JPH08283026A - Production of silica glass - Google Patents

Production of silica glass

Info

Publication number
JPH08283026A
JPH08283026A JP8697795A JP8697795A JPH08283026A JP H08283026 A JPH08283026 A JP H08283026A JP 8697795 A JP8697795 A JP 8697795A JP 8697795 A JP8697795 A JP 8697795A JP H08283026 A JPH08283026 A JP H08283026A
Authority
JP
Japan
Prior art keywords
raw material
carrier gas
liquid
compound
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8697795A
Other languages
Japanese (ja)
Other versions
JP3192571B2 (en
Inventor
Sakae Kawaguchi
栄 川口
Hideo Hirasawa
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8697795A priority Critical patent/JP3192571B2/en
Publication of JPH08283026A publication Critical patent/JPH08283026A/en
Application granted granted Critical
Publication of JP3192571B2 publication Critical patent/JP3192571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/86Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid by bubbling a gas through the liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/88Controlling the pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE: To obtain a silica glass having uniform optical properties by reducing the effect of change of atmospheric pressure. CONSTITUTION: The silica glass is produced by flame-hydrolyzing an evaporated silicon compound and if necessary, an evaporated doping compound in oxyhydrogen flame to generate a silica fine particle and a doping material fine particle and sticking and depositing the fine particles on a rotating speed rod. In this method, the vapor phase pressure in each of raw material vessels is kept to >=1kg/cm<2> to <2kg/cm<2> gauge pressure in a liquid raw material supply method for supplying a gaseous mixture of a carrier gas and the raw material vapor to a burner by filling each liquid raw material of the silicon compound and the compound for doping in each of the raw material vessels and blowing the carrier gas in each of the liquid raw material to evaporate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリカガラス系光ファイ
バ用母材、あるいはLSIフォトマスク基板として有用
なシリカ系ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silica glass type optical fiber preform or a silica type glass useful as an LSI photomask substrate.

【0002】[0002]

【従来の技術】光ファイバーコア部材となるとなるシリ
カガラスの製造設備では、水素、酸素等の気体原料の他
に、SiO2ガラスの原料となる SiCl4や、ガラスに屈折率
分布を形成する為のドープ用原料として GeCl4が液体原
料として製造に供される。気相軸付け(VAD)法では
各々の液体原料はともに気化されて酸水素火炎バーナー
へ供給され、ガラス微粒子堆積体が形成される。従来、
これらの方法においてはSiCl4および GeCl4は各原料容
器内に充填し、流量制御されたキャリアーガスたとえば
Arガスを各原料容器内の液体ガラス原料中にバブリン
グすることにより所望の各原料をキャリアーガス中に気
化拡散させ、各原料蒸気をキャリアーガスとの混合気体
として発生させてバーナーに供給していた。図2にこれ
を概念的に示してある。
2. Description of the Related Art In a production facility for silica glass, which becomes an optical fiber core member, in addition to gaseous raw materials such as hydrogen and oxygen, SiCl 4 which is a raw material for SiO 2 glass and a refractive index distribution for forming a refractive index in the glass are used. GeCl 4 is used as a raw material for dope in the production as a liquid raw material. In the vapor phase axial deposition (VAD) method, each liquid raw material is vaporized and supplied to an oxyhydrogen flame burner to form a glass particulate deposit. Conventionally,
In these methods, SiCl 4 and GeCl 4 are filled in each raw material container, and a carrier gas whose flow rate is controlled, for example, Ar gas, is bubbled into the liquid glass raw material in each raw material container to obtain each desired raw material carrier gas. It was vaporized and diffused inside, and each raw material vapor was generated as a mixed gas with a carrier gas and supplied to the burner. This is conceptually shown in FIG.

【0003】図2において11はキャリアーガス流量制御
器、12は原料容器(容器、以下同じ)、13は原料液体、
14は圧力計、15は大気圧センサ、16は補正演算器で、容
器内の気相ではキャリアーガスおよびキャリアーガス中
に拡散した原料蒸気の2成分系になっていることからP
を容器12内における全圧、φを飽和度、tを容器温度、
p(t)を温度tにおける原料の飽和蒸気圧とすると、原料
蒸気の容器12内における分圧はφp(t)であらわされ、ま
たキャリアーガスの容器12内における分圧はP−φp(t)
であらわされることから、qをキャリアーガス流量、Q
を同伴原料蒸気流量とすると次式が成り立つ。 Q:q=原料蒸気分圧φp(t):キャリアーガス分圧P−φp(t)…(1) 即ち、同伴原料蒸気流量Qは次の式(2)により計算さ
れる。 Q=q×φp(t)/{P−φp(t)}…(2)
In FIG. 2, 11 is a carrier gas flow rate controller, 12 is a raw material container (container, the same applies hereinafter), 13 is a raw material liquid,
14 is a pressure gauge, 15 is an atmospheric pressure sensor, 16 is a correction calculator, and P in the gas phase inside the container is a two-component system of carrier gas and raw material vapor diffused in the carrier gas.
Is the total pressure in the container 12, φ is the degree of saturation, t is the container temperature,
When p (t) is the saturated vapor pressure of the raw material at the temperature t, the partial pressure of the raw material vapor in the container 12 is represented by φp (t), and the partial pressure of the carrier gas in the container 12 is P−φp (t. )
Therefore, q is the carrier gas flow rate and Q is
Where is the flow rate of the accompanying raw material vapor, the following equation holds. Q: q = partial vapor partial pressure φp (t): carrier gas partial pressure P−φp (t) (1) That is, the entrained raw material vapor flow rate Q is calculated by the following equation (2). Q = q × φp (t) / {P−φp (t)} (2)

【0004】この原料蒸気流量Qを一定にするには、
(2)式中q、φ、p(t)およびPの各値を一定に保持す
ればよい。キャリアーガス流量qはマスフローコントロ
ーラー(MFC)により精度よく制御される。また飽和
度φを一定に保つ方法としては特公昭 61-1378号公報に
開示されている方法がある。これによると、同一液体原
料を充填した容器を前・後段に区分してバブリング用キ
ャリアーガス導管により直列に接続し、前段にある容器
の温度により高温に維持することにより、飽和度φをほ
ぼ 100%に保持するバブラ2段方式が開示されている。
To keep the raw material vapor flow rate Q constant,
In the equation (2), the values of q, φ, p (t) and P may be held constant. The carrier gas flow rate q is accurately controlled by a mass flow controller (MFC). Further, as a method of keeping the saturation φ constant, there is a method disclosed in Japanese Patent Publication No. 61-1378. According to this, a container filled with the same liquid raw material is divided into front and rear stages, connected in series by a bubbling carrier gas conduit, and maintained at a high temperature due to the temperature of the container in the front stage, so that the saturation φ is approximately 100. A bubbler two-stage system that holds the percentage is disclosed.

【0005】式(2)においては、前述のように、キャ
リアーガス流量qはMFCにより制御されるので精度の
高さに加えて応答性も速いが、φp(t)/{P−φp(t)} の
項は複数の因子から決定され応答性は極めて遅いことか
ら、キャリアーガス方式にあっては原料蒸気流量Qは、
容器内気相中の諸条件の均一化と安定化により原料蒸気
濃度を一定値に保持し、キャリアーガス流量により制御
されるのが理想的制御方法とされている。
In the equation (2), as described above, the carrier gas flow rate q is controlled by the MFC, so that in addition to high accuracy, the response is fast, but φp (t) / {P−φp (t )} Term is determined from multiple factors and the response is extremely slow. Therefore, in the carrier gas system, the raw material vapor flow rate Q is
The ideal control method is to keep the concentration of the raw material vapor at a constant value by controlling and stabilizing various conditions in the gas phase in the container, and controlling the carrier gas flow rate.

【0006】しかしながらVAD法では、容器〜火炎バ
ーナー経路内の原料蒸気流路の流動抵抗が小さく容器内
の気相圧力は、0.01kg/cm2ゲージ以下であり、大気圧の
変動がそのまま気相圧力の変動となっているため、従来
法の供給方法のように、キャリアーガス流量q、飽和度
φ、容器内の温度tを一定に保持しても、容器内気相圧
力Pが大気圧がπ→π±△πに変化すると容器内気相圧
力もP→P±△πに変化してし、同伴蒸気流量Qは
(3)式により表される△Qだけ変化してしまう。 △Q=q×φp(t)[1/{P±△π−φp(t)} −1/{P−φp(t)} ]…(3)
However, in the VAD method, the flow resistance of the raw material vapor flow path in the vessel to the flame burner path is small, and the vapor phase pressure in the vessel is 0.01 kg / cm 2 gauge or less, and the fluctuation of atmospheric pressure remains unchanged in the vapor phase. Since the pressure varies, even if the carrier gas flow rate q, the saturation φ, and the temperature t in the container are held constant as in the conventional supply method, the gas phase pressure P in the container is π as the atmospheric pressure. When it changes to → π ± Δπ, the gas phase pressure in the container also changes to P → P ± Δπ, and the entrained vapor flow rate Q changes by ΔQ represented by the equation (3). ΔQ = q × φp (t) [1 / {P ± Δπ−φp (t)} −1 / {P−φp (t)}] (3)

【0007】従来、このように大気圧πが変動した場合
にはこの変動による式(2)中の濃度項φp(t)/{P−
φp(t)}の変動を打ち消すようにキャリアーガス流量項
qを変化させることにより対応していた(特公平4-3373
8 号公報)。それによると、図2において大気圧センサ
15において検知された△πが補正演算器16に伝達され、
同演算器16において濃度変動度φp(t)[1/{P±△π−
φp(t)} −1/{P−φp(t)} ]が直ちに計算され、これ
に応じて増減されたキャリアーガス流量の新規設定値を
キャリアーガス流量制御器11へ伝達する。このように気
相濃度の上昇または低下に合わせて、キャリアーガス流
量qの設定値を低減、あるいは増加させることにより、
原料蒸気流量を一定値に保持していた。
Conventionally, when the atmospheric pressure π fluctuates in this way, the concentration term φp (t) / {P- in the equation (2) due to this fluctuation.
This was dealt with by changing the carrier gas flow rate term q so as to cancel the fluctuation of φp (t)} (Japanese Patent Publication No. 4-3373).
No. 8 bulletin). According to it, the atmospheric pressure sensor in FIG.
Δπ detected in 15 is transmitted to the correction calculator 16,
In the arithmetic unit 16, the degree of concentration fluctuation φp (t) [1 / {P ± Δπ−
[phi] p (t)}-1 / {P- [phi] p (t)}] is immediately calculated, and the new set value of the carrier gas flow rate increased or decreased accordingly is transmitted to the carrier gas flow rate controller 11. In this way, by decreasing or increasing the set value of the carrier gas flow rate q in accordance with the increase or decrease of the gas phase concentration,
The raw material vapor flow rate was kept constant.

【0008】[0008]

【発明が解決しようとする課題】しかし、このようなキ
ャリアーガス流量qの再設定時において修正巾が大きい
場合、急激なキャリアーガス流量の変動を引き起し、こ
のキャリアーガス流量の大巾な変動は、酸水素火炎の温
度変動を引き起こし、堆積母材表面の嵩密度が変更前後
で異なり不均質となり、透明ガラス化の際に該当部位に
微妙な屈折率の変異部位を作り出し、プリフォームの光
学特性不良の一因になっている。またキャリアーガス流
量の自動再設定によるキャリアーガス流量の大巾な変動
は、容器内気相における原料蒸気の飽和度の変動を起こ
す恐れがある。しかしこの大気圧変動による飽和度変動
幅の予測は困難であり、飽和度が変動すると原料蒸気供
給流量の補正が正確に行われない恐れがある。そのため
にバブラ2段方式による飽和度 100%の維持方法が有効
と考えられるが、この方法は装置が複雑になるという問
題がある。
However, if the correction range is large when the carrier gas flow rate q is reset, a drastic change in the carrier gas flow rate is caused, and the carrier gas flow rate changes greatly. Causes a temperature fluctuation of the oxyhydrogen flame, and the bulk density of the surface of the deposited base material is different before and after the change, resulting in inhomogeneity. This is one of the causes of poor characteristics. Further, a large variation in the carrier gas flow rate due to the automatic resetting of the carrier gas flow rate may cause a variation in the saturation of the raw material vapor in the vapor phase in the container. However, it is difficult to predict the saturation fluctuation range due to the atmospheric pressure fluctuation, and if the saturation fluctuation occurs, the raw material vapor supply flow rate may not be accurately corrected. Therefore, a bubbler two-stage method for maintaining 100% saturation is considered to be effective, but this method has the problem that the device becomes complicated.

【0009】[0009]

【課題を解決するための手段】上記の問題を解決するた
めに本発明者らは種々検討を重ねた結果、容器内気相の
圧力Pを高く設定するほど、大気圧変動率△π/πの原
料蒸気流量変動率△Q/Qに及ぼす影響が小さくなるこ
とに着目し、この圧力Pについて検討して本発明を完成
するに至ったもので、本発明は、気化されたシリコン化
合物および必要に応じて気化されたドープ用化合物を、
酸水素火炎中で火炎加水分解させシリカ微粒子およびド
ープ材料の微粒子を発生させ、これら微粒子が回転する
種棒上に付着、堆積することによりなるシリカ系ガラス
の製造方法において、シリコン化合物の液体原料および
ドープ用化合物の液体原料をそれぞれ原料容器に充填
し、これら液体原料にキャリアーガスをキャリアーガス
吹き込み管より吹き込みバブリングさせて気化させ、該
キャリアーガスと原料蒸気の混合気体をバーナーに供給
する液体原料供給方法における、各々の原料容器内の気
相圧力をゲージ圧1kg/cm2以上2kg/cm2未満に保持する
ことよりなるシリカ系ガラスの製造方法を要旨とするも
のである。
As a result of various studies conducted by the present inventors to solve the above problems, the higher the pressure P of the gas phase in the container is set, the more the atmospheric pressure fluctuation rate Δπ / π becomes. Focusing on the fact that the influence on the raw material vapor flow rate fluctuation rate ΔQ / Q is small, the pressure P was studied to complete the present invention. The present invention is based on the vaporized silicon compound and the necessity. The vaporized dope compound,
In a method for producing a silica-based glass, which comprises subjecting silica fine particles and fine particles of a dope material to flame hydrolysis in an oxyhydrogen flame and depositing and depositing these fine particles on a rotating seed rod, Liquid raw materials for dope compounds are filled in respective raw material containers, carrier gas is blown into these liquid raw materials through a carrier gas blowing pipe to be vaporized, and a mixed gas of the carrier gas and raw material vapor is supplied to a burner. The gist of the method is a method for producing a silica-based glass, which comprises maintaining a gas phase pressure in each raw material container at a gauge pressure of 1 kg / cm 2 or more and less than 2 kg / cm 2 .

【0010】この原料容器内気相圧力がゲージ圧1kg/c
m2未満の場合は効果が充分でなく、またゲージ圧2kg/c
m2以上となるとライン圧が高すぎて実用上問題があるた
めこの値はゲージ圧1kg/cm2以上2kg/cm2未満とするこ
とが必要で、好ましくはゲージ圧1.0 〜1.6kg /cm2がよ
い。以下、本発明を具体的に説明する。図1は本発明の
説明図であり、図中1はキャリアーガス流量制御器、2
は液体原料容器(容器)、3は液体原料、4は圧力計、
5は大気圧センサー、6は補正演算器、7は絞り弁、8
はキャリアーガス吹き込み管、9は原料蒸気供給管、1
0は液体原料補給管を夫々あらわす。以上の構成で本発
明が従来法と異なる点は、本発明では容器〜火炎バーナ
ー経路内の原料気流路に絞り弁7を設置して気相圧力を
ゲージ圧1kg/cm2以上2kg/cm2未満とした点である。
The gas phase pressure in the raw material container is 1 kg / c gauge pressure.
If it is less than m 2 , the effect is not sufficient and the gauge pressure is 2 kg / c.
If it is more than m 2 , the line pressure is too high and there is a problem in practical use. Therefore, it is necessary to set this value to a gauge pressure of 1 kg / cm 2 or more and less than 2 kg / cm 2 , preferably a gauge pressure of 1.0 to 1.6 kg / cm 2 Is good. Hereinafter, the present invention will be specifically described. FIG. 1 is an explanatory view of the present invention, in which 1 is a carrier gas flow controller, 2
Is a liquid raw material container (container), 3 is a liquid raw material, 4 is a pressure gauge,
5 is an atmospheric pressure sensor, 6 is a correction calculator, 7 is a throttle valve, 8
Is a carrier gas blowing pipe, 9 is a raw material vapor supply pipe, 1
0 represents a liquid material supply pipe, respectively. With the above-mentioned configuration, the present invention differs from the conventional method in that in the present invention, the throttle valve 7 is installed in the raw material gas flow path in the vessel-flame burner path to adjust the gas phase pressure to a gauge pressure of 1 kg / cm 2 or more and 2 kg / cm 2 It is a point less than.

【0011】本発明の第2の発明は、容器内の気相中に
おける原料蒸気の飽和度を99%以上の一定値に保持する
ための方法で、これは気化されたシリコン化合物および
必要に応じて気化されたドープ用化合物の原料蒸気成分
のキャリアーガス成分中における拡散係数をD 、キャリ
アーガス吹き込み管のキャリアーガス噴出口半径をr
O 、および液中におけるキャリアーガス噴出口深さをLe
としたとき、 D・Le/(rO 2√(rO・g)) (g;重力加速度)
の値が 2.0以上である上記シリカ系ガラスの製造方法を
要旨とするものである。これを図1について説明する
と、シリコン化合物又はドープ用化合物の液体原料を容
器2に充填し、この液体原料内に吹き込み管8を通じて
キャリアーガスが吹き込まれ、キャリアーガスとともに
原料蒸気は蒸発管9よりバーナーに導入され火炎加水分
解されてガラス微粒子とされるが、本発明においてはこ
の際、原料蒸気の飽和度を99%以上の一定の値に保持す
るために、キャリアガスの吹き込み管8の構造につい
て、シリコン化合物又はドープ用化合物のキャリアーガ
ス成分中における拡散係数をD 、キャリアーガス吹き込
み管のキャリアーガス噴出口半径をrO 、液中における
キャリアーガス噴出口深さをLeとしたとき D・Le/(rO 2
(rO・g)) (g;重力加速度)の値が 2.0以上であるとす
ることよりなる上記シリカ系ガラスの製造方法である。
ここで D・Le/(rO 2√(rO・g)) の値が 2.0未満の場合は容
器内気相中の原料蒸気の飽和度が99%未満となるという
問題があるのでこの値は 2.0を超えた値とすることが必
要で、好ましくは2.0 〜4.0 がよい。
A second aspect of the present invention is a method for maintaining the saturation of the raw material vapor in the vapor phase in the container at a constant value of 99% or more, which is the vaporized silicon compound and if necessary. D is the diffusion coefficient of the raw material vapor component of the vaporized dope compound in the carrier gas component, and r is the carrier gas ejection radius of the carrier gas blowing pipe.
O and the carrier gas jet depth in the liquid are Le
, D ・ Le / (r O 2 √ (r O・ g)) (g; gravitational acceleration)
The gist is the method for producing the above silica-based glass having a value of 2.0 or more. This will be described with reference to FIG. 1. A container 2 is filled with a liquid raw material of a silicon compound or a dope compound, and a carrier gas is blown into the liquid raw material through a blowing pipe 8. And is flame-hydrolyzed to be glass fine particles. In the present invention, in order to maintain the saturation of the raw material vapor at a constant value of 99% or more, the structure of the carrier gas blowing pipe 8 is Where D is the diffusion coefficient of the silicon compound or the compound for doping in the carrier gas component, r O is the carrier gas ejection radius of the carrier gas blowing pipe, and Le is the carrier gas ejection depth in the liquid. (r O 2
(r O · g)) (g; gravitational acceleration) is a method for producing the above silica-based glass, wherein the value is 2.0 or more.
If the value of D ・ Le / (r O 2 √ (r O・ g)) is less than 2.0, there is a problem that the degree of saturation of the raw material vapor in the gas phase in the container is less than 99%, so this value is It is necessary to set the value to more than 2.0, preferably 2.0 to 4.0.

【0012】本発明の方法に依るシリカ系ガラスとして
は光ファイバ用母材やLSIフォトマスク基板用シリカ
ガラスが挙げられる。本発明のドープ用化合物は光ファ
イバ用母材の屈折率を調節するためにドープする化合物
で、これは公知の物よく例えばGeやTi或はフッソ等の化
合物等が例示される。
Examples of silica-based glass obtained by the method of the present invention include silica glass for optical fiber preforms and LSI photomask substrates. The doping compound of the present invention is a compound that is doped to adjust the refractive index of the optical fiber preform, and examples thereof include well-known compounds such as Ge, Ti, and fluorine.

【0013】[0013]

【作用】本発明の第1の発明は式(2)及び式(3)か
ら導入された下記に示す式(4)より説明される。 △Q/Q=−P/{P−φp(t)}×(π/P)×(△π/π)…(4) 即ち、酸水素炎における反応条件である原料蒸気流量
Q、キャリアーガス流量qが規定値どうりに一定に制御
されていることから、式(2)の右辺に示される濃度項
φp(t)/{P−φp(t)} の値はQ/qとなり一定になる。
従ってこの様に容器内気相濃度を決め、かつこれを一定
値に保持することが必要がある。式(4)において、設
定条件φp(t)/{P−φp(t)} 値が一定の下に、従ってP
/{P−φp(t)} 値が一定(>1)の条件のもとに、大気
圧変動率△π/πに対して、容器内気相圧力Pが大きい
程π/P値が小となり、従って△Q/Qが小となること
が説明される。しかし供給されるキャリアーガスのライ
ン圧力の上限は一般的にゲージ圧2kg/cm2程度であるの
で、容器内気相圧力Pの実用上の上限圧力はゲージ圧2
kg/cm2未満である。
The first aspect of the present invention will be described by the following equation (4) introduced from the equations (2) and (3). ΔQ / Q = −P / {P−φp (t)} × (π / P) × (Δπ / π) (4) That is, the raw material vapor flow rate Q, which is the reaction condition in the oxyhydrogen flame, and the carrier gas Since the flow rate q is controlled to a constant value, the concentration term φp (t) / {P-φp (t)} shown on the right side of equation (2) becomes Q / q and becomes constant. Become.
Therefore, it is necessary to determine the gas phase concentration in the container in this way and keep it at a constant value. In the equation (4), the setting condition φp (t) / {P−φp (t)} value is constant and therefore P
/ {P-φp (t)} Under the condition that the value is constant (> 1), the π / P value becomes smaller as the gas phase pressure P in the container becomes larger than the atmospheric pressure fluctuation rate Δπ / π. Therefore, it is explained that ΔQ / Q becomes small. However, since the upper limit of the line pressure of the carrier gas supplied is generally about 2 kg / cm 2 , the practical upper limit of the gas phase pressure P in the container is 2 gauge pressure.
It is less than kg / cm 2 .

【0014】一方容器内気相圧力Pがゲージ圧1kg/cm2
以上の圧力で保持される場合、ガス吹き込み管からの液
体原料逆流防止のために2段バブラー方式による自動開
閉弁などが必要となるが、2段バブラー方式では装置の
複雑化が不可避となる。本発明の第2の発明は、2段バ
ブラー法を用いることなく、気化器1器のみにより飽和
度を99%以上の一定の値を維持する方法である。容器内
原料液中へのキャリアーガスの吹き込みによって発生し
た気泡が液相中を上昇する間、原料蒸気成分は気泡中に
拡散浸透し、気相内に到達した原料蒸気とキャリアーガ
スとの混合気体は、気相中を通過し容器外へ逸出するま
での間にさらに気液界面からの拡散によってキャリアー
ガス中の原料蒸気の比率が高まる。
On the other hand, the gas phase pressure P in the container is a gauge pressure of 1 kg / cm 2
When the pressure is maintained at the above pressure, an automatic opening / closing valve by a two-stage bubbler system is required to prevent the backflow of the liquid raw material from the gas blowing pipe, but the two-stage bubbler system inevitably complicates the device. A second aspect of the present invention is a method of maintaining a constant saturation value of 99% or more by using only one vaporizer without using the two-stage bubbler method. While the bubbles generated by blowing the carrier gas into the raw material liquid in the container rise in the liquid phase, the raw material vapor component diffuses and permeates into the bubbles, and the mixed gas of the raw material vapor and the carrier gas reaching the gas phase. , The ratio of the raw material vapor in the carrier gas is further increased by diffusion from the gas-liquid interface before passing through the gas phase and escaping out of the container.

【0015】気泡段階における飽和度が、容器内のキャ
リアーガス吹込み管噴出口半径rOによって決まる気泡
径Dp と吹込み管の液中におけるキャリアーガス噴出口
深さLeによって決まる接触時間θなど、容器構造因子に
よって決まることより、これらの因子について検討した
結果、原料蒸気成分のキャリアーガス成分中における拡
散係数D 、気泡径Dp 、および接触時間θ(気泡上昇時
間)が式(5)の関係にあれば気相中の原料蒸気の飽和
度は99.5%以上の一定の値を保持することが出来ること
を結論できた。 D ・θ/(Dp /2)2 >0.85…(5) また接触時間θは、キャリアーガス吹込み管の液中にお
けるキャリアーガス噴出口深さLeを、液中における浮上
分離の式から求められる気泡上昇速度uで除すことによ
り式(6)のようにあたえられ、気泡上昇速度uは文献
より式(7)で表される。 θ=Le/u…(6) u=√(3.03Dp ・ g)…(7) ただし 500 <Re≡Dp ・ u・ ρ/μ<100,000 g;重力加速度 Dp ;気泡径 μ;液体粘度 ρ;液体密度 (文献;化学工学便覧 14.4 章 1,101頁) 次いで式(5)、(6)より式(8)が求められる。 D ・θ/(Dp /2)2 =D・(Le/u)/(Dp /2)2 >0.85…(8) さらに式(7)、(8)より式(9)が求められる。 D・Le/(Dp2√(Dp ・ g))>0.37…(9) 気泡径Dp がキャリアーガス吹込み管のキャリアーガス
噴出口半径r0 に比例すると仮定し、種々の設計仕様の
キャリアーガス吹き込み管を設計して検討した結果、式
(9)より式(10)が導かれた。 D・Le/(rO 2√(rO ・ g))>2.0 …(10)
The degree of saturation in the bubble stage, such as the contact time θ determined by the bubble diameter Dp determined by the carrier gas injection pipe ejection radius r O in the container and the carrier gas ejection depth Le in the liquid of the injection pipe, As a result of investigating these factors because they are determined by the container structure factors, the diffusion coefficient D of the raw material vapor component in the carrier gas component, the bubble diameter Dp, and the contact time θ (bubble rise time) are related by the equation (5). It was concluded that if so, the saturation of the raw material vapor in the gas phase could maintain a constant value above 99.5%. D · θ / (Dp / 2) 2 > 0.85 ... (5) Further, the contact time θ is obtained from the equation for float separation in the liquid of the carrier gas jet depth Le in the carrier gas injection pipe in the liquid. It is given by the formula (6) by dividing by the bubble rising speed u, and the bubble rising speed u is expressed by the formula (7) from the literature. θ = Le / u… (6) u = √ (3.03Dp · g)… (7) However, 500 <Re≡Dp · u · ρ / μ <100,000 g; Gravitational acceleration Dp; Bubble diameter μ; Liquid viscosity ρ; Liquid density (Reference; Chemical Engineering Handbook, Chapter 14.4, page 1,101) Next, equation (8) is obtained from equations (5) and (6). D · θ / (Dp / 2 ) 2 = D · (Le / u) / (Dp / 2) 2> 0.85 ... (8) Furthermore Equation (7), equation (9) is obtained from (8). D · Le / (Dp 2 √ (Dp · g))> 0.37 ... (9) It is assumed that the bubble diameter Dp is proportional to the carrier gas jet radius r 0 of the carrier gas blowing pipe, and carrier gases of various design specifications. As a result of designing and examining the blow-in pipe, the formula (10) was derived from the formula (9). D · Le / (r O 2 √ (r O · g))> 2.0 (10)

【0016】[0016]

【実施例】以下本発明を実施例、比較例について説明す
る。 実施例1 コア用原料の液状 SiCl4と液状 GeCl4について、それぞ
れ図1に示す液体原料供給装置を別々に用いてキャリア
ガスとしてArガスを各々流量300SCCM ( 毎分標準体積
流量(CC)、以下同じ) 及び30SCCMで吹き込み、流量250S
CCM の SiCl4蒸気と 3.0SCCMのGeCl4 蒸気を、H2 ガス
20SLM ( 毎分標準体積流量(L) 、 以下同じ) 、O2 ガス
20SLM と共にコア用バーナーに送り火炎加水分解してSi
O2とGeO2の微粒子を生成させこれを回転している種棒に
堆積させた。また同時にクラッド用原料の液状 SiCl4
ついても別の図1に示す液体原料供給装置を用いてキャ
リアガスとしてArガスを流量500SCCM で吹き込み、流
量410SCCM の SiCl4蒸気をH2 ガス20SLM 、O2 ガス20
SLM と共にクラッド用バーナーに送り火炎加水分解して
SiO2微粒子を生成させこれを上記種棒に堆積させて多孔
質ガラス母材を作製した。この際、コア用SiCl4 及びGe
Cl4 並びにクラッド用SiCl4 について各絞り弁7を調節
して各々の原料容器内の圧力を1.01kg/cm2ゲージに保持
し、またコア用SiCl4 及びGeCl4 並びにクラッド用SiCl
4 の各原料容器内の原料蒸気の飽和度は100 %に保たれ
た。なお、この間の大気圧の変動幅は 1.033〜1.053kg/
cm2 絶対値であったがキャリアーガス流量制御器1によ
りキャリアーガス流量を調整することに依り各原料蒸気
流量は一定に保持された。この様にして得られた多孔質
ガラス母材を 1,200℃で脱水し、 1,500℃で焼結して直
径30mm、長さ500 mmのシングルモード型光ファイバプリ
フォームを各5本製造して、その長手方向の屈折率差Δ
nの変化について調べたところ、表1の結果を得た。
EXAMPLES The present invention will be described below with reference to examples and comparative examples. Example 1 For liquid SiCl 4 and liquid GeCl 4 as core raw materials, the liquid raw material supply devices shown in FIG. 1 were separately used and Ar gas was used as a carrier gas at a flow rate of 300 SCCM (standard volume flow rate (CC) per minute, respectively) Same) and 30 SCCM, 250S flow rate
CCM SiCl 4 vapor and 3.0 SCCM GeCl 4 vapor are used as H 2 gas.
20SLM (standard volume flow rate per minute (L), same hereafter), O 2 gas
It is sent to the core burner together with 20SLM and flame-hydrolyzed to Si.
Fine particles of O 2 and GeO 2 were generated and deposited on a rotating seed rod. The blowing Ar gas as a carrier gas at a flow rate 500SCCM using a liquid material supply apparatus shown in another figure 1 also liquid SiCl 4 in the cladding material at the same time, the SiCl 4 vapor flow rate 410SCCM H 2 gas 20 SLM, O 2 gas 20
Send to the clad burner with SLM for flame hydrolysis
SiO 2 fine particles were generated and deposited on the seed rod to prepare a porous glass base material. At this time, SiCl 4 and Ge for core
For Cl 4 and SiCl 4 for cladding, adjust each throttle valve 7 to maintain the pressure in each raw material container at 1.01 kg / cm 2 gauge, and to keep SiCl 4 and GeCl 4 for core and SiCl 4 for cladding.
The degree of saturation of the raw material vapor in each raw material container of 4 was maintained at 100%. The fluctuation range of atmospheric pressure during this period is 1.033 to 1.053 kg /
Although it was an absolute value of cm 2, each raw material vapor flow rate was kept constant by adjusting the carrier gas flow rate by the carrier gas flow rate controller 1. The porous glass preform thus obtained was dehydrated at 1,200 ° C. and sintered at 1,500 ° C. to produce five single mode optical fiber preforms each having a diameter of 30 mm and a length of 500 mm. Refractive index difference in the longitudinal direction Δ
When the change in n was examined, the results shown in Table 1 were obtained.

【0017】比較例1 実施例1において絞り弁7を用いなかった点以外は実施
例1と同様に行った。結果を表1にしめす。なおこの際
の各容器内圧力は0.01kg/cm2ゲージであり、また、この
間の大気圧の変動幅は 1.033〜1.053kg/cm2 絶対値であ
った。
COMPARATIVE EXAMPLE 1 Example 1 was repeated except that the throttle valve 7 was not used. The results are shown in Table 1. The pressure inside each container at this time was 0.01 kg / cm 2 gauge, and the fluctuation range of atmospheric pressure during this time was 1.033 to 1.053 kg / cm 2 absolute value.

【0018】[0018]

【表1】 表1の結果より実施例1は比較例1に比較してΔnのバ
ラツキδΔnが小さいことがわかる。
[Table 1] From the results in Table 1, it can be seen that Example 1 has a smaller variation δΔn in Δn than Comparative Example 1.

【0019】実施例2 実施例1において大気圧センサに依るキヤリアガスの流
量制御を行わなかった点以外は実施例1と同様におこな
った。なお、この間の大気圧の変動幅は1.033〜1.053kg
/cm2 絶対値であった。結果を表2に示す。
Example 2 Example 2 was performed in the same manner as in Example 1 except that the carrier gas flow rate control by the atmospheric pressure sensor was not performed. The fluctuation range of atmospheric pressure during this period is 1.033 to 1.053 kg.
It was an absolute value of / cm 2 . Table 2 shows the results.

【0020】[0020]

【表2】 表2の結果よりΔnのバラツキδΔnが小さいことから
大気圧変動の影響の少ないことがわかる。
[Table 2] From the results in Table 2, it can be seen that the variation of Δn δΔn is small and therefore the influence of atmospheric pressure fluctuation is small.

【0021】実施例3 実施例1において、コア用及びクッラド用原料のSiCl4
のキャリアーガス吹き込み管を、キャリアーガス噴出口
半径r0=0.002m、キャリアーガス噴出口深さLe=0.25m
の物を用いた所、D =5.3 ×10-6m2/sec. 、g =9.8m2/
sec.として、 D・Le/(rO 2√(rO・g)) の値を計算した所こ
の値は2.4 であり、この時の容器の気相中のSiCl4 蒸気
の飽和度は100 %であった。なお比較のためにキャリア
ーガス吹き込み管をr0=0.003m,Le=0.2mとした所、 D
・Le/(rO 2√(rO・g)) の値は0.7 となり、この時の容器の
気相中のSiCl4 蒸気の飽和度は90%であった。
Example 3 In Example 1, SiCl 4 as a raw material for core and cladd
Carrier gas injection pipe, carrier gas outlet radius r 0 = 0.002m, carrier gas outlet depth Le = 0.25m
When using the above item, D = 5.3 × 10 -6 m 2 / sec., G = 9.8 m 2 /
When calculating the value of D ・ Le / (r O 2 √ (r O・ g)) as sec., this value is 2.4, and the saturation of SiCl 4 vapor in the gas phase of the container at this time is 100. %Met. For comparison, the carrier gas blowing tube was set to r 0 = 0.003m, Le = 0.2m, D
・ The value of Le / (r O 2 √ (r O · g)) was 0.7, and the saturation of the SiCl 4 vapor in the gas phase of the container at this time was 90%.

【0022】[0022]

【発明の効果】本発明によると、大気圧変動による容器
内の気相圧力変動の影響を小さくし、シリコン化合物及
びドープ用化合物の原料蒸気の気相中での飽和度を99%
以上の一定の高い値に保持してバーナーへ供給すること
により、均一な光学特性を有するシリカ系ガラスを製造
することが出来た。
EFFECTS OF THE INVENTION According to the present invention, the influence of the vapor phase pressure fluctuation in the container due to the atmospheric pressure fluctuation is reduced, and the saturation of the raw material vapors of the silicon compound and the doping compound in the gas phase is 99%.
By maintaining the above high constant value and supplying it to the burner, it was possible to manufacture a silica-based glass having uniform optical characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明するための液体原料供給装置の縦
断面要図。
FIG. 1 is a vertical cross-sectional view of a liquid raw material supply device for explaining the present invention.

【図2】従来の液体原料供給装置を示す縦断面要図。FIG. 2 is a vertical cross-sectional view showing a conventional liquid raw material supply device.

【符号の説明】[Explanation of symbols]

1、11…キャリアーガス流量制御器 2、12…液体原料容器(容器) 3、13…液体原料 4、14…圧力計 5、15…大気圧センサー 6、16…補正演算器 7…絞り弁 8、18…キャリアーガス吹込み管 9、19…原料蒸気供給管 10、20…液体原料補給管 1, 11 ... Carrier gas flow controller 2, 12 ... Liquid raw material container (container) 3, 13 ... Liquid raw material 4, 14 ... Pressure gauge 5, 15 ... Atmospheric pressure sensor 6, 16 ... Correction calculator 7 ... Throttle valve 8 , 18 ... Carrier gas injection pipe 9, 19 ... Raw material vapor supply pipe 10, 20 ... Liquid raw material supply pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気化されたシリコン化合物および必要に
応じて気化されたドープ用化合物を、酸水素火炎中で火
炎加水分解させシリカ微粒子およびドープ材料の微粒子
を発生させ、これら微粒子を回転する種棒上に付着、堆
積させることよりなるシリカ系ガラスの製造方法におい
て、シリコン化合物の液体原料およびドープ用化合物の
液体原料をそれぞれの原料容器に充填し、これらの液体
原料にキャリアーガスをキャリアーガス吹き込み管より
吹き込みバブリングさせて気化させ、該キャリアーガス
と原料蒸気の混合気体をバーナーに供給する液体原料供
給方法における、各々の原料容器内の気相圧力をゲージ
圧1kg/cm2以上2kg/cm2未満に保持することを特徴とす
るシリカ系ガラスの製造方法。
1. A seed rod for rotating a vaporized silicon compound and optionally a vaporized dope compound by flame hydrolysis in an oxyhydrogen flame to generate silica fine particles and fine particles of a dope material, and rotating these fine particles. In a method for producing a silica-based glass, which comprises depositing and depositing on the above, a liquid raw material of a silicon compound and a liquid raw material of a dope compound are filled in respective raw material containers, and a carrier gas is blown into a carrier gas into the liquid raw material. In the liquid raw material supply method of supplying the mixed gas of the carrier gas and the raw material vapor to the burner by further bubbling with bubbling to vaporize the gas phase pressure in each raw material container, the gauge pressure is 1 kg / cm 2 or more and less than 2 kg / cm 2. The method for producing a silica-based glass, characterized in that
【請求項2】 気化されたシリコン化合物および必要に
応じて気化されたドープ用化合物の原料蒸気成分のキャ
リアーガス成分中における拡散係数をD 、キャリアーガ
ス吹き込み管のキャリアーガス噴出口半径をrO 、液中
におけるキャリアーガス噴出口の深さをLeとしたとき、
D・Le/(rO 2√(rO・g)) (gは重力加速度)の値が 2.0以
上である請求項1に記載のシリカ系ガラスの製造方法。
2. A diffusion coefficient D in a carrier gas component of a raw material vapor component of a vaporized silicon compound and, if necessary, a vaporized doping compound, a carrier gas jet port radius of a carrier gas blowing pipe is r O , When the depth of the carrier gas jet in the liquid is Le,
The method for producing a silica-based glass according to claim 1, wherein a value of D · Le / (r O 2 √ (r O · g)) (g is gravitational acceleration) is 2.0 or more.
JP8697795A 1995-04-12 1995-04-12 Method for producing silica-based glass Expired - Lifetime JP3192571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8697795A JP3192571B2 (en) 1995-04-12 1995-04-12 Method for producing silica-based glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8697795A JP3192571B2 (en) 1995-04-12 1995-04-12 Method for producing silica-based glass

Publications (2)

Publication Number Publication Date
JPH08283026A true JPH08283026A (en) 1996-10-29
JP3192571B2 JP3192571B2 (en) 2001-07-30

Family

ID=13901941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8697795A Expired - Lifetime JP3192571B2 (en) 1995-04-12 1995-04-12 Method for producing silica-based glass

Country Status (1)

Country Link
JP (1) JP3192571B2 (en)

Also Published As

Publication number Publication date
JP3192571B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
EP0949212B1 (en) Methods of and systems for vapor delivery control in optical preform manufacture
US4582480A (en) Methods of and apparatus for vapor delivery control in optical preform manufacture
CN101633552B (en) Quartz glass manufacturing method and quartz glass manufacturing apparatus
US4450118A (en) Apparatus for saturating a gas with the vapor of a liquid
JPH0781965A (en) Gas producer, method for producing optical waveguide and optical fiber preform and device therefor
EP1016635B1 (en) Process for producing silica by decomposition of an organosilane
EP2311781A1 (en) Method for producing quartz glass preform
JP3192571B2 (en) Method for producing silica-based glass
US20230227345A1 (en) Apparatus and method for producing porous glass preform
KR19990036635A (en) Synthetic quartz glass manufacturing method
JP3157693B2 (en) Method for producing silica glass-based deposit
WO2004083139A1 (en) Method for producing glass material
JP4277574B2 (en) Gas material supply method and apparatus, and glass fine particle deposit body and glass material manufacturing method using the same
JP4038866B2 (en) Synthetic quartz glass manufacturing method
JP2003340265A (en) Method and apparatus for vaporizing liquid raw material, and apparatus for producing glass base material
US11702358B2 (en) Method and apparatus for reproducibly producing a preform for glass fiber manufacture
US5207813A (en) Method for producing glass article
JP2003059836A (en) Method and apparatus of supplying gas for chemical vapor deposition unit
JP3437109B2 (en) Optical waveguide film forming apparatus and optical waveguide film forming method
JPH0332501Y2 (en)
JPS63129033A (en) Process for feeding raw material for glass
JP2003171138A (en) Apparatus for manufacturing optical fiber preform
JPH0657615B2 (en) Method for manufacturing optical fiber preform
JPS58659Y2 (en) Raw material supply equipment for manufacturing optical fiber base material
JPH01246366A (en) Production of oxide film and device therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 13

EXPY Cancellation because of completion of term