of the main magnetic pole core 2, and Reddy is a resistance due to a skin effect, which is a resistance causing so-called eddy current loss. Also, μ ',
μ ”is the magnetic permeability, S is the cross-sectional area of the magnetic film forming the main magnetic pole core 2. L is the magnetic path length, and in FIG.
Is the length in the direction of arrow 7.

【0017】渦電流損失を生じる抵抗Reddyは、式
(2)で表され、主磁極コア2の膜厚tmagが表皮深さ
δの2倍以上であるとき、膜厚tmagを、表皮深さδの
2倍の値で除算した値に比例する。
The resistance Reddy resulting eddy current losses is represented by the formula (2), when the main magnetic pole cores 2 having a thickness t mag is more than twice the skin depth [delta], the film thickness t mag, the skin depth It is proportional to the value divided by twice the value of the length δ.

【0018】[0018]

【数2】 [Equation 2]

【0019】表皮深さδは式(3)に示したように、磁
性膜の比抵抗ρと透磁率μ及び交流電流の角周波数ωに
よって決まる。
The skin depth δ is determined by the specific resistance ρ and magnetic permeability μ of the magnetic film and the angular frequency ω of the alternating current, as shown in the equation (3).

【0020】[0020]

【数3】 [Equation 3]

【0021】式(2)と式(3)から分かるように、角
周波数ωと透磁率μが高いほど表皮深さは浅くなり、抵
抗Reddyが大きくなる。抵抗Rdcは式(4)により表さ
れる。
As can be seen from the equations (2) and (3), the higher the angular frequency ω and the magnetic permeability μ, the shallower the skin depth and the larger the resistance Reddy. The resistance Rdc is represented by the equation (4).

【0022】[0022]

【数4】 [Equation 4]

【0023】式(2)、(3)及び(4)を用いて、式
(1)を書き直すと、式(5)が得られる。
Rewriting equation (1) using equations (2), (3) and (4) yields equation (5).

【0024】[0024]

【数5】 [Equation 5]

【0025】a,b,cは、周波数や主磁極コア2の磁
気特性などに依存せず、コアの形状や材質によって決ま
る定数項である。式(5)において、角周波数ωと透磁
率μとの積である、ωμ、ωμ’及びωμ”が大きくな
ると、インピーダンスZが大きくなる。その結果、前記
交流電流IcとインピーダンスZとの積の出力電圧Vc
(Vc=Ic・Z)も大きくなる。
The symbols a, b, and c are constant terms that are determined by the shape and material of the core without depending on the frequency or the magnetic characteristics of the main magnetic pole core 2. In Expression (5), the impedance Z increases as the product of the angular frequency ω and the magnetic permeability μ, that is, ωμ, ωμ ′, and ωμ ″ increases. As a result, the product of the alternating current Ic and the impedance Z is increased. Output voltage Vc
(Vc = Ic · Z) also becomes large.

【0026】本実施例の磁気再生素子では、上記のよう
にして磁性膜の透磁率μ’、μ”が外部磁界に応じて変
化し、インピーダンスZが変化する。インピーダンスの
変化に応じて出力電圧Vcが変化するので外部磁界を検
出することが出来る。
In the magnetic reproducing element of the present embodiment, the magnetic permeability μ ′, μ ″ of the magnetic film changes according to the external magnetic field and the impedance Z changes as described above. The output voltage changes according to the change of the impedance. Since Vc changes, an external magnetic field can be detected.

【0027】図3は所定の角周波数ωにおける、本実施
例の磁気再生素子のインピーダンスZと外部磁界Hex
との関係を示すグラフである。外部磁界Hexがゼロの
とき、すなわち、図中の横軸の値がゼロのときは、イン
ピーダンスZは、式5に示すように磁性膜の透磁率μと
通電される交流電流の角周波数ωによって決まる最大値
となる。外部磁界Hexが大きくなるにつれて磁性膜は
飽和に向かい、透磁率μが低下するのでインピーダンス
Zは小さくなる。磁性膜が完全に飽和すると、透磁率μ
は空気の透磁率と同様の非常に小さな値となり、インピ
ーダンスZは直流抵抗Rdcにほぼ等しくなる。外部磁界
Hexに対するインピーダンスZの変化の傾きが感度で
ある。すなわち式(6)に示すように、インピーダンス
Zと直流抵抗Rdcの差分を飽和磁界Hsatで割った値k
が感度である。
FIG. 3 shows the impedance Z and the external magnetic field Hex of the magnetic reproducing element of this embodiment at a predetermined angular frequency ω.
It is a graph which shows the relationship with. When the external magnetic field Hex is zero, that is, when the value on the horizontal axis in the figure is zero, the impedance Z depends on the magnetic permeability μ of the magnetic film and the angular frequency ω of the alternating current to be conducted, as shown in Equation 5. It will be the maximum value determined. As the external magnetic field Hex increases, the magnetic film approaches saturation, and the magnetic permeability μ decreases, so the impedance Z decreases. When the magnetic film is completely saturated, the magnetic permeability μ
Becomes a very small value like the magnetic permeability of air, and the impedance Z becomes substantially equal to the DC resistance Rdc. The slope of the change in the impedance Z with respect to the external magnetic field Hex is the sensitivity. That is, as shown in Expression (6), a value k obtained by dividing the difference between the impedance Z and the DC resistance Rdc by the saturation magnetic field Hsat.
Is the sensitivity.

【0028】[0028]

【数6】 [Equation 6]

【0029】式(5)と式(6)から明らかなように、
出力と感度は共に角周波数ωに比例するので、通電する
高周波電流の周波数は出来るだけ高い方が望ましい。一
般に高周波における透磁率は、複素透磁率のμ”の方が
μ’より大きいので、複素透磁率μ”の変化が現れる抵
抗成分が、より大きく反映されるように磁性膜の形状と
特性を選定するのが好ましい。
As is clear from the equations (5) and (6),
Since both the output and the sensitivity are proportional to the angular frequency ω, it is desirable that the frequency of the high frequency current to be conducted be as high as possible. In general, since the magnetic permeability at high frequencies is larger than μ'in the complex magnetic permeability μ ', the shape and characteristics of the magnetic film are selected so that the resistance component in which the change in the complex magnetic permeability μ'is reflected more greatly. Preferably.

【0030】第1の実施例の具体例では、膜厚(tmag)
を1μm、トラック幅に対応する膜幅を0.5μmと
し、金属磁性材料としてはNiFe合金を用いている。
本実施例における金属軟磁性膜の透磁率の周波数特性を
図4の(a)の曲線C1で示す。また出力レベルの周波
数特性を図4の(b)の曲線D1で示す。
In the concrete example of the first embodiment, the film thickness (t mag ).
Is 1 μm, the film width corresponding to the track width is 0.5 μm, and a NiFe alloy is used as the metal magnetic material.
The frequency characteristic of the magnetic permeability of the metal soft magnetic film in this example is shown by a curve C1 in FIG. The frequency characteristic of the output level is shown by the curve D1 in FIG.

【0031】《第2実施例》図2は本発明の第2の実施
例の磁気再生素子の斜視図である。第2の実施例では、
非磁性基板100の上に、厚さ数ミクロンの軟磁性膜2
1Aと、厚さ数100オングストロームの非磁性膜21
Bとを交互に積層し多層化して主磁極コア21を形成し
ている。主磁極コア21において、各磁性膜21Aは磁
気的にも電気的にも非磁性膜21Bにより分離されてい
る。多層化により主磁極コア21が第1の実施例のもの
と全く同じ寸法であっても、第1の実施例に比べて高い
周波数でより高い透磁率が得られるとともに過電流損失
が減少する。
<Second Embodiment> FIG. 2 is a perspective view of a magnetic reproducing element according to a second embodiment of the present invention. In the second embodiment,
On the non-magnetic substrate 100, a soft magnetic film 2 having a thickness of several microns
1A and a non-magnetic film 21 having a thickness of several hundred angstroms
B and B are alternately laminated to form a multi-layered main magnetic pole core 21. In the main magnetic pole core 21, each magnetic film 21A is magnetically and electrically separated by a non-magnetic film 21B. Due to the multilayer structure, even if the main magnetic pole core 21 has exactly the same size as that of the first embodiment, higher magnetic permeability can be obtained at a higher frequency and overcurrent loss can be reduced as compared with the first embodiment.

【0032】図4の(a)において、曲線C2は第2の
実施例の主磁極コア21の透磁率の周波数特性を示す。
図から明らかなように、第1の実施例の曲線C1に比べ
て高い周波数でも透磁率の低下が少なく、透磁率の周波
数による変化も小さい。高い周波数で高い透磁率を有す
るので、主磁極コア21に印加する高周波電源6の周波
数を高くすることができる。その結果図4の(b)の曲
線D2に示すように、出力レベルの周波数特性が大幅に
改善され、高い周波数で高密度で記録された磁化を高感
度で検出することができる。
In FIG. 4A, a curve C2 shows the frequency characteristic of the magnetic permeability of the main magnetic pole core 21 of the second embodiment.
As is apparent from the figure, the magnetic permeability is less likely to decrease even at a higher frequency than the curve C1 of the first embodiment, and the change in magnetic permeability with frequency is small. Since it has a high magnetic permeability at a high frequency, the frequency of the high frequency power source 6 applied to the main magnetic pole core 21 can be increased. As a result, as shown by the curve D2 in FIG. 4B, the frequency characteristic of the output level is significantly improved, and the magnetization recorded at high density and high density can be detected with high sensitivity.

【0033】《第3実施例》図5は本発明の第3の実施
例の磁気再生素子の斜視図である。主磁極コア21の基
本的な構成は、前記第2の実施例と同じである。本実施
例では磁気記録媒体の微小な面積の磁化を検出するため
に、磁束導入磁極として働く薄い磁極32を設けてい
る。一般に磁極32を薄くすると、磁極32の端面Fに
おける磁荷によって磁極32の磁性膜の面内の環流磁区
(90度磁壁)が大きくなって磁性膜の透磁率が低下す
る。本実施例では、図6の拡大図で示すように、厚さが
それぞれ50〜500オングストロームの磁性膜32A
と非磁性膜32Bとを交互に積層した多層膜で磁極32
を形成する。これにより隣り合う磁性膜32Aは磁気的
に分離される。本実施例では、磁極32に狭い幅Wの突
状部32Cを設けることにより、狭いトラック幅の磁気
媒体に用いることができる。このような多層膜の磁極3
2においては、各層の磁性膜の端部の磁荷が多層膜間で
打ち消しあうので、磁極32を狭い幅Wに加工をして
も、磁性膜の磁区は乱れず高周波における透磁率は高く
保たれる。ただし、多層膜の磁極32を同一の厚みの単
層膜のものに比較すれば、非磁性膜がある分磁性膜の断
面積は減少するので透磁率の絶対値は低くなる。しかし
第3の実施例において、インピーダンス変化を電圧に変
換するために働く部分は主磁極コア21である。従って
磁極32の透磁率の絶対値が低くても、外部磁界によっ
て磁化された磁極32によって磁束が主磁極21コアに
導かれるので、高い周波数においても主磁極21は外部
磁界により磁化される。そのため透磁率の周波数特性が
改善される。
<< Third Embodiment >> FIG. 5 is a perspective view of a magnetic reproducing element according to a third embodiment of the present invention. The basic structure of the main magnetic pole core 21 is the same as that of the second embodiment. In this embodiment, in order to detect the magnetization of a very small area of the magnetic recording medium, a thin magnetic pole 32 serving as a magnetic flux introducing pole is provided. Generally, when the magnetic pole 32 is thinned, the magnetic charge on the end face F of the magnetic pole 32 increases the in-plane magnetic domain (90 degree domain wall) in the plane of the magnetic film of the magnetic pole 32, and the magnetic permeability of the magnetic film decreases. In this embodiment, as shown in the enlarged view of FIG. 6, the magnetic film 32A having a thickness of 50 to 500 angstroms is used.
And the non-magnetic film 32B are alternately laminated to form a magnetic pole 32.
To form. As a result, the adjacent magnetic films 32A are magnetically separated. In this embodiment, by providing the magnetic pole 32 with the protrusion 32C having a narrow width W, it can be used for a magnetic medium having a narrow track width. Such a multi-layer magnetic pole 3
In No. 2, since the magnetic charges at the end portions of the magnetic films of the respective layers cancel each other out between the multilayer films, even if the magnetic pole 32 is processed to have a narrow width W, the magnetic domains of the magnetic film are not disturbed and the magnetic permeability at a high frequency is kept high. Be drunk However, when the magnetic pole 32 of the multi-layered film is compared with that of the single-layered film having the same thickness, the cross-sectional area of the magnetic film is reduced due to the presence of the non-magnetic film, so that the absolute value of the magnetic permeability becomes low. However, in the third embodiment, the portion that functions to convert the impedance change into the voltage is the main magnetic pole core 21. Therefore, even if the absolute value of the magnetic permeability of the magnetic pole 32 is low, the magnetic flux is guided to the main magnetic pole 21 core by the magnetic pole 32 magnetized by the external magnetic field, so that the main magnetic pole 21 is magnetized by the external magnetic field even at high frequencies. Therefore, the frequency characteristic of magnetic permeability is improved.

【0034】主磁極コア21は、第2実施例と同様に、
高周波電流による磁束が渦電流によって主磁極コア21
の表面に集中し感磁部分が局所化するのを防ぐために、
磁極32よりも厚い非磁性膜21Bを用いて多層化す
る。図4の(b)は、第1、第2及び第3の各実施例の
磁気再生素子を用いて再生ヘッドを構成したときの再生
出力レベルの周波数特性を示すグラフである。図におい
て、曲線D1、D2及びD3はそれぞれ、第1、第2及
び第3実施例の磁気再生素子を用いた磁気ヘッドの周波
数特性を示す。図から明らかなように、第2、第3実施
例のものは第1実施例のものに比べて周波数特性が改善
されている。第1実施例と第3実施例とを比較すると、
第3実施例のものは、第1実施例のものよりトラック幅
に対応する膜幅Wを小さくしたにもかかわらず高い周波
数域で大きな出力が得られる。
The main magnetic pole core 21 is similar to that of the second embodiment.
The magnetic flux generated by the high-frequency current causes the main magnetic pole core 21 to move by the eddy current.
In order to prevent the magnetically sensitive parts from being localized on the surface of the
The multi-layer is formed by using the non-magnetic film 21B thicker than the magnetic pole 32. FIG. 4B is a graph showing the frequency characteristic of the reproduction output level when the reproducing head is constructed using the magnetic reproducing elements of the first, second and third embodiments. In the figure, curves D1, D2 and D3 show the frequency characteristics of the magnetic head using the magnetic reproducing elements of the first, second and third embodiments, respectively. As is apparent from the figure, the frequency characteristics of the second and third embodiments are improved as compared with the first embodiment. Comparing the first embodiment and the third embodiment,
In the third embodiment, a large output can be obtained in a high frequency range even though the film width W corresponding to the track width is made smaller than that in the first embodiment.

【0035】以上の各実施例で説明した本発明の磁気再
生素子をインダクティブ型の薄膜磁気ヘッドと組み合わ
せて複合磁気ヘッドを構成すると、従来のものよりも簡
単な構成によって、高周波特性の優れた磁束応答型の磁
気再生ヘッドが得られる。
When the composite magnetic head is constructed by combining the magnetic reproducing element of the present invention described in each of the above embodiments with the inductive type thin film magnetic head, the magnetic flux having excellent high frequency characteristics is simpler than the conventional one. A responsive magnetic reproducing head is obtained.

【0036】《第4実施例》以下に本発明の第4実施例
として、図7の分解斜視図を用いて磁気ヘッドの製造方
法を説明する。本発明の磁気ヘッドは各要素が薄膜によ
り形成されているので、半導体素子の製造分野で広く用
いられている成膜技術を用いて製造することができる。
以下図7の各要素の加工工程を順に説明する。
<Fourth Embodiment> As a fourth embodiment of the present invention, a method of manufacturing a magnetic head will be described below with reference to the exploded perspective view of FIG. Since each element of the magnetic head of the present invention is formed of a thin film, the magnetic head can be manufactured using a film forming technique that is widely used in the field of manufacturing semiconductor devices.
The processing steps of each element in FIG. 7 will be described below in order.

【0037】フェライト等などの酸化物磁性体よりなる
基板70の一部にダイシング加工により段部70Aを形
成する。その段部70AにSiO2等の非磁性の絶縁膜
71をスパッタリングで形成した後に、ラッピング加工
で図の上側の被着面を平坦にする。絶縁膜71の上に厚
さ50オングストロームのSiO2の非磁性膜と厚さが
少なくとも100オングストロームのNiFe合金の磁
性膜を交互にスパッタリングにより積層して凸形の多層
膜の磁極32を形成する。磁極32の両端部にCu等の
スパッタリングで導体層74a、74bを形成する。導
体層74a、74bは、その上に形成される導体3a、
3bと磁極32との接続を確保するためのものである。
A step 70A is formed on a part of the substrate 70 made of an oxide magnetic material such as ferrite by dicing. A nonmagnetic insulating film 71 such as SiO 2 is formed on the step portion 70A by sputtering, and then the upper surface to be adhered in the drawing is flattened by lapping. A non-magnetic film of SiO 2 having a thickness of 50 Å and a magnetic film of a NiFe alloy having a thickness of at least 100 Å are alternately stacked on the insulating film 71 by sputtering to form a convex multi-layer magnetic pole 32. Conductor layers 74a and 74b are formed on both ends of the magnetic pole 32 by sputtering of Cu or the like. The conductor layers 74a and 74b have conductors 3a formed thereon,
This is for ensuring the connection between 3b and the magnetic pole 32.

【0038】次にNiFe合金の磁性膜21AとSiO
2の非磁性膜21Bとを交互にスパッタリングにより積
層したのちにイオンミリング加工によって台形状にエッ
チングして主磁極コア21を形成する。さらに、主磁極
コア21の台形の斜面にCu膜又はTa膜をスパッタリ
ング法により成膜したのち、イオンミリングによって導
体3a、3bを形成する。この時、同時に導体3aに接
続された導体線4a、9aを形成し、導体3bに接続さ
れた導体線4b、9bを形成する。最後に、基板70を
覆う磁極77をNiFeのスパッタリングにより形成し
て磁気ヘッドを完成する。本実施例の製造方法によれ
ば、磁気ヘッドの各要素の成膜をスパッタリングによっ
て行う。従って製造における効率が高く製造コストも安
価である。
Next, the NiFe alloy magnetic film 21A and SiO
The two non-magnetic films 21B are alternately laminated by sputtering, and then trapezoidal etched by ion milling to form the main magnetic pole core 21. Further, a Cu film or a Ta film is formed on the trapezoidal slope of the main magnetic pole core 21 by a sputtering method, and then the conductors 3a and 3b are formed by ion milling. At this time, the conductor lines 4a and 9a connected to the conductor 3a are simultaneously formed, and the conductor lines 4b and 9b connected to the conductor 3b are formed. Finally, the magnetic pole 77 covering the substrate 70 is formed by sputtering NiFe to complete the magnetic head. According to the manufacturing method of the present embodiment, film formation of each element of the magnetic head is performed by sputtering. Therefore, the manufacturing efficiency is high and the manufacturing cost is low.

【0039】[0039]

【発明の効果】以上各実施例で述べたところから明らか
なように、本発明の磁気再生素子を用いた磁気ヘッド
は、従来のインダクティブ磁気ヘッドや従来のMR磁気
ヘッドよりも簡単な構造なのでその製造工程もより単純
である。従って比較的高い歩留まりを確保しやすく、量
産性に優れている。さらに、従来よりも感度の高い磁気
インピーダンス効果による再生が可能なので、磁気記録
媒体の記録密度のより一層の高密度化がはかれる。さら
に従来のMR磁気ヘッド同様に磁束応答型なので、記録
再生装置の小型化による低速度化にも対応できる。
As is apparent from the above description of each embodiment, the magnetic head using the magnetic reproducing element of the present invention has a simpler structure than the conventional inductive magnetic head and the conventional MR magnetic head. The manufacturing process is also simpler. Therefore, it is easy to secure a relatively high yield and it is excellent in mass productivity. Further, since reproduction can be performed by the magnetic impedance effect having higher sensitivity than before, the recording density of the magnetic recording medium can be further increased. Further, since it is a magnetic flux response type like the conventional MR magnetic head, it is possible to cope with the speed reduction due to the miniaturization of the recording / reproducing apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の磁気再生素子の斜視図FIG. 1 is a perspective view of a magnetic reproducing element according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の磁気再生素子の斜視図FIG. 2 is a perspective view of a magnetic reproducing element according to a second embodiment of the present invention.

【図3】本発明の磁気再生素子のインピーダンスと外部
磁界との関係を示すグラフ
FIG. 3 is a graph showing the relationship between the impedance of the magnetic reproducing element of the present invention and the external magnetic field.

【図4】(a)本発明の第1及び第2実施例の磁気再生
素子の磁極の透磁率の周波数依存性を示すグラフ (b)本発明の第1、第2及び第3実施例の磁気再生素
子の出力レベルの周波数依存性を示すグラフ
FIG. 4A is a graph showing the frequency dependence of the magnetic permeability of the magnetic poles of the magnetic reproducing elements of the first and second embodiments of the invention. FIG. 4B is the graph of the first, second and third embodiments of the invention. Graph showing frequency dependence of output level of magnetic reproducing element

【図5】本発明の第3の実施例の磁気ヘッドの磁気再生
素子の斜視図
FIG. 5 is a perspective view of a magnetic reproducing element of a magnetic head according to a third embodiment of the invention.

【図6】第3実施例の磁極32の拡大図FIG. 6 is an enlarged view of a magnetic pole 32 according to a third embodiment.

【図7】本発明の磁気ヘッドの製造方法を示す分解斜視
FIG. 7 is an exploded perspective view showing a method of manufacturing a magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

1a、1b 非磁性絶縁膜 2 主磁極コア 3a、3b 導体 4a,4b 導体線 4c、4d 交流電圧出力端子 5a、5b 端子 6 高周波電源 7 外部磁化 9a、9b 導体線 21 主磁極コア 21A 磁性膜 21B 非磁性膜 32 磁極 32A 磁性膜 32B 非磁性膜 32C 突状部 70 基板 70A 段部 71 絶縁膜 74a、74b 導体層 77 磁極 100 基板 1a, 1b Non-magnetic insulating film 2 Main pole core 3a, 3b conductor 4a, 4b conductor wire 4c, 4d AC voltage output terminals 5a, 5b terminals 6 high frequency power supply 7 External magnetization 9a, 9b Conductor wire 21 Main pole core 21A magnetic film 21B non-magnetic film 32 magnetic poles 32A magnetic film 32B non-magnetic film 32C protrusion 70 board 70A step 71 insulating film 74a, 74b Conductor layer 77 magnetic pole 100 substrates

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−287057(JP,A) 特開 平7−63832(JP,A) 特開 平5−145143(JP,A) 特開 平4−102215(JP,A) 特開 平8−75835(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/33 G11B 5/31 H01L 43/08 G01R 33/09 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-287057 (JP, A) JP-A-7-63832 (JP, A) JP-A-5-145143 (JP, A) JP-A-4- 102215 (JP, A) JP-A-8-75835 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G11B 5/33 G11B 5/31 H01L 43/08 G01R 33/09

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁基板上に形成された第1の非磁性絶
縁膜、 前記第1の非磁性絶縁膜上に形成された、金属軟磁性膜
と磁気的電気的絶縁膜とを交互に積層し多層化した磁極
コア、 前記磁極コア上に形成された第2の非磁性絶縁膜、 前記絶縁基板上に形成され、前記金属軟磁性膜の両端部
にそれぞれ電気的に接続された導体、 前記導体にそれぞれ接続され、外部の定電流源から前記
導体に高周波電流を供給する第1の対の電極端子、及び
前記磁極コア内の、外部磁界の大きさによって変わる透
磁率に応じて変化する表皮効果による抵抗が加算された
インピーダンス、によって生じる電圧を外部へ導出する
ための、前記導体にそれぞれ接続された第2の対の電極
端子、 を有する磁気再生素子。
1. A first non-magnetic insulating film formed on an insulating substrate, and a metal soft magnetic film formed on the first non-magnetic insulating film.
And a magnetic / electrical insulating film are alternately laminated to form a multilayer magnetic pole core, a second non-magnetic insulating film formed on the magnetic pole core, both ends of the metal soft magnetic film formed on the insulating substrate. A conductor electrically connected to the conductor, a first pair of electrode terminals connected to the conductor and supplying a high-frequency current from an external constant current source to the conductor, and
The transparency in the magnetic pole core that changes depending on the magnitude of the external magnetic field.
Resistance due to the skin effect that changes according to magnetic susceptibility was added
The voltage generated by impedance is derived to the outside
And a second pair of electrode terminals respectively connected to the conductors.
【請求項2】 絶縁基板上に形成された、金属軟磁性膜
と磁気的絶縁膜とを交互に積層した多層膜の磁極、 前記多層膜の磁極上に形成され、金属軟磁性膜と磁気
電気絶縁膜とを交互に積層し多層化した磁極コア、 前記絶縁基板上に形成され、前記多層膜の磁極及び前記
磁極コアの金属軟磁性膜の両端部にそれぞれ電気的に接
続された導体、 前記導体にそれぞれ接続され、外部の定電流源から前記
導体に高周波電流を与える第1の対の電極端子、及び
記磁極コア内の、外部磁界の大きさによって変わる透磁
率に応じて変化する表皮効果による抵抗が加算されたイ
ンピーダンス、によって生じる電圧を外部へ導出する
めの、前記導体にそれぞれ接続された第2の対の電極端
子、 を有する磁気再生素子。
2. A formed on an insulating substrate, the magnetic poles of the multi-layer film formed by alternately laminating a metal soft magnetic film magnetically insulating film, formed on the magnetic poles of the multilayer film, a metal soft magnetic film and the magnetic
Electrical insulating film and the laminated alternately multi-layered magnetic pole cores, wherein formed on the insulating substrate, at both ends electrical of the multilayer film pole and the <br/> pole core of soft magnetic metal film connected conductor, are connected to the conductor, the electrode terminals of the first pair a high-frequency current is applied to the conductor from an external constant current source, and before
Magnetic permeability in the magnetic pole core that changes depending on the magnitude of the external magnetic field
The resistance due to the skin effect that changes depending on the rate is added.
Impedance, it was to derive a voltage to the outside caused by the
Because of the magnetic reproducing device having the electrode terminals of the second pair, which are respectively connected to the conductor.
【請求項3】 前記多層膜の磁極は、狭いトラック幅の
記録媒体に対向する突状部を有することを特徴とする請
求項2記載の磁気再生素子。
3. The magnetic reproducing element according to claim 2, wherein the magnetic poles of the multi-layer film have a protruding portion facing a recording medium having a narrow track width .
【請求項4】 前記請求項1から3のいずれかの磁気再
生素子、及びインダクティブ型薄膜記録素子を有する磁
気ヘッド。
4. A magnetic head having the magnetic reproducing element according to claim 1 and an inductive thin film recording element.
JP13063199A 1999-04-15 1999-05-11 Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same Expired - Fee Related JP3529668B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13063199A JP3529668B2 (en) 1999-05-11 1999-05-11 Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same
KR10-2000-0019586A KR100378553B1 (en) 1999-04-15 2000-04-14 Magnetic reproduction device, magnetic head using the device and method for producing the magnetic head
EP00108280A EP1045375A3 (en) 1999-04-15 2000-04-14 Magnetic reproduction device, magnetic head using the device and method for producing the magnetic head
US10/644,540 US20040085671A1 (en) 1999-04-15 2003-08-20 Magnetic reproduction device, magnetic head using the device and method for producing the magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13063199A JP3529668B2 (en) 1999-05-11 1999-05-11 Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001132893A Division JP2002042312A (en) 2001-04-27 2001-04-27 Magnetic reproducing element, magnetic head using the same and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2000322711A JP2000322711A (en) 2000-11-24
JP3529668B2 true JP3529668B2 (en) 2004-05-24

Family

ID=15038874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13063199A Expired - Fee Related JP3529668B2 (en) 1999-04-15 1999-05-11 Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3529668B2 (en)

Also Published As

Publication number Publication date
JP2000322711A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
JP2001176028A (en) Thin film magnetic head and method of producing the same
JP2002025015A (en) Magnetic tunnel effect type magnetic head and method of manufacture
JP2000030227A (en) Thin-film magnetic head and its production
JP3294742B2 (en) Magnetoresistive head
JP3529668B2 (en) Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
KR100378553B1 (en) Magnetic reproduction device, magnetic head using the device and method for producing the magnetic head
JP2002042312A (en) Magnetic reproducing element, magnetic head using the same and its manufacturing method
JP3474806B2 (en) Magnetic reproducing element, method of manufacturing the same, and magnetic reproducing apparatus using the same
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPH08330645A (en) Magnetic detection element
JP2003030804A (en) Thin-film magnetic head and its manufacturing method
JP3171183B2 (en) Recording / playback separation combined magnetic head
JPH0817022A (en) Production of combined thin-film magnetic head
JPH06267027A (en) Magnetoresistance effect type thin film magnetic head
JPS6271016A (en) Thin film magnetic head
JPH11213339A (en) Magnetic head and magnetic reproducing device using the head
JPH08316547A (en) Magneto-detecting element and manufacture thereof
JP2002026427A (en) Method of manufacturing magnetoresistive effect device and magnetoresistive effect magnetic head
JPH0757224A (en) Magneto-resistance effect type magnetic head and combined magnetic head
JP2000076622A (en) Magnetic head, its manufacture and magnetic reproducing device
JPH08321013A (en) Magnetic head and its production
JP2000357308A (en) Magnetic head
JPH0991630A (en) Magneto-resistive element and magnetic head and magnetic recording and reproducing device formed by using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees