JPH01246366A - Production of oxide film and device therefor - Google Patents

Production of oxide film and device therefor

Info

Publication number
JPH01246366A
JPH01246366A JP7386888A JP7386888A JPH01246366A JP H01246366 A JPH01246366 A JP H01246366A JP 7386888 A JP7386888 A JP 7386888A JP 7386888 A JP7386888 A JP 7386888A JP H01246366 A JPH01246366 A JP H01246366A
Authority
JP
Japan
Prior art keywords
raw material
liquid
conduit
carrier gas
evaporation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7386888A
Other languages
Japanese (ja)
Inventor
Yuko Hochido
寳地戸 雄幸
Takehiko Futaki
剛彦 二木
Hidechika Yokoyama
横山 英親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Original Assignee
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUJIYUNDO KAGAKU KENKYUSHO KK, Kojundo Kagaku Kenkyusho KK filed Critical KOUJIYUNDO KAGAKU KENKYUSHO KK
Priority to JP7386888A priority Critical patent/JPH01246366A/en
Publication of JPH01246366A publication Critical patent/JPH01246366A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To improve the quality of a formed oxide film without leaving an alkyl group in the film by introducing a liq. raw material such as alcoholates in a dry state into a reaction chamber along with a carrier gas, and chemically growing the film in a vapor phase. CONSTITUTION:The liq. raw material 1 such as alcoholates or metal carboxylates is stored in a closed container 2. The raw material 1 with the temp. controlled is introduced into a reduced-pressure vaporization vessel 6 from the container 2 through a conduit 4, and one hundred-percent vaporized. The gaseous raw material 1 and the carrier gas introduced from a carrier gas conduit 13 are mixed in the vessel 6 to form a dry gaseous raw material. A liq. flow controller 5 is provided at the midway of the conduit 4. The raw material 1 is transported by the pressure difference between the container 2 and the vessel 6. The raw material 1 is further transported to a reduced-pressure reaction chamber 14 wherein chemical vapor growth is carried out, and an oxide film id formed.

Description

【発明の詳細な説明】 (発明の目的) 童果上q机尻ば肛 本発明は、アルコラートあるいは金属カルボン酸塩等の
液体を酸化膜の原料とするCVD法等による酸化膜の製
造方法とその装置に関する。
[Detailed Description of the Invention] (Object of the Invention) The present invention relates to a method for producing an oxide film using a CVD method or the like using a liquid such as an alcoholate or a metal carboxylate as a raw material for the oxide film. Regarding the device.

従来Ω挾± アルコラート等の酸化膜の原料をCVD装置等の反応室
に導入する方法としてはバブラーに入れた液体原料中に
キャリヤーガスを導入し、バブリングすることによって
液体原料を蒸気化し、この蒸気をキャリヤーガスと共に
反応室に導入する方法が用いられている。
Conventionally, the method for introducing raw materials for oxide films such as alcoholates into the reaction chamber of CVD equipment, etc. is to introduce a carrier gas into the liquid raw materials placed in a bubbler, vaporize the liquid raw materials by bubbling, and then vaporize the liquid raw materials. A method is used in which a carrier gas is introduced into a reaction chamber together with a carrier gas.

を計測し、次にバブラーから出てぎたキ1?すr−と原
料との混合ガスをもう一つのマスフローセンサーに通し
、両センサーの差として原料蒸気量を求め、原料蒸気量
が一定になるようにキャリヤーガス量を制御している。
, and then the Ki1 that came out of the bubbler? The mixed gas of SR- and raw material is passed through another mass flow sensor, the amount of raw material vapor is determined as the difference between the two sensors, and the amount of carrier gas is controlled so that the amount of raw material vapor is constant.

これような方法では、発生した原料ガスは導管中を湿潤
ガスの状態で通過するため反応室までの導管内で結露す
る欠点がある。
In this method, the generated raw material gas passes through the conduit in the form of a wet gas, so there is a drawback that dew condenses in the conduit leading to the reaction chamber.

原因となる欠点がある。There is a flaw that causes this.

さらに、バブラー内の液量の変化や温度変化によって形
成される酸化膜の膜厚のバラツキが起る欠点がある。
Furthermore, there is a drawback that the thickness of the oxide film formed varies due to changes in the amount of liquid in the bubbler or changes in temperature.

解決しようとする問題点 本発明は、従来法のようなバブラーを使用せず、液体原
料を乾燥ガスとしキャリヤ−ガスと共に反応室に導入し
CVD法等により極めて良質の酸化膜を製造する方法と
その方法を実施する装置を提供しようとするものである
Problems to be Solved The present invention is a method for producing an extremely high quality oxide film by CVD method etc. by using a liquid raw material as a dry gas and introducing it into a reaction chamber together with a carrier gas without using a bubbler as in the conventional method. It is an object of the present invention to provide an apparatus for carrying out the method.

(発明の構成) 本発明を第1図に従って詳細に説明する。(Structure of the invention) The present invention will be explained in detail with reference to FIG.

原料容器2の中に液体原料1が充填しである。The liquid raw material 1 is filled into the raw material container 2.

液体原料中にはその液体を運ぶ導管4が挿入してありそ
れを蒸発槽に導入する。原料容器中の原石は使用によっ
てその液体が下るが、その終点を知るために液面レンサ
ーを設置してもよい。
A conduit 4 for carrying the liquid is inserted into the liquid raw material and introduces it into the evaporation tank. The liquid in the raw material container will drop as it is used, and a liquid level sensor may be installed to know the end point.

導管4の途中に液体質量流量制御装置5が鉛直方向に設
置され、その流量を制御する。導管4の先端部10は細
くノズル状にして圧損を設は原料液を噴霧して霧化して
もよい。また、この方法によれば液体中の気泡を除去で
きる効果がある。
A liquid mass flow rate controller 5 is installed vertically in the middle of the conduit 4 to control the flow rate. The tip end 10 of the conduit 4 may be made into a thin nozzle shape to create a pressure loss and the raw material liquid may be sprayed and atomized. Furthermore, this method has the effect of removing air bubbles from the liquid.

蒸発槽6の外部はヒーター11−1.11−2によって
加熱され、蒸発槽の内部は原料蒸気の飽和蒸気がキャリ
ヤーガスどの混合状態の分圧より高くなるような温度に
制御されている。また、蒸発槽の内部にはステンレスの
ような熱伝導の良いボール7が充填してあり、槽内での
液体原料の均一な蒸発が行なわれる。
The outside of the evaporation tank 6 is heated by a heater 11-1, 11-2, and the inside of the evaporation tank is controlled at a temperature such that the saturated vapor of the raw material vapor is higher than the partial pressure of the carrier gas in any mixed state. Further, the inside of the evaporation tank is filled with balls 7 made of stainless steel or the like having good thermal conductivity, so that the liquid raw material can be evaporated uniformly within the tank.

原料に損傷を与えないキャリヤーガスを導管13によっ
て蒸発槽に導入するが、蒸発槽内は減圧状態になってい
る。
A carrier gas that does not damage the raw material is introduced into the evaporation tank through a conduit 13, but the inside of the evaporation tank is under reduced pressure.

原料容器2と蒸発槽6の圧力差によって液体原料が輸送
されるが、その圧力差を補償するために導管3によって
背圧ガスが原料容器に導入される。
The liquid raw material is transported due to the pressure difference between the raw material container 2 and the evaporation tank 6, and in order to compensate for the pressure difference, back pressure gas is introduced into the raw material container through the conduit 3.

バルブ20によりその圧力差が輸送および流量制御可能
な圧力範囲になるにう調節されている。
A valve 20 adjusts the pressure difference to a pressure range that allows for transport and flow control.

以上のような液体原料の輸送機構のため、本発明によれ
ば従来のようなバブラーを必要としない。
Because of the liquid raw material transport mechanism as described above, the present invention does not require a conventional bubbler.

蒸発槽で発生した原料ガスは流量制御されたギA7リヤ
ーガスと混合し、外部のヒーター12−1.12−2に
よって露点以上に保温された導管9によって真空ポンプ
15で減圧された反応室14に導入される。
The raw material gas generated in the evaporation tank is mixed with gear A7 rear gas whose flow rate is controlled, and is passed through a conduit 9 kept at a temperature above the dew point by an external heater 12-1, 12-2 to a reaction chamber 14 whose pressure is reduced by a vacuum pump 15. be introduced.

以上のような原料の蒸発機構のため、本発明によれば反
応室内に導入されるガスは原料ガス、キt・すX7−ガ
ス共に流量制御され、導管中では常に乾燥ガスの状態で
あるという特徴を持つ。
Due to the evaporation mechanism of the raw material as described above, according to the present invention, the flow rate of the gas introduced into the reaction chamber is controlled for both the raw material gas and the kit gas, and the gas is always in a dry gas state in the conduit. have characteristics.

なお、導管9は分岐し真空ポンプ8に接続されている。Note that the conduit 9 is branched and connected to the vacuum pump 8.

次に装置内の各バルブの操作モードを説明する。Next, the operation mode of each valve in the device will be explained.

(1)開始モード 製造を開始するため電気を入力したとき、バルブ16.
19を閉じ、バルブ17.18を開き、真空ポンプ8に
より蒸発槽内を一定の減圧状態にし、蒸発槽が所定の温
度になるのを待つ。
(1) Start mode When electricity is input to start production, valve 16.
19 is closed, valves 17 and 18 are opened, the inside of the evaporation tank is brought into a constant reduced pressure state by the vacuum pump 8, and the evaporation tank is waited for to reach a predetermined temperature.

(2)動作モード 通常運転のとき、 バルブ16.17.19を開き、バルブ18を閉じ、反
応室に混合ガスを一定量で導入させる。
(2) Operation mode During normal operation, valves 16, 17, and 19 are opened, valve 18 is closed, and a constant amount of mixed gas is introduced into the reaction chamber.

(3)時期モード このモードは運転時に真空計21の圧力表示が高過ぎる
時で、反応室にキャリヤーガスを導入しない短期の時期
時にあたる。
(3) Period mode This mode is used when the pressure displayed on the vacuum gauge 21 is too high during operation, and corresponds to a short period when carrier gas is not introduced into the reaction chamber.

バルブ16.17.18を開き、バルブ19を閉じ、真
空ポンプ8により所定の真空度どザる。
The valves 16, 17, and 18 are opened, the valve 19 is closed, and the vacuum pump 8 is used to obtain a predetermined degree of vacuum.

所定の真空度が得られたとき、バルブ18を閉じ、バル
ブ19を開き、通常運転にもどる。
When a predetermined degree of vacuum is obtained, valve 18 is closed, valve 19 is opened, and normal operation is resumed.

(4)長期停止モード 製造を終了するとさ、 バルブ16.17.19を閉じ、バルブ18を開き、蒸
発槽内の残余ガスを真空ポンプで吸引する。吸引が終っ
たらバルブ18を閉じ真空ポンプを停止する。
(4) Long-term stop mode When manufacturing is finished, valves 16, 17, and 19 are closed, valve 18 is opened, and the remaining gas in the evaporation tank is sucked out with a vacuum pump. When the suction is finished, close the valve 18 and stop the vacuum pump.

以上のバルブ操作はコンピュータにより自動制御されて
いる。
The above valve operations are automatically controlled by a computer.

実施例 テトラエトキシシランS i (OC21−15)4を
原料容器に入れ、流ff11g/minで蒸発槽内に導
入した。反応室内の真空度50Torr、蒸発槽内の真
空度100Torrに保ち、キャリヤーガスとして窒素
99%、水素1%の混合ガスを流ff1300cc/m
i nで流しながら、蒸発槽内の温度を80℃に保持し
た。
Example Tetraethoxysilane S i (OC21-15)4 was placed in a raw material container and introduced into the evaporation tank at a flow rate of 11 g/min. The vacuum level in the reaction chamber was maintained at 50 Torr, and the vacuum level in the evaporation tank was maintained at 100 Torr, and a mixed gas of 99% nitrogen and 1% hydrogen was flowed at 1300 cc/m as a carrier gas.
The temperature inside the evaporation tank was maintained at 80° C. while flowing at in.

また、背圧ガスとしてキャリヤーガスと同じ混合ガスを
用い1 kqf/cm2 Gに設定した。
Further, the same mixed gas as the carrier gas was used as the back pressure gas, and the pressure was set at 1 kqf/cm2G.

発生した原料ガスとキャリヤーガスの混合ガスを輸送す
る管9は55℃の温度に保温し、反応室内に導入した混
合ガスを13.56MH7の高周波プラズマを用いSi
基板上に5i02の膜を形成した。
The pipe 9 that transports the mixed gas of the generated raw material gas and carrier gas is kept at a temperature of 55°C, and the mixed gas introduced into the reaction chamber is heated to Si using a high frequency plasma of 13.56 MH7.
A 5i02 film was formed on the substrate.

1(lの原料容器に9Lのテトラエトキシシランを充填
して成膜した場合と、同容器に1Lのテトラエトキシシ
ランを充填して上記の同一条件で成膜した場合の比較を
行なった。
A comparison was made between a case where a 1L raw material container was filled with 9L of tetraethoxysilane to form a film and a case where the same container was filled with 1L of tetraethoxysilane and a film was formed under the same conditions as described above.

各々2分間の反応時間において両方の膜厚は490±2
0nmの膜厚であり、有意な膜厚の差は認められなかっ
た。
Both film thicknesses were 490 ± 2 at a reaction time of 2 minutes each.
The film thickness was 0 nm, and no significant difference in film thickness was observed.

成膜した5i02の膜の赤外吸収スペクトルを測定した
結果、各々の膜についてアルキル基の吸収スペクトルは
観察されなかった。
As a result of measuring the infrared absorption spectra of the 5i02 films formed, no absorption spectrum of alkyl groups was observed in each film.

(発明の効果) 本発明によれば、成膜した酸化膜中にアルキル基が残存
しないためその膜質が極めて良好である特徴がある。
(Effects of the Invention) According to the present invention, since no alkyl group remains in the formed oxide film, the quality of the film is extremely good.

また、液体原料を気化Mるバブラーを使用しないため、
ミスし・の発生による不安定な流量コントロールを除去
することができる利点がある。。
In addition, since a bubbler that vaporizes liquid raw materials is not used,
This has the advantage of eliminating unstable flow control caused by errors. .

さらに、本発明による原料ガスは乾燥状態であるため、
途中の輸送管中で結露することはない特徴がある。
Furthermore, since the raw material gas according to the present invention is in a dry state,
It has the characteristic that dew does not form in the transport pipes along the way.

また、本発明はバブラーを使用せず、液体原料を100
%蒸発させ、キャリヤーガス流量も厳密に制御できるた
め、原料液体の液量の変化や温度変化等の環境依存性が
なく、膜厚、膜質等製品のバラツキがない特徴がある。
In addition, the present invention does not use a bubbler, and the liquid raw material is
% evaporation and the flow rate of the carrier gas can be strictly controlled, so there is no environmental dependence such as changes in the amount of raw material liquid or temperature changes, and there is no variation in the product in terms of film thickness, film quality, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる装置のグロックダイアグラムであ
る。 図において、1は原料液体、2は原料容器、3は背圧ガ
ス導管、4は液体原料を輸送する導管、5は液体質量流
量制御装置、6は蒸発槽、7はステンレスポール、8は
真空ポンプ、9は原料とキャリヤーの混合ガスを輸送す
る導管、10はノズル、11−1.11−2は蒸発槽加
温用ヒーター、12−1.12−2は13管9保温用ヒ
ーター、13はキャリヤーガス導管、14は反応室、1
5は真空ポンプ、16.17.18.19.20はバル
ブ、21は真空計である。
FIG. 1 is a Glock diagram of the device according to the invention. In the figure, 1 is a raw material liquid, 2 is a raw material container, 3 is a back pressure gas conduit, 4 is a conduit for transporting the liquid raw material, 5 is a liquid mass flow rate controller, 6 is an evaporation tank, 7 is a stainless steel pole, and 8 is a vacuum 9 is a pump, 9 is a conduit for transporting a mixed gas of raw material and carrier, 10 is a nozzle, 11-1. is a carrier gas conduit, 14 is a reaction chamber, 1
5 is a vacuum pump, 16, 17, 18, 19, 20 is a valve, and 21 is a vacuum gauge.

Claims (2)

【特許請求の範囲】[Claims] (1)液体のアルコラートあるいは金属カルボン酸塩を
酸化膜の原料とし、その原料を流量制御しキャリヤーガ
スと共に導入された蒸発槽において100%蒸発させ、
乾燥ガスの状態で保温された導管によって減圧状態の反
応室に導くことを特徴とする酸化膜の製造方法。
(1) Liquid alcoholate or metal carboxylate is used as the raw material for the oxide film, and the raw material is 100% evaporated in an evaporation tank introduced together with a carrier gas by controlling the flow rate.
A method for producing an oxide film, characterized in that dry gas is introduced into a reaction chamber under reduced pressure through a heat-insulated conduit.
(2)液体原料を入れた密閉容器、液体原料に損傷を与
えないガスで密閉容器内の圧力を調整する機構、密閉容
器の液体原料中に挿入してその液体を蒸発槽に導びく導
管、その導管の途中に設けた液体流量制御装置、蒸発槽
へキャリヤーガスを導く導管を備えキャリヤーガスと混
合した乾燥原料ガスを発生させる温度制御された減圧状
態の密閉された蒸発槽、蒸発槽から減圧状態の反応室へ
導く保温された導管等を備えた装置において、液体原料
を入れた密閉容器と蒸発槽との圧力差によつて液体が輸
送され、キャリヤーガスと混合した乾燥ガスとして反応
室内に輸送されることを特徴とする酸化膜の製造装置。
(2) A sealed container containing a liquid raw material, a mechanism for adjusting the pressure inside the sealed container with a gas that does not damage the liquid raw material, and a conduit inserted into the liquid raw material in the sealed container to lead the liquid to the evaporation tank; A liquid flow rate control device installed in the middle of the conduit, a sealed evaporation tank with a temperature-controlled reduced pressure state that is equipped with a conduit that guides the carrier gas to the evaporation tank, and generates dry raw material gas mixed with the carrier gas, and a reduced pressure from the evaporation tank. In a device equipped with a heat-insulated conduit leading to a reaction chamber, the liquid is transported by the pressure difference between the sealed container containing the liquid raw material and the evaporation tank, and is transported into the reaction chamber as a dry gas mixed with a carrier gas. An oxide film production device characterized in that it is transported.
JP7386888A 1988-03-28 1988-03-28 Production of oxide film and device therefor Pending JPH01246366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7386888A JPH01246366A (en) 1988-03-28 1988-03-28 Production of oxide film and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7386888A JPH01246366A (en) 1988-03-28 1988-03-28 Production of oxide film and device therefor

Publications (1)

Publication Number Publication Date
JPH01246366A true JPH01246366A (en) 1989-10-02

Family

ID=13530594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7386888A Pending JPH01246366A (en) 1988-03-28 1988-03-28 Production of oxide film and device therefor

Country Status (1)

Country Link
JP (1) JPH01246366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450016A1 (en) * 1989-10-17 1991-10-09 Libbey Owens Ford Co Method for preparing vaporized reactants for chemical vapor deposition.
WO2011155635A1 (en) * 2010-06-08 2011-12-15 住友金属鉱山株式会社 Method for producing metal oxide film, metal oxide film, element using the metal oxide film, substrate with metal oxide film, and device using the substrate with metal oxide film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62860A (en) * 1985-03-29 1987-01-06 センフオウルド・ホ−ルデイングス・エス・エイ Testing method for diagnosing microbe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62860A (en) * 1985-03-29 1987-01-06 センフオウルド・ホ−ルデイングス・エス・エイ Testing method for diagnosing microbe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450016A1 (en) * 1989-10-17 1991-10-09 Libbey Owens Ford Co Method for preparing vaporized reactants for chemical vapor deposition.
TR25795A (en) * 1989-10-17 1993-09-01 Libbey Owens Ford Co PREPARED METHODS FOR METAL COATING IN STEAM PHASE PREPARATION METHOD
WO2011155635A1 (en) * 2010-06-08 2011-12-15 住友金属鉱山株式会社 Method for producing metal oxide film, metal oxide film, element using the metal oxide film, substrate with metal oxide film, and device using the substrate with metal oxide film
JP5240532B2 (en) * 2010-06-08 2013-07-17 住友金属鉱山株式会社 Method for producing metal oxide film
US8753987B2 (en) 2010-06-08 2014-06-17 Sumitomo Metal Mining Co., Ltd. Method of manufacturing metal oxide film

Similar Documents

Publication Publication Date Title
US5203925A (en) Apparatus for producing a thin film of tantalum oxide
JP3238441B2 (en) Method for providing a surface layer from a gas phase on a substrate and apparatus for carrying out such a method
US5945162A (en) Method and device for introducing precursors into chamber for chemical vapor deposition
US5288325A (en) Chemical vapor deposition apparatus
EP1034146B1 (en) Improvements in coating glass
CA1228268A (en) Vacuum deposition system with improved mass flow control
US4849259A (en) Method of forming silicon and oxygen containing layers
KR970003888B1 (en) Device and method for accurate etching and removal of thin film
JP3654494B2 (en) Method and system for steam delivery control in optical preform manufacture
JPS62273714A (en) Method and apparatus for supplying organic metal gas
JPH05168802A (en) Liquid material vaporizer and thin film forming device
JPH02255595A (en) Method and device for vaporizing and supplying organometallic compound
JPH04295089A (en) Apparatus for producing oxide superconducting film
JPH01168331A (en) Process for saturating organic metallic compound
JPH01246366A (en) Production of oxide film and device therefor
JPH0927455A (en) Manufacture of semiconductor substrate and material gas supplying apparatus
JP2602298B2 (en) Vapor phase growth equipment
WO2006009872A1 (en) Direct injection chemical vapor deposition method
JPH038330A (en) Apparatus for vaporizing and supplying liquid material for semiconductor
EP0635877A2 (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
Yamamoto et al. Reproducible growth of metalorganic chemical vapor deposition derived YBa2Cu3Ox thin films using ultrasonic gas concentration analyzer
JPH03126872A (en) Gasifying and supplying device for liquid semiconductor forming material
JPH0372078A (en) Method and device for forming thin film
JP2003013233A (en) Device for vaporizing/feeding liquid raw material
JP2004161555A (en) Method and apparatus for supplying glass forming gas, and method and apparatus for manufacturing glass particulate deposit