JPH09113590A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH09113590A
JPH09113590A JP7269581A JP26958195A JPH09113590A JP H09113590 A JPH09113590 A JP H09113590A JP 7269581 A JP7269581 A JP 7269581A JP 26958195 A JP26958195 A JP 26958195A JP H09113590 A JPH09113590 A JP H09113590A
Authority
JP
Japan
Prior art keywords
magnetic
film
medium
magnetic flux
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7269581A
Other languages
Japanese (ja)
Inventor
Masahiro Kawase
正博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP7269581A priority Critical patent/JPH09113590A/en
Publication of JPH09113590A publication Critical patent/JPH09113590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain high precision and high resolution in a magnetic sensor for a magnetic encoder moved relatively to magnetized media magnetized so as to have reverse polarity alternately at specified magnetizing pitches for detecting the magnetic fields of the magnetized media by a magnetic impedance effect. SOLUTION: This sensor is constructed in such a manner that a highly magnetically permeable magnetic film 12 is formed on a non-magnetic substrate 10. The magnetic film 12 is formed in a zigzag pattern composed of a plurality of linear magnetic flux flowing-in parts 12a arranged in parallel at the intervals of odd multiple of a magnetizing pitch P and a plurality of linear magnetic detecting part 12b for interconnecting these parts in a sequentially folding manner. The magnetic film 12 is placed to face a magnetized medium 14 in parallel by causing the extended direction of the magnetic flux flowing-in part 12a to be in parallel with a direction for connecting the same phase of the magnetization of the medium 14, a high frequency current is applied from both ends to the magnetic film 12 and the change of impedance generated between both end parts of the magnetic film 12 by a magnetic flux from the medium is converted into an electric signal and thereby an output is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、位置検出等に用い
られる磁気エンコーダーにおいて、所定の着磁ピッチで
交互に逆極性に着磁された着磁媒体に対し相対的に移動
して前記着磁媒体の磁界を検出する磁気センサーに関
し、特に磁気インピーダンス効果を利用して磁界検出を
行なう高精度の磁気エンコーダー用の磁気センサーに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic encoder used for position detection or the like, wherein the magnetizing medium is moved relative to a magnetizing medium which is alternately magnetized to have a reverse polarity at a predetermined magnetizing pitch. The present invention relates to a magnetic sensor that detects a magnetic field of a medium, and particularly to a magnetic sensor for a high-precision magnetic encoder that detects a magnetic field by utilizing a magnetic impedance effect.

【0002】[0002]

【従来の技術】最近のビデオカメラのオートフォーカ
ス,高解像プリンター,計測機器等における位置検出,
位置決め機構は小型高精度化が進んでおり、そこに採用
されている磁気エンコーダーもさらに高精度、高分解能
化が期待されている。
2. Description of the Related Art Recent video camera autofocus, high-resolution printer, position detection in measuring equipment, etc.
The positioning mechanism is becoming smaller and more accurate, and it is expected that the magnetic encoder used there will also have higher accuracy and higher resolution.

【0003】従来の磁気エンコーダー用の磁気センサー
は磁気抵抗効果素子(以下、MR素子と略す)が主に採
用されているが、高精度、高分解能化による着磁媒体の
着磁ピッチの短縮により、着磁媒体から外部に漏れる磁
束が極端に小さくなり、将来において感度不足が懸念さ
れる。
A magnetic sensor for a conventional magnetic encoder mainly uses a magnetoresistive effect element (hereinafter, abbreviated as MR element). However, due to high accuracy and high resolution, the magnetizing pitch of a magnetizing medium is shortened. The magnetic flux leaking from the magnetizing medium to the outside becomes extremely small, and there is concern that sensitivity may be insufficient in the future.

【0004】そこで、最近注目を集めているのが特開平
7−181239号に開示されているアモルファスワイ
ヤーによる磁気インピーダンス効果を利用した磁気検出
素子(以下、MI素子という)である。磁気インピーダ
ンス効果とは、磁性体にMHz帯域の高周波電流を流す
と、外部磁界により磁性体のインピーダンスが変化し、
それによる磁性体の両端電圧の振幅が数ガウスの微小磁
界で数10%変化する現象である。
Therefore, a magnetic detection element (hereinafter referred to as an MI element) utilizing the magneto-impedance effect by an amorphous wire, which is disclosed in Japanese Patent Laid-Open No. 7-181239, has recently been attracting attention. What is the magneto-impedance effect? When a high frequency current in the MHz band is passed through a magnetic material, the impedance of the magnetic material changes due to an external magnetic field,
This is a phenomenon in which the amplitude of the voltage across the magnetic body changes by several tens of percent with a minute magnetic field of several Gauss.

【0005】MI素子の磁束検出の分解能が、MR素子
の0.1Oeという低感度に対して、10-5Oe程度の
高感度が得られることにより、MI素子の磁気エンコー
ダー用磁気センサーへの応用が期待されている。
The resolution of the magnetic flux detection of the MI element is as high as about 10 -5 Oe as compared with the low sensitivity of 0.1 Oe of the MR element, so that the MI element can be applied to a magnetic sensor for a magnetic encoder. Is expected.

【0006】[0006]

【発明が解決しようとする課題】上記MI素子の機能は
アモルファスワイヤーで見い出されたものであり、アモ
ルファスワイヤーは材料として生産性は優れている。し
かし、アモルファスワイヤーは、断面が円形であること
や径が細く曲がりやすいことにより、磁気エンコーダー
用磁気センサーの検出素子本体として要求される直線性
の確保や複雑なパターンの形成が困難となる。
The function of the MI element is found in the amorphous wire, and the amorphous wire is excellent in productivity as a material. However, since the amorphous wire has a circular cross section and has a small diameter and is easily bent, it is difficult to secure the linearity required for the detection element body of the magnetic sensor for the magnetic encoder and to form a complicated pattern.

【0007】また、磁気エンコーダー用磁気センサーで
は、通常、着磁媒体の着磁ムラの影響を少なくするため
に、複数の磁化の磁束を検出し平均化する必要がある。
このために、従来のMR素子を用いた磁気センサーで
は、一般的に図8に示すように、MR素子本体としての
磁性膜101を、着磁媒体102の着磁ピッチPと等ピ
ッチで順次折り返されるつづら折りパターンに形成した
構成が採用されている。この場合、ピッチPで平行に並
ぶ図中縦方向の直線部分のそれぞれが磁気抵抗効果の作
用する磁気検出部101aである。MR素子では素子本
体の磁性体に対し幅方向の磁束を検出するので、磁気検
出部101aの幅方向が、着磁媒体102の矢印で示す
各磁化の磁化方向に対し平行にされる。すなわち、磁気
検出部101aの延びる長手方向が、破線で示す各磁化
の境界(磁化反転の境界)102aの方向として示され
る各磁化の同一位相を結ぶ方向に対し平行にされて磁界
検出が行なわれる。また、磁性膜101は、磁化容易軸
方向が膜面内で磁気検出部101aの延びる長手方向
(図中縦方向)に平行になるように磁気異方性が付けら
れている。
Further, in the magnetic sensor for the magnetic encoder, it is usually necessary to detect and average the magnetic fluxes of a plurality of magnetizations in order to reduce the influence of the magnetization unevenness of the magnetization medium.
For this reason, in the conventional magnetic sensor using the MR element, as shown in FIG. 8, the magnetic film 101 as the MR element body is generally folded back at the same pitch as the magnetization pitch P of the magnetizing medium 102. A structure formed in a zigzag folded pattern is used. In this case, each of the straight line portions in the vertical direction in the drawing arranged in parallel at the pitch P is the magnetic detection unit 101a on which the magnetoresistance effect acts. Since the MR element detects the magnetic flux in the width direction with respect to the magnetic body of the element body, the width direction of the magnetic detection portion 101a is made parallel to the magnetization direction of each magnetization shown by the arrow of the magnetizing medium 102. That is, the longitudinal direction in which the magnetic detection unit 101a extends is made parallel to the direction connecting the same phase of each magnetization shown as the direction of each magnetization boundary (boundary of magnetization reversal) 102a indicated by the broken line, and magnetic field detection is performed. . The magnetic film 101 has magnetic anisotropy so that the easy axis of magnetization is parallel to the longitudinal direction (longitudinal direction in the drawing) in which the magnetic detection unit 101a extends in the film plane.

【0008】これに対し、MI素子は素子本体の磁性体
の延びる長手方向の磁束を検出するため、平均化手法に
対し上記MR素子と異なる構成を工夫する必要がある。
On the other hand, since the MI element detects the magnetic flux in the longitudinal direction in which the magnetic body of the element body extends, it is necessary to devise a different averaging method from that of the MR element.

【0009】そこで、本発明の課題は、磁気インピーダ
ンス効果を利用した磁気センサーであって、着磁媒体の
複数の磁化の磁界検出及びその平均化が可能であり、高
精度、高分解能の磁気エンコーダー用として好適な磁気
センサーを提供することにある。
Therefore, an object of the present invention is a magnetic sensor utilizing the magnetic impedance effect, which is capable of detecting magnetic fields of a plurality of magnetizations of a magnetized medium and averaging them, and is a high-precision and high-resolution magnetic encoder. An object of the present invention is to provide a magnetic sensor suitable for use as a magnetic field.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、本発明によれば、所定の着磁ピッチで交互に逆極性
に着磁された着磁媒体に対し相対的に移動して前記着磁
媒体の磁界を磁気インピーダンス効果により検出する磁
気エンコーダー用の磁気センサーであって、非磁性基板
上に高透磁率磁性膜を形成して構成され、前記磁性膜
は、前記着磁ピッチの奇数倍の間隔で平行に並ぶ複数本
の直線状の磁束流入部と、該磁束流入部を順次折り返す
ように連結する複数本の直線状の磁気検出部とからなる
つづら折りパターンに形成され、かつ磁化容易軸方向が
膜面内で前記磁気検出部の延びる方向に対し垂直になる
ように磁気異方性が付けられており、前記磁性膜の磁束
流入部の延びる方向を前記着磁媒体の磁化の同一位相を
結ぶ方向に平行にして該磁性膜を着磁媒体に平行に対向
させ、該磁性膜に対し両端部から高周波電流を印加し、
着磁媒体からの磁束により該磁性膜の両端部間に発生す
るインピーダンスの変化を電気信号に変換して出力を得
られるようにした構成を採用した。
In order to solve the above-mentioned problems, according to the present invention, the magnetic recording medium is moved relative to a magnetized medium alternately magnetized with a predetermined magnetizing pitch and having opposite polarities. A magnetic sensor for a magnetic encoder that detects a magnetic field of a magnetized medium by a magnetic impedance effect, the magnetic sensor being formed by forming a high-permeability magnetic film on a non-magnetic substrate, wherein the magnetic film has an odd number of magnetizing pitches. It is formed in a zigzag fold pattern consisting of a plurality of linear magnetic flux inflow portions arranged in parallel at a double interval and a plurality of linear magnetic detection portions that are connected so as to sequentially fold the magnetic flux inflow portions, and is easy to magnetize. Magnetic anisotropy is provided so that the axial direction is perpendicular to the extending direction of the magnetic detecting portion in the film surface, and the extending direction of the magnetic flux inflow portion of the magnetic film is the same as that of the magnetization of the magnetizing medium. Parallel to the direction of connecting the phases Magnetic film parallel to face the Chaku磁媒 body, a high-frequency current is applied from both ends to the magnetic film,
A structure is adopted in which a change in impedance generated between both ends of the magnetic film by a magnetic flux from a magnetized medium is converted into an electric signal to obtain an output.

【0011】このような構成によれば、磁性膜の隣り合
う磁束流入部どうしのそれぞれにより、着磁媒体の複数
の磁化のそれぞれから磁束を還流磁束として磁性膜の磁
気検出部のそれぞれに引き込むことができる。上記の磁
気異方性の設定により、磁性膜の磁気検出部は引き込ま
れた磁束により磁気インピーダンス効果を発生させるこ
とができる。磁性膜全体のインピーダンスは各磁束還流
部のインピーダンスの和として現れるので、複数の磁化
の磁束の検出と平均化を行なえる。
According to this structure, the magnetic fluxes from the plurality of magnetizations of the magnetized medium are drawn into the respective magnetic detection portions of the magnetic film as the reflux magnetic fluxes by the adjacent magnetic flux inflow portions of the magnetic film. You can By setting the above magnetic anisotropy, the magnetic detection part of the magnetic film can generate a magnetic impedance effect by the magnetic flux drawn. Since the impedance of the entire magnetic film appears as the sum of the impedances of the magnetic flux return portions, it is possible to detect and average the magnetic fluxes of a plurality of magnetizations.

【0012】また、非磁性基板上に素子本体としての磁
性膜を形成して構成されるので、平面的に形成でき、素
子本体として複雑なパターンも容易に形成でき、高精
度、高分解能の磁気エンコーダー用として好適である。
Further, since a magnetic film as an element body is formed on a non-magnetic substrate, it can be formed in a plane and a complicated pattern can be easily formed as an element body. It is suitable for encoders.

【0013】[0013]

【発明の実施の形態】以下、図を参照して本発明の実施
形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】[第1の実施形態]図1は、本発明の第1
の実施形態による磁気エンコーダー用磁気センサーの基
本的な構造を示すものである。
[First Embodiment] FIG. 1 shows a first embodiment of the present invention.
2 shows a basic structure of a magnetic sensor for a magnetic encoder according to the embodiment of FIG.

【0015】図1において、14は着磁媒体であり、こ
こではテープ状のものとし、長手方向に所定ピッチPで
交互に逆極性に着磁されている。着磁媒体14の各磁化
の境界、すなわち磁化反転の境界を14aの破線で示し
てある。この着磁媒体14に対し、次に述べる磁気セン
サーが相対的に移動する。すなわち、磁気センサーまた
は着磁媒体14が移動する。その移動方向は、矢印で示
すように着磁媒体14の着磁が連続する方向である長手
方向に沿った方向とする。
In FIG. 1, reference numeral 14 denotes a magnetizing medium, which is a tape-shaped medium here and is magnetized in the longitudinal direction at a predetermined pitch P alternately in opposite polarities. The boundaries of the magnetizations of the magnetized medium 14, that is, the boundaries of the magnetization reversal are indicated by broken lines 14a. The magnetic sensor described below moves relative to the magnetized medium 14. That is, the magnetic sensor or the magnetizing medium 14 moves. The moving direction is the direction along the longitudinal direction, which is the direction in which the magnetization of the magnetizing medium 14 continues, as indicated by the arrow.

【0016】一方、図1において10は磁気センサーの
非磁性基板(以下、基板と略す)であり、チタン酸カル
シウム(Ti−Ca系セラミック)、酸化物ガラス、チ
タニア(TiO2)、アルミナ(Al23)等の非磁性
材から長方形の平板として形成されている。基板10は
長手方向が着磁媒体14の長手方向に沿い、その上面が
着磁媒体14の面に近接して平行に対向するように配置
される。
On the other hand, in FIG. 1, reference numeral 10 denotes a non-magnetic substrate (hereinafter abbreviated as substrate) of the magnetic sensor, which includes calcium titanate (Ti-Ca type ceramic), oxide glass, titania (TiO 2 ), alumina (Al). It is formed as a rectangular flat plate from a non-magnetic material such as 2 O 3 ). The substrate 10 is arranged such that its longitudinal direction is along the longitudinal direction of the magnetized medium 14, and its upper surface is close to and parallel to the surface of the magnetized medium 14.

【0017】基板10の上面には、磁気センサーの磁気
検出素子本体として高透磁率磁性膜(以下、磁性膜と略
す)12が形成されている。磁性膜12は、Fe−Co
−B系等のアモルファス膜やFe−Ta−N系やFe−
Ta−C系等の微結晶膜などの高透磁率金属磁性膜から
なり、ここでは単層の膜とする。
A high-permeability magnetic film (hereinafter abbreviated as a magnetic film) 12 is formed on the upper surface of the substrate 10 as a magnetic detection element body of a magnetic sensor. The magnetic film 12 is Fe-Co.
-B type amorphous film, Fe-Ta-N type, Fe-
It is composed of a high-permeability metal magnetic film such as a Ta-C-based microcrystalline film, and is a single-layer film here.

【0018】磁性膜12は、着磁媒体14の着磁ピッチ
Pに等しい間隔で平行に並ぶ複数本(ここでは9本)の
直線状の磁束流入部12aと、この磁束流入部12aの
延びる方向に対し垂直な方向に沿って磁束流入部12a
を順次折り返すように連結する複数本(ここでは8本)
の直線状の磁気検出部12bとからなるつづら折りパタ
ーンに形成されている。磁束流入部12aとなっている
磁性膜12の両端に連続して端子16A,16Bが設け
られている。端子16A,16BはCu,Au等の導電
膜として形成されるか、あるいは磁性膜12の両端部を
延長して形成される。
The magnetic film 12 is composed of a plurality of (9 in this case) linear magnetic flux inflow portions 12a arranged in parallel at an interval equal to the magnetizing pitch P of the magnetizing medium 14, and a direction in which the magnetic flux inflow portions 12a extend. Along the direction perpendicular to the magnetic flux inflow portion 12a
Multiples that are connected so that they are folded back in sequence (here, 8)
Is formed in a zigzag fold pattern composed of the linear magnetic detection part 12b. Terminals 16A and 16B are continuously provided at both ends of the magnetic film 12 serving as the magnetic flux inflow portion 12a. The terminals 16A and 16B are formed as conductive films of Cu, Au, or the like, or are formed by extending both ends of the magnetic film 12.

【0019】また、磁性膜12は、その長手方向、つま
り磁気検出部12bの延びる方向が基板10の長手方向
に平行、すなわち着磁媒体14の長手方向に平行にさ
れ、磁束流入部12aの延びる方向が着磁媒体14の各
磁化の境界(磁化反転の境界)14aの方向として示さ
れる磁化の同一位相を結ぶ方向に平行にされて、着磁媒
体14に近接して平行に対向するように配置される。な
お、ここでは前記磁化の同一位相を結ぶ方向を着磁媒体
14の長手方向に対し垂直な幅方向としたが、長手方向
に対し傾斜した方向としても良く、その場合、磁束流入
部12aの延びる方向も前記同一位相を結ぶ方向と平行
にするため、磁性膜12の長手方向(磁気検出部12b
の延びる方向)に対して傾斜した方向とする。
In the magnetic film 12, the longitudinal direction thereof, that is, the direction in which the magnetic detection portion 12b extends is parallel to the longitudinal direction of the substrate 10, that is, the longitudinal direction of the magnetizing medium 14, and the magnetic flux inflow portion 12a extends. The direction is made parallel to the direction connecting the same phase of magnetization shown as the direction of each magnetization boundary (boundary of magnetization reversal) 14a of the magnetized medium 14 so as to face the magnetized medium 14 closely in parallel. Will be placed. Although the direction connecting the same phases of the magnetization is the width direction perpendicular to the longitudinal direction of the magnetized medium 14 here, it may be a direction inclined with respect to the longitudinal direction, in which case the magnetic flux inflow portion 12a extends. In order to make the direction parallel to the direction connecting the same phase, the longitudinal direction of the magnetic film 12 (the magnetic detecting portion 12b
The direction in which the direction extends) is inclined.

【0020】このような構造により、磁束流入部12a
により着磁媒体14の磁化から発生する磁束を磁気検出
部12bに引き込み、隣接する磁束流入部12aとで形
成される閉磁路により磁束を還流させることができる。
With such a structure, the magnetic flux inflow portion 12a
Thus, the magnetic flux generated by the magnetization of the magnetized medium 14 can be drawn into the magnetic detection unit 12b, and the magnetic flux can be recirculated by the closed magnetic path formed by the adjacent magnetic flux inflow unit 12a.

【0021】なお、磁性膜12は、その磁化容易軸方向
が矢印で示すように膜面内で磁気検出部12bの延びる
方向(磁性膜12全体の長手方向)に垂直な方向となる
ように、成膜後の磁場中アニール等により磁気異方性を
つけておく。
The magnetic film 12 has its easy axis of magnetization perpendicular to the direction in which the magnetic detection portion 12b extends (longitudinal direction of the entire magnetic film 12) in the film plane as indicated by the arrow. After film formation, magnetic anisotropy is provided by annealing in a magnetic field.

【0022】以上のような構成のもとに、磁気エンコー
ダーの動作時には、磁性膜12の両端に設けられた端子
16A,16Bより磁性膜12に高周波電流を印加し、
着磁媒体14から磁性膜12内部に引き込まれた磁束に
より磁性膜12の両端の端子16A,16B間のインピ
ーダンスが変化し、その変化を電気信号に変換して出力
を得るようになっている。
With the above configuration, when the magnetic encoder is operating, a high frequency current is applied to the magnetic film 12 from terminals 16A and 16B provided at both ends of the magnetic film 12,
The magnetic flux drawn from the magnetized medium 14 into the magnetic film 12 changes the impedance between the terminals 16A and 16B at both ends of the magnetic film 12, and the change is converted into an electric signal to obtain an output.

【0023】次に本実施形態の磁気センサーの動作時の
作用、効果について図2,図3を用いて説明する。
Next, the operation and effect of the magnetic sensor of this embodiment during operation will be described with reference to FIGS.

【0024】図2に示すように、着磁媒体14の個々の
磁化から磁束が矢印のとおり磁性膜12の磁束流入部1
2aのそれぞれから磁気検出部12bのそれぞれに引き
込まれ、隣接する磁束流入部12aから着磁媒体14に
戻り、還流磁束が形成される。ここで磁束流入部12a
の幅wは、あまり狭すぎると還流磁束に対する磁気抵抗
が大きくなることで下限を3μmとし、また広すぎると
着磁媒体からの漏れ磁束の変化が曖昧となるため着磁ピ
ッチPの1/2を上限とするのが望ましい。また、磁束
流入部の長さdは、着磁媒体14からの磁束を拾う幅と
なり、磁気ヘッドで言うトラック幅に相当する。
As shown in FIG. 2, the magnetic fluxes from the individual magnetizations of the magnetized medium 14 are indicated by arrows, and the magnetic flux inflow portion 1 of the magnetic film 12 is indicated.
The magnetic flux is drawn into each of the magnetic detectors 12b from each of 2a, returns to the magnetized medium 14 from the adjacent magnetic flux inflow portion 12a, and a reflux magnetic flux is formed. Here, the magnetic flux inflow portion 12a
If the width w is too narrow, the lower limit is set to 3 μm because the magnetic resistance to the return flux increases, and if it is too wide, the change of the leakage flux from the magnetizing medium becomes ambiguous, and the width of the magnetizing pitch P is 1/2. It is desirable that the upper limit is The length d of the magnetic flux inflow portion is the width for picking up the magnetic flux from the magnetized medium 14, and corresponds to the track width of the magnetic head.

【0025】磁束流入部12aが9本形成されているこ
とにより、着磁媒体14の8つの磁化の磁束を還流磁束
として磁性膜12の8つの磁気検出部12bのそれぞれ
に引き込むことができる。磁気検出部12bに引き込ま
れた磁束は、その部分では磁化容易軸方向と垂直な方向
に流れることで磁気インピーダンス効果が発生し、イン
ピーダンスの変化が現れる。
Since the nine magnetic flux inflow portions 12a are formed, the magnetic fluxes of the eight magnetizations of the magnetized medium 14 can be drawn into the eight magnetic detection portions 12b of the magnetic film 12 as reflux magnetic fluxes. The magnetic flux drawn into the magnetic detection unit 12b flows in a direction perpendicular to the easy axis of magnetization in that portion, so that a magneto-impedance effect occurs and a change in impedance appears.

【0026】ここで、隣り合う磁気検出部12bどうし
において互いに逆方向に磁束が流れるが、磁気インピー
ダンス効果は、図3の通り外部磁界の方向に対して対称
の特性を持っているため、磁束の方向に関わらず、磁性
膜12の全体のインピーダンスは各磁束還流部のインピ
ーダンスの和として現れる。すなわち、8つの磁化の磁
束によるインピーダンスの和が得られ、8つの磁界の磁
束の検出と平均化を行え、これにより着磁媒体14に着
磁ムラがあっても、影響が緩和される。
Here, magnetic fluxes flow in mutually opposite directions between the adjacent magnetic detecting portions 12b, but the magnetic impedance effect has a characteristic symmetrical with respect to the direction of the external magnetic field as shown in FIG. Regardless of the direction, the overall impedance of the magnetic film 12 appears as the sum of the impedances of the magnetic flux return portions. That is, the sum of impedances due to the magnetic fluxes of the eight magnetizations can be obtained, and the magnetic fluxes of the eight magnetic fields can be detected and averaged, so that even if the magnetizing medium 14 has uneven magnetization, the influence is mitigated.

【0027】また、別の効果として、磁性膜12の長手
方向に沿って進入する着磁媒体14以外からのノイズと
なる有害な外部磁界Hexの影響も回避することができ
る。すなわち、図2に示す隣り合う逆方向の還流磁束が
流れるA部,B部のインピーダンスは、Hex=0の場
合は図3のZoに対応しているとすると、Hex>0の
場合、A部では還流磁束が外部磁界Hexに対し逆方向
の為インピーダンスがZmに低下し、B部では逆に還流
磁束が順方向のためZpに増加し、その和は2Zoと大
差なく、外部磁界の影響がほぼ相殺される。但し、磁性
膜12全体として外部磁界の影響を相殺するには、磁性
膜12内の還流磁束の正逆方向の数を等しくする必要が
あり、このために磁束流入部12aの数を3以上の奇数
として磁気検出部12bの数を2以上の偶数とする必要
がある。
Further, as another effect, it is possible to avoid the influence of harmful external magnetic field Hex which becomes noise from other than the magnetizing medium 14 which enters along the longitudinal direction of the magnetic film 12. That is, assuming that the impedances of the portions A and B in FIG. 2 in which the adjacent reflux magnetic fluxes in the opposite directions flow correspond to Zo of FIG. 3 when Hex = 0, the portion A when Hex> 0. In, the return magnetic flux is in the opposite direction to the external magnetic field Hex, so the impedance is reduced to Zm, and in the B part, the return magnetic flux is increased in the forward direction to Zp, and the sum is almost the same as 2Zo. Almost offset. However, in order to cancel the influence of the external magnetic field in the magnetic film 12 as a whole, it is necessary to equalize the number of the reflux magnetic fluxes in the magnetic film 12 in the forward and reverse directions. Therefore, the number of the magnetic flux inflow portions 12a is 3 or more. It is necessary to set the number of the magnetic detection units 12b to an even number, which is 2 or more, as an odd number.

【0028】以上のように、本実施形態のセンサーは着
磁媒体14の複数の磁化の検出とその平均化を行なうこ
とができ、磁気エンコーダー用として好適に用いること
ができる。しかもノイズとなる外部磁界の影響を回避
し、安定した出力が得られる。
As described above, the sensor of this embodiment can detect a plurality of magnetizations of the magnetized medium 14 and average them, and can be suitably used for a magnetic encoder. Moreover, the stable output can be obtained by avoiding the influence of the external magnetic field which becomes noise.

【0029】また、磁束流入部12aの幅wを3μmま
で細くできて磁束流入部12aの間隔のピッチPを小さ
くできるため素子本体の磁性体の幅方向の磁界を検知す
るMR素子に比べ、より短い着磁ピッチの着磁媒体の磁
界検出を行うことができ、高精度、高分解能の磁気エン
コーダー用として好適に用いることができる。
Further, since the width w of the magnetic flux inflow portion 12a can be reduced to 3 μm and the pitch P between the magnetic flux inflow portions 12a can be reduced, compared with the MR element for detecting the magnetic field in the width direction of the magnetic body of the element body, It is possible to detect a magnetic field of a magnetizing medium having a short magnetizing pitch, and it can be suitably used for a magnetic encoder with high accuracy and high resolution.

【0030】また、センサーの素子本体は磁性膜で形成
されるので、従来のアモルファスワイヤーでの取り扱い
の困難さや複雑なパターンへの対応ができなかつたこと
等の問題が解消され、生産性にも優れている。
Further, since the element body of the sensor is formed of a magnetic film, problems such as difficulty of handling with conventional amorphous wires and inability to deal with complicated patterns have been solved, and productivity is improved. Are better.

【0031】次に、本発明の他の実施形態を図4〜図7
により説明するが、図4〜図7において第1の実施形態
の図1,図2中と共通ないし対応する部分には共通の符
号が付してある。各実施形態の説明において第1の実施
形態と共通な部分の説明は省略する。
Next, another embodiment of the present invention will be described with reference to FIGS.
4 to 7, the same or corresponding portions as those in FIGS. 1 and 2 of the first embodiment are designated by the same reference numerals. In the description of each embodiment, the description of the parts common to the first embodiment will be omitted.

【0032】[第2の実施形態]図4,図5は第2の実
施形態の磁気センサーの構造を示している。図4に示す
ように、本実施形態では基板10上の磁性膜12の外形
は第1の実施形態の磁性膜12と同じつづら折りパター
ンであるが、図5に示すように磁性膜12は2層の磁性
膜121,122を積層したものとして形成されてい
る。そして、磁性膜121,122の間には、磁性膜1
21,122より細くて磁性膜121,122に対応し
たつづら折りパターンに形成された導電膜18が挟まれ
ている。導電膜18は磁性膜121,122の全長にわ
たって挟まれており、両端部が磁性膜121,122の
両端部より露出して端子18A,18Bとして形成され
ている。なお、導電膜18はCu,Au等からなる。
[Second Embodiment] FIGS. 4 and 5 show the structure of a magnetic sensor according to a second embodiment. As shown in FIG. 4, in the present embodiment, the outer shape of the magnetic film 12 on the substrate 10 has the same zigzag pattern as the magnetic film 12 of the first embodiment, but as shown in FIG. 5, the magnetic film 12 has two layers. The magnetic films 121 and 122 are laminated. The magnetic film 1 is provided between the magnetic films 121 and 122.
The conductive film 18 is sandwiched between the thin films 21 and 122 and formed in a zigzag pattern corresponding to the magnetic films 121 and 122. The conductive film 18 is sandwiched over the entire length of the magnetic films 121 and 122, and both ends thereof are exposed from both ends of the magnetic films 121 and 122 and are formed as terminals 18A and 18B. The conductive film 18 is made of Cu, Au, or the like.

【0033】このような構成で検出動作時には、端子1
8A,18Bから導電膜18に高周波電流を流す。導電
膜18とともに磁性膜121,122にも高周波電流が
流れるが、導電膜18の方が1〜2桁比抵抗が低いた
め、センサー全体の直流抵抗値が第1の実施形態より低
く設定でき、Q値も上げられる。着磁媒体からの磁束が
第1の実施形態と同様に磁性膜121,122に流れる
ことにより導電膜18の端子18A,18B間のインピ
ーダンスが変化し、その変化が電気信号に変換されて出
力が得られるようになっている。
With such a configuration, the terminal 1
A high frequency current is passed through the conductive film 18 from 8A and 18B. A high-frequency current flows through the magnetic films 121 and 122 together with the conductive film 18, but since the conductive film 18 has a lower specific resistance by 1 to 2 digits, the DC resistance value of the entire sensor can be set lower than that in the first embodiment. The Q value can also be increased. As in the first embodiment, the magnetic flux from the magnetized medium flows into the magnetic films 121 and 122 to change the impedance between the terminals 18A and 18B of the conductive film 18, and the change is converted into an electric signal to output. You can get it.

【0034】このような構成によれば、第1の実施形態
のように磁性膜12が単層構造のものより磁性膜12の
直流抵抗を下げることでQ値を上げ、発振回路の条件に
よっては単層のものより扱いやすくなる。
With this structure, the Q value is increased by lowering the DC resistance of the magnetic film 12 as compared with the magnetic film 12 having a single layer structure as in the first embodiment, and depending on the conditions of the oscillation circuit. It is easier to handle than a single layer.

【0035】[第3の実施形態]第1の実施形態では、
着磁媒体14の着磁ピッチPと磁性膜12の磁束流入部
12aの間隔のピッチを等しくしたが、着磁媒体の着磁
ピッチPが極端に小さくなる場合は、引き込まれる磁束
が磁性膜12内部の反磁界の影響により弱められるた
め、その場合は磁気検出部12bの長さを長くする必要
がある。
[Third Embodiment] In the first embodiment,
The magnetizing pitch P of the magnetized medium 14 and the pitch of the gap between the magnetic flux inflow portions 12a of the magnetic film 12 are made equal, but when the magnetized pitch P of the magnetized medium is extremely small, the magnetic flux drawn is the magnetic flux of the magnetic film 12. Since it is weakened by the influence of the internal demagnetizing field, it is necessary to increase the length of the magnetic detection part 12b in that case.

【0036】その方法として、図6に第3の実施形態と
して示すとおり、磁束流入部12aの間隔のピッチP’
を着磁ピッチPの1より大きな奇数倍(図6ではP’=
P×3)とする。こうすれば、隣り合う磁束流入部12
aどうしの間で媒体磁化1個分の磁界の差ができ、着磁
媒体14から磁束を引き込んで磁気検出部12bに流す
ことができ、磁気検出部12bの長さが長いので、反磁
界の影響を押さえ、検出感度を維持することができる。
As a method therefor, as shown in FIG. 6 as a third embodiment, the pitch P'of the intervals of the magnetic flux inflow portions 12a.
Is an odd multiple larger than 1 of the magnetizing pitch P (in FIG. 6, P ′ =
P × 3). By doing this, the adjacent magnetic flux inflow portions 12
There is a magnetic field difference of one medium magnetization between a, magnetic flux can be drawn from the magnetized medium 14 and flown to the magnetic detection unit 12b, and the length of the magnetic detection unit 12b is long. The influence can be suppressed and the detection sensitivity can be maintained.

【0037】[第4の実施形態]MI素子は素子全体の
磁性体の長さが短いとインピーダンスが小さくなり、M
I素子の出力を取り出す発振回路に最適な数値よりも小
さくなり、十分な発振が得られない場合が生ずる。その
ために単純に素子全体の長さを長くする方法はあるが、
着磁媒体との対向面が長くなることで着磁媒体とのスペ
ーシングの変動の影響を受けやすくなる。
[Fourth Embodiment] The MI element has a small impedance when the length of the magnetic material of the entire element is short, and M
The value becomes smaller than the optimum value for the oscillation circuit that takes out the output of the I element, and there are cases where sufficient oscillation cannot be obtained. Therefore, there is a method of simply increasing the length of the entire device,
The longer surface facing the magnetized medium makes it more susceptible to variations in spacing with the magnetized medium.

【0038】この点を考慮した第4の実施形態を図7に
示す。
A fourth embodiment in consideration of this point is shown in FIG.

【0039】図7に示すとおり、本実施形態では基板1
0上に、第1の実施形態の磁性膜12に対応するつづら
折りパターンの4つの磁性膜12が長手方向に垂直な方
向、すなわちそれぞれの磁束流入部12aの延びる方向
であって着磁媒体14の磁化の境界14aの方向として
示される磁化の同一位相を結ぶ方向に所定間隔で互いに
平行に並設され電気的に直列接続されている。
As shown in FIG. 7, the substrate 1 is used in this embodiment.
0, the four magnetic films 12 in a serpentine pattern corresponding to the magnetic film 12 of the first embodiment are arranged in the direction perpendicular to the longitudinal direction, that is, in the direction in which the respective magnetic flux inflow portions 12a extend and the magnetizing medium 14 is formed. They are arranged in parallel at predetermined intervals in a direction connecting the same phase of magnetization shown as the direction of the magnetization boundary 14a and electrically connected in series.

【0040】また、4つの磁性膜12は、それぞれの磁
束流入部12aが一直線上に揃う様に配置されている。
ただし、4つの磁性膜12は、隣り合う磁性膜12どう
しで相対的に長手方向へ磁気検出部12bの折り返しが
1ピッチ分ずれている。すなわち、隣り合う磁性膜12
どうしでつづら折りパターンの凹凸の向きが逆になって
おり、これにより隣り合う磁性膜12どうしの端部での
直列接続部が符号12cで示すように、端部の磁束流入
部12aどうしをそのまま延長して連結して一直線状に
なるように工夫されている。なお、4つの磁性膜12の
直列接続全体の両端には端子16A′,16B′が形成
されている。
The four magnetic films 12 are arranged so that the respective magnetic flux inflow portions 12a are aligned.
However, with respect to the four magnetic films 12, adjacent magnetic films 12 are relatively offset from each other in the longitudinal direction by one pitch in the magnetic detection portion 12b. That is, the adjacent magnetic films 12
The direction of the unevenness of the zigzag pattern is reversed between them, so that the magnetic flux inflow portions 12a at the end portions are directly extended as shown by the reference numeral 12c in the series connection portion at the end portions of the adjacent magnetic films 12. It is devised so that they can be connected to form a straight line. Note that terminals 16A 'and 16B' are formed at both ends of the entire series connection of the four magnetic films 12.

【0041】このようにすれば、4つの磁性膜12から
なるMI素子本体の全体の長手方向の長さを短くしたま
まで、磁気検出部12bの全部の総延長を長くすること
ができ、MI素子本体のインピーダンスを稼ぐことがこ
とができるとともに、着磁媒体14とのスペーシングの
影響を受け難くすることができる。また、端子16
A′,16B′がMI素子本体の片側に配置されるの
で、配線の引き回しの点でも簡単になるという利点が得
られる。
By doing so, the total length of the entire magnetic detecting portion 12b can be increased while keeping the overall length of the MI element body composed of the four magnetic films 12 short. It is possible to increase the impedance of the element body and make it less susceptible to the spacing with the magnetized medium 14. Also, the terminal 16
Since A ′ and 16B ′ are arranged on one side of the MI element body, there is an advantage that wiring is also simplified.

【0042】[0042]

【発明の効果】以上の結果から明らかなように、本発明
によれば、所定の着磁ピッチで交互に逆極性に着磁され
た着磁媒体に対し相対的に移動して前記着磁媒体の磁界
を磁気インピーダンス効果により検出する磁気エンコー
ダー用の磁気センサーであって、非磁性基板上に高透磁
率磁性膜を形成して構成され、前記磁性膜は、前記着磁
ピッチの奇数倍の間隔で平行に並ぶ複数本の直線状の磁
束流入部と、該磁束流入部を順次折り返すように連結す
る複数本の直線状の磁気検出部とからなるつづら折りパ
ターンに形成され、かつ磁化容易軸方向が膜面内で前記
磁気検出部の延びる方向に対し垂直になるように磁気異
方性が付けられており、前記磁性膜の磁束流入部の延び
る方向を前記着磁媒体の磁化の同一位相を結ぶ方向に平
行にして該磁性膜を着磁媒体に平行に対向させ、該磁性
膜に対し両端部から高周波電流を印加し、着磁媒体から
の磁束により該磁性膜の両端部間に発生するインピーダ
ンスの変化を電気信号に変換して出力を得られるように
した構成を採用したので、従来ではMI素子で困難であ
った着磁媒体の複数の磁化の磁界検出及びその平均化が
可能になった。
As is apparent from the above results, according to the present invention, the magnetized medium is moved relative to the magnetized medium which is magnetized in the opposite polarity alternately at a predetermined magnetizing pitch. Is a magnetic sensor for a magnetic encoder that detects the magnetic field of the magnetic field by a magnetic impedance effect, and is formed by forming a high-permeability magnetic film on a non-magnetic substrate, and the magnetic film has an interval of an odd multiple of the magnetization pitch. A plurality of linear magnetic flux inflow portions arranged in parallel with each other, and a plurality of linear magnetic detection portions that are connected so as to sequentially fold the magnetic flux inflow portions are formed in a zigzag pattern, and the easy magnetization axis direction is Magnetic anisotropy is provided so as to be perpendicular to the extending direction of the magnetic detecting portion in the film surface, and the extending direction of the magnetic flux inflow portion of the magnetic film connects the same phase of the magnetization of the magnetized medium. The magnetic film parallel to the direction A high-frequency current is applied to the magnetic film from both ends thereof in parallel with each other, and a change in impedance generated between both ends of the magnetic film by a magnetic flux from the magnetizing medium is converted into an electric signal. By adopting the configuration capable of obtaining the output, it is possible to detect the magnetic fields of a plurality of magnetizations of the magnetized medium and average them, which has been difficult in the conventional MI element.

【0043】しかも外部からのノイズ磁界に対して強
く、安定した出力が得られる上に、MR素子に比べ、よ
り短い着磁ピッチの着磁媒体の磁界の検出が可能であ
り、高精度、高分解能の磁気エンコーダ用に好適であ
る。さらに、素子本体が磁性膜からなるので、従来のア
モルファスワイヤーのような取り扱い上の困難さがな
く、複雑なパターンの形成も容易であり、生産性にも優
れている等の優れた効果が得られる。
Moreover, the magnetic field of the magnetizing medium having a shorter magnetizing pitch than that of the MR element can be detected in addition to being strong against a noise magnetic field from the outside and providing a stable output. Suitable for high resolution magnetic encoders. Furthermore, since the element body is made of a magnetic film, there are no handling difficulties like conventional amorphous wires, complex patterns can be easily formed, and excellent productivity can be obtained. To be

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態による磁気エンコーダ
ー用磁気センサーの基本的な構造を示す斜視図である。
FIG. 1 is a perspective view showing a basic structure of a magnetic sensor for a magnetic encoder according to a first embodiment of the present invention.

【図2】同磁気センサーの検出動作時の作用を説明する
説明図である。
FIG. 2 is an explanatory diagram illustrating an operation during a detection operation of the magnetic sensor.

【図3】同磁気センサーの磁性膜の磁気インピーダンス
特性を示すグラフ図である。
FIG. 3 is a graph showing a magnetic impedance characteristic of a magnetic film of the magnetic sensor.

【図4】第2の実施形態の磁気センサーの構造を示す斜
視図である。
FIG. 4 is a perspective view showing a structure of a magnetic sensor according to a second embodiment.

【図5】図4中のA−A′線に沿う断面図である。5 is a cross-sectional view taken along the line AA ′ in FIG.

【図6】第3の実施形態の磁気センサーの磁性膜におけ
る磁束流入部の間隔のピッチP′と着磁媒体の着磁ピッ
チPの関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between a pitch P ′ of a gap between magnetic flux inflow portions in a magnetic film of the magnetic sensor of the third embodiment and a magnetizing pitch P of a magnetizing medium.

【図7】第4の実施形態の磁気センサーの構造を示す斜
視図である。
FIG. 7 is a perspective view showing a structure of a magnetic sensor according to a fourth embodiment.

【図8】従来のMR素子による磁気センサーの構造を示
す平面図である。
FIG. 8 is a plan view showing a structure of a conventional magnetic sensor using an MR element.

【符号の説明】[Explanation of symbols]

10 非磁性基板 12 高透磁率磁性膜 12a 磁束流入部 12b 磁気検出部 12c 直列接続部 14 着磁媒体 14a 磁化の境界(磁化反転の境界) 16A,16B 端子 18 導電膜 18A,18B 端子 121,122 磁性膜 Reference Signs List 10 non-magnetic substrate 12 high-permeability magnetic film 12a magnetic flux inflow portion 12b magnetic detection portion 12c series connection portion 14 magnetizing medium 14a magnetization boundary (boundary of magnetization reversal) 16A, 16B terminal 18 conductive film 18A, 18B terminal 121, 122 Magnetic film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定の着磁ピッチで交互に逆極性に着磁
された着磁媒体に対し相対的に移動して前記着磁媒体の
磁界を磁気インピーダンス効果により検出する磁気エン
コーダー用の磁気センサーであって、 非磁性基板上に高透磁率磁性膜を形成して構成され、 前記磁性膜は、前記着磁ピッチの奇数倍の間隔で平行に
並ぶ複数本の直線状の磁束流入部と、該磁束流入部を順
次折り返すように連結する複数本の直線状の磁気検出部
とからなるつづら折りパターンに形成され、かつ磁化容
易軸方向が膜面内で前記磁気検出部の延びる方向に対し
垂直になるように磁気異方性が付けられており、 前記磁性膜の磁束流入部の延びる方向を前記着磁媒体の
磁化の同一位相を結ぶ方向に平行にして該磁性膜を着磁
媒体に平行に対向させ、該磁性膜に対し両端部から高周
波電流を印加し、着磁媒体からの磁束により該磁性膜の
両端部間に発生するインピーダンスの変化を電気信号に
変換して出力を得られるようにしたことを特徴とする磁
気センサー。
1. A magnetic sensor for a magnetic encoder, which moves relative to a magnetized medium that is magnetized with opposite polarities alternately at a predetermined magnetizing pitch to detect a magnetic field of the magnetized medium by a magnetic impedance effect. It is configured by forming a high magnetic permeability magnetic film on a non-magnetic substrate, the magnetic film, a plurality of linear magnetic flux inflow portions arranged in parallel at intervals of odd multiples of the magnetization pitch, The magnetic flux inflow portion is formed in a meandering pattern composed of a plurality of linear magnetic detection portions that are connected so as to be sequentially folded back, and the easy axis of magnetization is perpendicular to the extending direction of the magnetic detection portion in the film plane. The magnetic film has magnetic anisotropy so that the direction of extension of the magnetic flux inflow portion of the magnetic film is parallel to the direction connecting the same phase of magnetization of the magnetic medium, and the magnetic film is parallel to the magnetic medium. Face both sides of the magnetic film A high-frequency current is applied to the magnetic sensor, and a change in impedance generated between both ends of the magnetic film by a magnetic flux from a magnetizing medium is converted into an electric signal so that an output can be obtained.
【請求項2】 前記磁束流入部の幅が3μm以上で前記
着磁ピッチの1/2以下の範囲であることを特徴とする
請求項1に記載の磁気センサー。
2. The magnetic sensor according to claim 1, wherein the width of the magnetic flux inflow portion is in the range of 3 μm or more and half or less of the magnetization pitch.
【請求項3】 前記磁束流入部の数が3以上の奇数であ
り、前記磁気検出部の数が2以上の偶数であることを特
徴とする請求項1または2に記載の磁気センサー。
3. The magnetic sensor according to claim 1, wherein the number of the magnetic flux inflow portions is an odd number of 3 or more and the number of the magnetic detection portions is an even number of 2 or more.
【請求項4】 前記つづら折りパターンに形成された磁
性膜が前記磁束流入部の延びる方向に所定間隔で複数互
いに平行に並設され、電気的に直列接続されたことを特
徴とする請求項1から3までのいずれか1項に記載の磁
気センサー。
4. A plurality of magnetic films formed in the zigzag pattern are arranged in parallel at a predetermined interval in a direction in which the magnetic flux inflow portion extends, and are electrically connected in series. The magnetic sensor according to any one of 3 to 3.
【請求項5】 前記磁性膜は、該磁性膜より細くて該磁
性膜に対応したつづら折りパターンに形成された導電膜
を全長にわたって挟んで積層された2層の磁性膜であ
り、 前記導電膜の両端部は前記2層の磁性膜の両端部から露
出しており、 前記導電膜に対し両端部から高周波電流を印加し、着磁
媒体からの磁束により該導電膜の両端部間に発生するイ
ンピーダンスの変化を電気信号に変換して出力が得られ
るようにしたことを特徴とする請求項1から4までのい
ずれか1項に記載の磁気センサー。
5. The magnetic film is a two-layer magnetic film that is laminated by sandwiching a conductive film that is thinner than the magnetic film and is formed in a serpentine pattern corresponding to the magnetic film over the entire length. Both ends are exposed from both ends of the two-layer magnetic film, and a high-frequency current is applied to the conductive film from both ends to generate impedance between both ends of the conductive film due to magnetic flux from a magnetizing medium. 5. The magnetic sensor according to claim 1, wherein the change is converted into an electric signal to obtain an output.
JP7269581A 1995-10-18 1995-10-18 Magnetic sensor Pending JPH09113590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7269581A JPH09113590A (en) 1995-10-18 1995-10-18 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7269581A JPH09113590A (en) 1995-10-18 1995-10-18 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH09113590A true JPH09113590A (en) 1997-05-02

Family

ID=17474362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7269581A Pending JPH09113590A (en) 1995-10-18 1995-10-18 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH09113590A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806762A2 (en) * 1996-05-10 1997-11-12 Canon Denshi Kabushiki Kaisha Magnetic head
WO2003081271A1 (en) * 2002-03-27 2003-10-02 Matsushita Electric Industrial Co., Ltd. Magnetic sensing element, magnetic sensor, and its manufacturing method
JP2008530541A (en) * 2005-02-08 2008-08-07 コンティネンタル オートモーティヴ フランス Use of magneto-impedance in non-contact position sensors and related sensors
CN102867909A (en) * 2011-07-04 2013-01-09 山梨日本电气株式会社 Magnetoresistance element and magnetic sensor using the same
CN113812011A (en) * 2019-05-27 2021-12-17 昭和电工株式会社 Magnetic sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806762A2 (en) * 1996-05-10 1997-11-12 Canon Denshi Kabushiki Kaisha Magnetic head
EP0806762A3 (en) * 1996-05-10 1998-07-08 Canon Denshi Kabushiki Kaisha Magnetic head
US5903414A (en) * 1996-05-10 1999-05-11 Canon Denshi Kabushiki Kaisha Magnetic head utilizing magnetic impedance effect
WO2003081271A1 (en) * 2002-03-27 2003-10-02 Matsushita Electric Industrial Co., Ltd. Magnetic sensing element, magnetic sensor, and its manufacturing method
US7183767B2 (en) 2002-03-27 2007-02-27 Matsushita Electric Industrial Co., Ltd. Magnetic sensing element, magnetic sensor, and its manufacturing method
JP2008530541A (en) * 2005-02-08 2008-08-07 コンティネンタル オートモーティヴ フランス Use of magneto-impedance in non-contact position sensors and related sensors
CN102867909A (en) * 2011-07-04 2013-01-09 山梨日本电气株式会社 Magnetoresistance element and magnetic sensor using the same
JP2013016630A (en) * 2011-07-04 2013-01-24 Yamanashi Nippon Denki Kk Magnetoresistance effect element and magnetic sensor using the same
CN113812011A (en) * 2019-05-27 2021-12-17 昭和电工株式会社 Magnetic sensor

Similar Documents

Publication Publication Date Title
US6351119B1 (en) Magnetic detecting element utilizing magnetic impedance effect
KR100687513B1 (en) Thin-film magnetic field sensor
JP3210192B2 (en) Magnetic sensing element
JP5362188B2 (en) Magnetic detection sensor
US7378839B2 (en) Magnetic encoder
US6650112B2 (en) Magnetics impedance element having a thin film magnetics core
JP3367230B2 (en) Position detection device
JPS61173101A (en) Positional sensor
JP2000512763A (en) Magnetic field sensor with Wheatstone bridge
JPH09113590A (en) Magnetic sensor
JP2001281313A (en) Magnetic field sensor, magnetic encoder using it, and magnetic head
JP3356585B2 (en) Magnetic detection element and magnetic head
US8957680B2 (en) Magnetic sensor and pattern for magnetic sensor
JP5243725B2 (en) Magnetic detection sensor
JPH08334379A (en) Magnetic sensor for magnetic encoder
JPH09113591A (en) Magnetic sensor
JP3064293B2 (en) Rotation sensor
JPH11287669A (en) Magnetic field sensor
JPH08285930A (en) Magnetism detection element and magnetic head
JP4237855B2 (en) Magnetic field sensor
JP2546282B2 (en) Origin detection part of magnetic head for magnetic encoder
JPH0329875A (en) Magnetoresistance element made of ferromagnetic body
JP2000214241A (en) Magnetic encoder and magnetic sensor
JP2546281B2 (en) Origin detection part of magnetic head for magnetic encoder
JP2878738B2 (en) Recording / reproducing thin film magnetic head