JP3192571B2 - Method for producing silica-based glass - Google Patents

Method for producing silica-based glass

Info

Publication number
JP3192571B2
JP3192571B2 JP8697795A JP8697795A JP3192571B2 JP 3192571 B2 JP3192571 B2 JP 3192571B2 JP 8697795 A JP8697795 A JP 8697795A JP 8697795 A JP8697795 A JP 8697795A JP 3192571 B2 JP3192571 B2 JP 3192571B2
Authority
JP
Japan
Prior art keywords
carrier gas
raw material
liquid
pressure
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8697795A
Other languages
Japanese (ja)
Other versions
JPH08283026A (en
Inventor
栄 川口
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8697795A priority Critical patent/JP3192571B2/en
Publication of JPH08283026A publication Critical patent/JPH08283026A/en
Application granted granted Critical
Publication of JP3192571B2 publication Critical patent/JP3192571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/86Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid by bubbling a gas through the liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/88Controlling the pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシリカガラス系光ファイ
バ用母材、あるいはLSIフォトマスク基板として有用
なシリカ系ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silica glass useful as a preform for a silica glass optical fiber or an LSI photomask substrate.

【0002】[0002]

【従来の技術】光ファイバーコア部材となるシリカガラ
スの製造設備では、水素、酸素等の気体原料の他に、Si
O2ガラスの原料となる SiCl4や、ガラスに屈折率分布を
形成する為のドープ用原料として GeCl4が液体原料とし
て製造に供される。気相軸付け(VAD)法では各々の
液体原料はともに気化されて酸水素火炎バーナーへ供給
され、ガラス微粒子堆積体が形成される。従来、これら
の方法においては SiCl4および GeCl4は各原料容器内に
充填し、流量制御されたキャリアーガスたとえばArガ
スを各原料容器内の液体ガラス原料中にバブリングする
ことにより所望の各原料をキャリアーガス中に気化拡散
させ、各原料蒸気をキャリアーガスとの混合気体として
発生させてバーナーに供給していた。図2にこれを概念
的に示してある。
2. Description of the Related Art In a facility for producing silica glass as an optical fiber core member , in addition to gaseous materials such as hydrogen and oxygen, Si
SiCl 4 , which is a raw material of O 2 glass, and GeCl 4, which is a doping raw material for forming a refractive index distribution in the glass, are supplied as liquid raw materials for production. In the vapor phase alignment (VAD) method, each liquid raw material is vaporized together and supplied to an oxyhydrogen flame burner to form a glass fine particle deposit. Conventionally, in these methods, SiCl 4 and GeCl 4 are filled in each raw material container, and a carrier gas of which flow rate is controlled, for example, Ar gas, is bubbled into the liquid glass raw material in each raw material container to thereby obtain each desired raw material. It vaporized and diffused in the carrier gas, and each raw material vapor was generated as a mixed gas with the carrier gas and supplied to the burner. This is shown conceptually in FIG.

【0003】図2において11はキャリアーガス流量制御
器、12は原料容器(容器、以下同じ)、13は液体原料
14は圧力計、15は大気圧センサ、16は補正演算器、18は
キャリアーガス吹き込み管、19は原料蒸気供給管、20は
液体原料補給管で、容器内の気相ではキャリアーガスお
よびキャリアーガス中に拡散した原料蒸気の2成分系に
なっていることからPを容器12内における全圧、φを飽
和度、tを容器温度、p(t)を温度tにおける原料の飽和
蒸気圧とすると、原料蒸気の容器12内における分圧はφ
p(t)であらわされ、またキャリアーガスの容器12内にお
ける分圧はP−φp(t)であらわされることから、qをキ
ャリアーガス流量、Qを同伴原料蒸気流量とすると次式
が成り立つ。 Q:q=原料蒸気分圧φp(t):キャリアーガス分圧P−φp(t)…(1) 即ち、同伴原料蒸気流量Qは次の式(2)により計算さ
れる。 Q=q×φp(t)/{P−φp(t)}…(2)
In FIG. 2, reference numeral 11 denotes a carrier gas flow controller, 12 denotes a raw material container (container, the same applies hereinafter), 13 denotes a liquid raw material ,
14 is a pressure gauge, 15 is an atmospheric pressure sensor, 16 is a correction calculator , 18 is
Carrier gas injection pipe, 19 is raw material steam supply pipe, 20 is
In the liquid material supply pipe , since the gas phase in the container is a two-component system of carrier gas and material vapor diffused in the carrier gas, P is the total pressure in the container 12, φ is the saturation degree, and t is the container. If the temperature and p (t) are the saturated vapor pressure of the raw material at the temperature t, the partial pressure of the raw material vapor in the container 12 is φ
Since p (t) is represented and the partial pressure of the carrier gas in the container 12 is represented by P-φp (t), the following equation is established when q is the carrier gas flow rate and Q is the accompanying raw material vapor flow rate. Q: q = raw material vapor partial pressure φp (t): carrier gas partial pressure P−φp (t) (1) That is, the accompanying raw material vapor flow rate Q is calculated by the following equation (2). Q = q × φp (t) / {P-φp (t)} (2)

【0004】この原料蒸気流量Qを一定にするには、
(2)式中q、φ、p(t)およびPの各値を一定に保持す
ればよい。キャリアーガス流量qはマスフローコントロ
ーラー(MFC)により精度よく制御される。また飽和
度φを一定に保つ方法としては特公昭 61-1378号公報に
開示されている方法がある。これによると、同一液体原
料を充填した容器を前・後段に区分してバブリング用キ
ャリアーガス導管により直列に接続し、前段にある容器
の温度により高温に維持することにより、飽和度φをほ
ぼ 100%に保持するバブラ2段方式が開示されている。
In order to keep the raw material vapor flow rate Q constant,
(2) In the equation, the values of q, φ, p (t) and P may be kept constant. The carrier gas flow rate q is accurately controlled by a mass flow controller (MFC). As a method for keeping the saturation φ constant, there is a method disclosed in Japanese Patent Publication No. 61-1378. According to this, a container filled with the same liquid material is divided into front and rear stages, connected in series by a bubbling carrier gas conduit, and maintained at a high temperature by the temperature of the container at the front stage, so that the saturation degree φ is almost 100%. A bubbler two-stage system in which the ratio is held at% is disclosed.

【0005】式(2)においては、前述のように、キャ
リアーガス流量qはMFCにより制御されるので精度の
高さに加えて応答性も速いが、φp(t)/{P−φp(t)} の
項は複数の因子から決定され応答性は極めて遅いことか
ら、キャリアーガス方式にあっては原料蒸気流量Qは、
容器内気相中の諸条件の均一化と安定化により原料蒸気
濃度を一定値に保持し、キャリアーガス流量により制御
されるのが理想的制御方法とされている。
In the equation (2), as described above, since the carrier gas flow rate q is controlled by the MFC, the responsiveness is fast in addition to the high accuracy, but φp (t) / {P−φp (t )} Term is determined from a plurality of factors and the response is extremely slow, so in the carrier gas method, the raw material vapor flow rate Q is
The ideal control method is to keep the raw material vapor concentration at a constant value by equalizing and stabilizing various conditions in the gas phase in the vessel and to control the raw material vapor concentration by the carrier gas flow rate.

【0006】しかしながらVAD法では、容器〜火炎バ
ーナー経路内の原料蒸気流路の流動抵抗が小さく容器内
の気相圧力は、0.01kg/cm2ゲージ以下であり、大気圧の
変動がそのまま気相圧力の変動となっているため、従来
法の供給方法のように、キャリアーガス流量q、飽和度
φ、容器内の温度tを一定に保持しても、大気圧がπ→
π±△πに変化すると容器内気相圧力もP→P±△πに
変化し、原料蒸気流量Qは(3)式により表される△Q
だけ変化してしまう。 △Q=q×φp(t)[1/{P±△π−φp(t)} −1/{P−φp(t)} ]…(3)
However, in the VAD method, the flow resistance of the raw material vapor flow path in the vessel to the flame burner path is small, and the gas phase pressure in the vessel is 0.01 kg / cm 2 gauge or less. Since the pressure fluctuates, even if the carrier gas flow rate q, the saturation degree φ, and the temperature t in the container are kept constant as in the conventional supply method, the atmospheric pressure becomes π →
When it changes to π ± △ π, the gas pressure in the container also changes from P → P ± △ π, and the raw material vapor flow rate Q becomes △ Q expressed by the equation (3).
Only change. ΔQ = q × φp (t) [1 / {P ± △ π-φp (t)} -1 / {P-φp (t)}] (3)

【0007】従来、このように大気圧πが変動した場合
にはこの変動による式(2)中の濃度項φp(t)/{P
−φp(t)}の変動を打ち消すようにキャリアーガス流量
項qを変化させることにより対応していた(特公平4-33
738 号公報)。それによると、図2において大気圧セン
サ15において検知された△πが補正演算器16に伝達さ
れ、同演算器16において濃度変動度φp(t)[1/{P±△
π−φp(t)} −1/{P−φp(t)} ]が直ちに計算され、
これに応じて増減されたキャリアーガス流量の新規設定
値をキャリアーガス流量制御器11へ伝達する。このよう
に気相濃度の上昇または低下に合わせて、キャリアーガ
ス流量qの設定値を低減、あるいは増加させることによ
り、原料蒸気流量を一定値に保持していた。
Conventionally, when such a large pressure π varied, the concentration term .phi.p (t) / {P in formula (2) according to this variation
This was achieved by changing the carrier gas flow term q so as to cancel the fluctuation of −φp (t)} (Japanese Patent Publication No. 4-33).
No. 738). According to this, △ π detected by the atmospheric pressure sensor 15 in FIG. 2 is transmitted to the correction arithmetic unit 16, and the arithmetic unit 16 performs the concentration fluctuation φp (t) [1 / {P ± △}.
π−φp (t)} −1 / {P−φp (t)}] is calculated immediately,
The new set value of the carrier gas flow rate increased / decreased according to this is transmitted to the carrier gas flow rate controller 11. As described above, the set value of the carrier gas flow rate q is reduced or increased in accordance with the rise or fall of the gas phase concentration, so that the raw material vapor flow rate is maintained at a constant value.

【0008】[0008]

【発明が解決しようとする課題】しかし、このようなキ
ャリアーガス流量qの再設定時において修正巾が大きい
場合、急激なキャリアーガス流量の変動を引き起し、こ
のキャリアーガス流量の大巾な変動は、酸水素火炎の温
度変動を引き起こし、堆積母材表面の嵩密度が変更前後
で異なり不均質となり、透明ガラス化の際に該当部位に
微妙な屈折率の変異部位を作り出し、プリフォームの光
学特性不良の一因になっている。またキャリアーガス流
量の自動再設定によるキャリアーガス流量の大巾な変動
は、容器内気相における原料蒸気の飽和度の変動を起こ
す恐れがある。しかしこの大気圧変動による飽和度変動
幅の予測は困難であり、飽和度が変動すると原料蒸気供
給流量の補正が正確に行われない恐れがある。そのため
にバブラ2段方式による飽和度 100%の維持方法が有効
と考えられるが、この方法は装置が複雑になるという問
題がある。
However, when the carrier gas flow rate q is reset and the correction width is large, a sudden change in the carrier gas flow rate is caused, and the carrier gas flow rate greatly fluctuates. Causes the temperature fluctuation of the oxyhydrogen flame, the bulk density of the surface of the deposited base material changes before and after the change, and becomes inhomogeneous. This contributes to poor characteristics. In addition, a large change in the carrier gas flow rate due to the automatic resetting of the carrier gas flow rate may cause a change in the saturation of the raw material vapor in the gas phase in the container. However, it is difficult to predict the saturation fluctuation width due to the atmospheric pressure fluctuation, and if the saturation fluctuates, the correction of the raw material steam supply flow rate may not be performed accurately. Therefore, a method of maintaining a saturation of 100% by a two-stage bubbler method is considered to be effective, but this method has a problem that the apparatus becomes complicated.

【0009】[0009]

【課題を解決するための手段】上記の問題を解決するた
めに本発明者らは種々検討を重ねた結果、容器内気相の
圧力Pを高く設定するほど、大気圧変動率△π/πの原
料蒸気流量変動率△Q/Qに及ぼす影響が小さくなるこ
とに着目し、この圧力Pについて検討して本発明を完成
するに至ったもので、第1の発明は、気化されたシリコ
ン化合物および必要に応じて気化されたドープ用化合物
を、酸水素火炎中で火炎加水分解させシリカ微粒子およ
びドープ材料の微粒子を発生させ、これら微粒子が回転
する種棒上に付着、堆積させることよりなるシリカ系ガ
ラスの製造方法において、シリコン化合物の液体原料お
よびドープ用化合物の液体原料をそれぞれ原料容器に
充填し、これら液体原料にキャリアーガスをキャリア
ーガス吹き込み管より吹き込みバブリングさせて気化さ
せ、該キャリアーガスと原料蒸気の混合気体をバーナー
に供給する液体原料供給方法における、各々の原料容器
内の気相圧力をゲージ圧1kg/cm2以上2kg/cm2未満に
ける所定圧に保持することよりなるシリカ系ガラスの製
造方法を要旨とするものである。
The inventors of the present invention have made various studies to solve the above-mentioned problems. As a result, the higher the pressure P of the gas phase in the vessel, the higher the change in the atmospheric pressure variation rate △ π / π. effects on raw steam flow fluctuation rate △ Q / Q Noting that decreases, which has completed the present invention examined this pressure P, the first invention, the silicon compound is vaporized and A dope compound vaporized as necessary is flame-hydrolyzed in an oxyhydrogen flame to generate silica fine particles and fine particles of a dope material, and these fine particles adhere and deposit on a rotating seed rod. the method of manufacturing a glass, the liquid material in the liquid material and doped compounds of silicon compounds was filled in each of the source container, pipe blowing a carrier gas to the carrier gas in these liquid materials Ri blown bubbling vaporizing, in the liquid raw material supply method for supplying a mixed gas of the carrier gas and the raw material vapor to a burner, the gas phase pressure gauge pressure 1 kg / cm 2 or more 2 kg / cm of less than 2 in the respective source container you to
SUMMARY OF THE INVENTION A gist of the present invention is a method for producing a silica-based glass by maintaining a predetermined pressure at a predetermined pressure .

【0010】この原料容器内気相圧力がゲージ圧1kg/c
m2未満の場合は効果が充分でなく、またゲージ圧2kg/c
m2以上となるとライン圧が高すぎて実用上問題があるた
この値はゲージ圧1kg/cm2以上2kg/cm2未満とする
ことが必要で、好ましくはゲージ圧1.0 〜1.6kg /cm2
よい。以下、本発明を具体的に説明する。図1は本発明
の説明図であり、図中1はキャリアーガス流量制御器、
2は液体原料容器(容器)、3は液体原料、4は圧力
計、5は大気圧センサー、6は補正演算器、7は絞り
弁、8はキャリアーガス吹き込み管、9は原料蒸気供給
管、10は液体原料補給管を夫々あらわす。以上の構成
で本発明が従来法と異なる点は、本発明では容器〜火炎
バーナー経路内の原料気流路に絞り弁7を設置して、各
々の原料容器内の気相圧力をゲージ圧1kg/cm2以上2kg
/cm2未満における所定圧に保持するようにした点であ
る。
The gas pressure in the raw material container is 1 kg / c gauge pressure.
If it is less than m 2 , the effect is not enough and the gauge pressure is 2 kg / c
Since m 2 or more to become the line pressure is practically problematic too high, this value needs to be a gauge pressure 1 kg / cm 2 or more 2 kg / cm of less than 2, preferably gauge pressure 1.0 ~1.6kg / cm 2 is better. Hereinafter, the present invention will be described specifically. FIG. 1 is an explanatory view of the present invention, in which 1 is a carrier gas flow controller,
2 is a liquid material container (container), 3 is a liquid material, 4 is a pressure gauge, 5 is an atmospheric pressure sensor, 6 is a correction calculator, 7 is a throttle valve, 8 is a carrier gas blowing pipe, 9 is a raw material vapor supply pipe, Reference numeral 10 denotes a liquid material supply pipe. Above construction present invention in the conventional method differs, in the present invention by installing the throttle valve 7 in the raw material gas stream path of the container-flame burner path, each
Gas pressure in each raw material container is gauge pressure 1kg / cm 2 or more 2kg
/ cm 2 is maintained at a predetermined pressure .

【0011】本発明の第2の発明は、容器内の気相中に
おける原料蒸気の飽和度を99%以上の一定値に保持する
ための方法で、これは気化されたシリコン化合物および
必要に応じて気化されたドープ用化合物の原料蒸気成分
のキャリアーガス成分中における拡散係数をD 、キャリ
アーガス吹き込み管のキャリアーガス噴出口半径をr
O 、および液中におけるキャリアーガス噴出口深さをLe
としたとき、 D・Le/(rO 2√(rO・g)) (g;重力加速
度)の値が 2.0以上である上記シリカ系ガラスの製造方
法を要旨とするものである。これを図1について説明す
ると、シリコン化合物又はドープ用化合物の液体原料を
容器2に充填し、この液体原料内に吹き込み管8を通じ
てキャリアーガスが吹き込まれ、キャリアーガスととも
に原料蒸気は供給管9よりバーナーに導入され火炎加水
分解されてガラス微粒子とされるが、本発明においては
この際、原料蒸気の飽和度を99%以上の一定の値に保持
するために、キャリアガスの吹き込み管8の構造につい
て、D・Le/(r O 2 √(r O ・g))の値を 2.0以上とするもので
ある。ここで D・Le/(rO 2√(rO・g)) の値が 2.0未満の
場合は容器内気相中の原料蒸気の飽和度が99%未満と
なるという問題があるので、この値は 2.0以上とする
とが必要で、好ましくは2.0 〜4.0 がよい。
A second aspect of the present invention is a method for maintaining the degree of saturation of the raw material vapor in the gas phase in the vessel at a constant value of 99% or more, which comprises a vaporized silicon compound and, if necessary, The diffusion coefficient of the raw material vapor component of the doping compound vaporized in the carrier gas component is D, and the radius of the carrier gas injection port of the carrier gas injection pipe is r.
O , and the carrier gas jet depth in the liquid
When a, D · Le / (r O 2 √ (r O · g)); it is an gist method for manufacturing the silica glass the value is 2.0 or more (g gravitational acceleration). This will be described for Figure 1, the liquid material of the silicon compound or doped compound filled in a container 2, a carrier gas through the inlet tube 8 into this liquid material is blown, feedstock vapor with carrier gas burner than the supply pipe 9 In the present invention, in order to maintain the saturation of the raw material vapor at a constant value of 99% or more, the structure of the blowing pipe 8 for the carrier gas is set. , D ・ Le / (r O 2 √ (r O ・ g)) should be 2.0 or more.
is there. Here If the value of D · Le / (r O 2 √ (r O · g)) is less than 2.0, the saturation of the feedstock vapor of the container in the gas phase there is a problem that less than 99%, the the value is required and this <br/> to 2.0 or more, preferably from 2.0 to 4.0.

【0012】本発明の方法に依るシリカ系ガラスとして
は光ファイバ用母材やLSIフォトマスク基板用シリカ
ガラスが挙げられる。本発明においてのドープ用化合物
は光ファイバ用母材の屈折率を調節するためにドープす
る化合物で、これは公知の物よく例えばGeやTi或はフ
ッソ等の化合物等が例示される。
Examples of the silica-based glass obtained by the method of the present invention include a preform for an optical fiber and a silica glass for an LSI photomask substrate. Doped compound of the present invention is a compound to be doped in order to adjust the refractive index of the optical fiber preform, which compounds such as well such as Ge and Ti or fluorine is known ones can be exemplified.

【0013】[0013]

【作用】本発明の第1の発明は式(2)及び式(3)か
ら導入された下記に示す式(4)より説明される。 △Q/Q=−P/{P−φp(t)}×(π/P)×(△π/π)…(4) 即ち、酸水素炎における反応条件である原料蒸気流量
Q、キャリアーガス流量qが規定値どうりに一定に制御
されていることから、式(2)の右辺に示される濃度項
φp(t)/{P−φp(t)} の値はQ/qとなり一定になる。
従ってこの様に容器内気相濃度を決め、かつこれを一定
値に保持することが必要ある。式(4)において、設
定条件φp(t)/{P−φp(t)} 値が一定の下に、従ってP
/{P−φp(t)} 値が一定(>1)の条件のもとに、大気
圧変動率△π/πに対して、容器内気相圧力Pが大きい
程π/P値が小となり、従って△Q/Qが小となること
が説明される。しかし供給されるキャリアーガスのライ
ン圧力の上限は一般的にゲージ圧2kg/cm2程度であるの
で、容器内気相圧力Pの実用上の上限圧力はゲージ圧2
kg/cm2未満である。
The first invention of the present invention is explained by the following equation (4) introduced from the equations (2) and (3). ΔQ / Q = -P / {P-φp (t)} × (π / P) × (△ π / π) (4) That is, the raw material vapor flow rate Q and the carrier gas which are the reaction conditions in the oxyhydrogen flame Since the flow rate q is controlled to be constant to the specified value, the value of the concentration term φp (t) / {P−φp (t)} shown on the right side of equation (2) becomes Q / q and is constant. Become.
Therefore decided vessel vapor concentration in this manner, and it is necessary to hold it at a constant value. In the equation (4), the setting condition φp (t) / {P−φp (t)} is under a constant value, so that P
/ {P-φp (t)} Under the condition that the value is constant (> 1), the larger the gas pressure P in the vessel, the smaller the π / P value with respect to the atmospheric pressure fluctuation rate △ π / π. Therefore, it is explained that ΔQ / Q becomes small. However, the upper limit of the line pressure of the supplied carrier gas is generally about 2 kg / cm 2 gauge pressure.
It is less than kg / cm 2 .

【0014】一方容器内気相圧力Pがゲージ圧1kg/c
m2以上の圧力で保持される場合、ガス吹き込み管からの
液体原料逆流防止のために2段バブラー方式による自動
開閉弁などが必要となるが、2段バブラー方式では装置
の複雑化が不可避となる。本発明の第2の発明は、2段
バブラー法を用いることなく、気化器1器のみにより飽
和度を99%以上の一定の値を維持する方法である。容器
内原料液中へのキャリアーガスの吹き込みによって発生
した気泡が液相中を上昇する間、原料蒸気成分は気泡中
に拡散浸透し、気相内に到達した原料蒸気とキャリアー
ガスとの混合気体は、気相中を通過し容器外へ逸出する
までの間にさらに気液界面からの拡散によってキャリア
ーガス中の原料蒸気の比率が高まる。
On the other hand , the gas pressure P in the vessel is 1 kg / c gauge pressure.
When held in m 2 or more pressure, and becomes like automatic opening and closing valves required by two-stage bubbler method for preventing the liquid material flowing back from the gas blowing pipe, a two-stage bubbler system complexity of the apparatus is unavoidable Become. The second invention of the present invention is a method of maintaining a constant saturation of 99% or more by only one vaporizer without using a two-stage bubbler method. While the bubbles generated by blowing the carrier gas into the raw material liquid in the container rise in the liquid phase, the raw material vapor component diffuses and penetrates into the bubbles, and the mixed gas of the raw material vapor and the carrier gas that has reached the gas phase The ratio of the raw material vapor in the carrier gas is increased by diffusion from the gas-liquid interface before passing through the gas phase and escaping outside the container.

【0015】気泡段階における飽和度が、容器内のキャ
リアーガス吹込み管噴出口半径rO によって決まる気
泡径Dp と吹込み管の液中におけるキャリアーガス噴出
口深さLeによって決まる接触時間θなど、容器構造因子
によって決まることより、これらの因子について検討し
た結果、原料蒸気成分のキャリアーガス成分中における
拡散係数D 、気泡径Dp 、および接触時間θ(気泡上昇
時間)が式(5)の関係にあれば気相中の原料蒸気の
飽和度は99.5%以上の一定の値を保持することが出来る
ことを結論できた。 D ・θ/(Dp /2)2 >0.85…(5) また接触時間θは、キャリアーガス吹込み管の液中にお
けるキャリアーガス噴出口深さLeを、液中における浮上
分離の式から求められる気泡上昇速度uで除すことによ
り式(6)のようにあたえられ、気泡上昇速度uは文献
より式(7)で表される。 θ=Le/u…(6) u=√(3.03Dp ・ g)…(7) ただし 500 <Re≡Dp ・ u・ ρ/μ<100,000 g;重力加速度 Dp ;気泡径 μ;液体粘度 ρ;液体密度 (文献;化学工学便覧 14.4 章 1,101頁) 次いで式(5)、(6)より式(8)が求められる。 D ・θ/(Dp /2)2 =D・(Le/u)/(Dp /2)2 >0.85…(8) さらに式(7)、(8)より式(9)が求められる。 D・Le/(Dp2√(Dp ・ g))>0.37…(9) 気泡径Dp がキャリアーガス吹込み管のキャリアーガス
噴出口半径r0 に比例すると仮定し、種々の設計仕様の
キャリアーガス吹き込み管を設計して検討した結果、式
(9)より式(10)が導かれた。 D・Le/(rO 2√(rO ・ g))>2.0 …(10)
The saturation in the bubble phase, in the container carrier gas blow pipe jets radius r O by determined cell diameter Dp and during liquid blow tube carrier gas ports depth depends Le contact time θ etc. As a result of investigating these factors, the diffusion coefficient D, bubble diameter Dp, and contact time θ (bubble rising time) of the raw material vapor component in the carrier gas component are determined by the equation (5). if the degree of saturation of the raw material vapor in the gas phase was concluded that it is possible to maintain a constant value of 99.5%. D · θ / (Dp / 2) 2 > 0.85 (5) In addition, the contact time θ is obtained by calculating the carrier gas injection port depth Le in the liquid of the carrier gas injection pipe from the flotation separation formula in the liquid. Equation (6) is given by dividing by the bubble rising speed u, and the bubble rising speed u is expressed by the formula (7) from the literature. θ = Le / u (6) u = √ (3.03 Dp · g) (7) where 500 <Re≡Dp · u · ρ / μ <100,000 g; gravitational acceleration Dp; bubble diameter μ; liquid viscosity ρ; Liquid density (Literature; Handbook of Chemical Engineering, Chapter 14.4, pp. 101) Then, Equation (8) is obtained from Equations (5) and (6). D · θ / (Dp / 2) 2 = D · (Le / u) / (Dp / 2) 2 > 0.85 (8) Further, Expression (9) is obtained from Expressions (7) and (8). D · Le / (Dp 2 √ (Dp · g))> 0.37 (9) Assuming that the bubble diameter Dp is proportional to the carrier gas outlet radius r 0 of the carrier gas injection pipe, carrier gas of various design specifications is used. As a result of designing and studying the blowing pipe, Equation (10) was derived from Equation (9). D · Le / (r O 2 √ (r O · g))> 2.0… (10)

【0016】[0016]

【実施例】以下本発明を実施例、比較例について説明す
る。 実施例1 コア用原料の液状 SiCl4と液状 GeCl4について、それぞ
れ図1に示す液体原料供給装置を別々に用いてキャリア
ガスとしてArガスを各々流量300SCCM ( 毎分標準体積
流量(CC)、以下同じ) 及び30SCCMで吹き込み、流量250S
CCM の SiCl4蒸気と 3.0SCCMのGeCl4 蒸気を、H2 ガス
20SLM ( 毎分標準体積流量(L) 、 以下同じ) 、O2
ス20SLM と共にコア用バーナーに送り火炎加水分解して
SiO2とGeO2の微粒子を生成させこれを回転している種棒
に堆積させた。また同時にクラッド用原料の液状 SiCl4
についても別の図1に示す液体原料供給装置を用いてキ
ャリアガスとしてArガスを流量500SCCM で吹き込み、
流量410SCCM の SiCl4蒸気をH2 ガス20SLM 、O2 ガス
20SLM と共にクラッド用バーナーに送り火炎加水分解し
てSiO2微粒子を生成させこれを上記種棒に堆積させて多
孔質ガラス母材を作製した。この際、コア用SiCl4 及び
GeCl4 並びにクラッド用SiCl4 について各絞り弁7を調
節して各々の原料容器内の圧力を1.01kg/cm2ゲージに保
持し、またコア用SiCl4 及びGeCl4 並びにクラッド用Si
Cl4 の各原料容器内の原料蒸気の飽和度は100 %に保た
れた。なお、この間の大気圧の変動幅は 1.033〜1.053k
g/cm2 絶対値であったがキャリアーガス流量制御器1に
よりキャリアーガス流量を調整することに依り各原料蒸
気流量は一定に保持された。この様にして得られた多孔
質ガラス母材を 1,200℃で脱水し、 1,500℃で焼結して
直径30mm、長さ500 mmのシングルモード型光ファイバプ
リフォームを各5本製造して、その長手方向の屈折率差
Δnの変化について調べたところ、表1の結果を得た。
The present invention will be described below with reference to examples and comparative examples. Example 1 For liquid SiCl 4 and liquid GeCl 4 as core materials, Ar gas was used as a carrier gas at a flow rate of 300 SCCM (standard volume flow rate per minute (CC), respectively) using the liquid material supply device shown in FIG. 1 separately. Same) and blow at 30SCCM, flow rate 250S
CCM SiCl 4 vapor and 3.0SCCM GeCl 4 vapor were converted to H 2 gas.
20SLM (standard volume flow rate per minute (L), same hereafter), O 2 gas 20SLM and sent to core burner for flame hydrolysis
Fine particles of SiO 2 and GeO 2 were generated and deposited on a rotating seed rod. At the same time, liquid SiCl 4
The Ar gas was blown in at a flow rate of 500 SCCM as a carrier gas using the liquid material supply device shown in FIG.
Flow rate of 410SCCM SiCl 4 vapor to H 2 gas 20SLM, O 2 gas
The resultant was sent to a cladding burner together with 20SLM and subjected to flame hydrolysis to produce SiO 2 fine particles, which were deposited on the seed rod to prepare a porous glass base material. At this time, SiCl 4 for core and
GeCl 4 and by adjusting the respective throttle valve 7 for clad SiCl 4 to maintain the pressure within each of the source container to 1.01 kg / cm 2 gauge, also core SiCl 4 and GeCl 4 and clad Si
The saturation of the raw material vapor in each raw material container of Cl 4 was kept at 100%. The fluctuation range of the atmospheric pressure during this period is 1.033 to 1.053k
Although the absolute value was g / cm 2, the flow rate of each raw material vapor was kept constant by adjusting the flow rate of the carrier gas by the carrier gas flow rate controller 1. The porous glass base material thus obtained is dehydrated at 1,200 ° C., sintered at 1,500 ° C. to produce five single-mode optical fiber preforms each having a diameter of 30 mm and a length of 500 mm. When the change in the refractive index difference Δn in the longitudinal direction was examined, the results shown in Table 1 were obtained.

【0017】比較例1 実施例1において絞り弁7を用いなかった点以外は実施
例1と同様に行った。結果を表1にしめす。なおこの際
の各容器内圧力は0.01kg/cm2ゲージであり、また、この
間の大気圧の変動幅は 1.033〜1.053kg/cm2 絶対値であ
った。
Comparative Example 1 The procedure of Example 1 was repeated except that the throttle valve 7 was not used. The results are shown in Table 1. At this time, the pressure in each container was 0.01 kg / cm 2 gauge, and the fluctuation range of the atmospheric pressure during this period was 1.033 to 1.053 kg / cm 2 absolute value.

【0018】[0018]

【表1】 表1の結果より実施例1は比較例1に比較してΔnのバ
ラツキδΔnが小さいことがわかる。
[Table 1] From the results shown in Table 1, it can be seen that Example 1 has a smaller variation δΔn of Δn than Comparative Example 1.

【0019】実施例2 実施例1において大気圧センサに依るキヤリアガスの流
量制御を行わなかった点以外は実施例1と同様におこな
った。なお、この間の大気圧の変動幅は1.033〜1.053kg
/cm2 絶対値であった。結果を表2に示す。
Example 2 Example 2 was carried out in the same manner as in Example 1 except that the flow rate control of the carrier gas by the atmospheric pressure sensor was not performed. The fluctuation range of the atmospheric pressure during this period is 1.033 to 1.053 kg
/ cm 2 was the absolute value. Table 2 shows the results.

【0020】[0020]

【表2】 表2の結果よりΔnのバラツキδΔnが小さいことから
大気圧変動の影響の少ないことがわかる。
[Table 2] From the results in Table 2, it can be seen that the influence of atmospheric pressure fluctuation is small because the variation Δn of Δn is small.

【0021】実施例3 実施例1において、コア用及びクッラド用原料のSiCl4
のキャリアーガス吹き込み管を、キャリアーガス噴出口
外径r0=0.002m、キャリアーガス噴出口深さLe=0.25m
の物を用いた所、D =5.3 ×10-6m2/sec. 、g =9.8m2/
sec.として、 D・Le/(rO 2√(rO・g)) の値を計算した所
この値は2.4 であり、この時の容器の気相中のSiCl4
気の飽和度は100 %であった。なお比較のためにキャリ
アーガス吹き込み管をr0=0.003m,Le=0.2mとした所、
D・Le/(rO 2√(rO・g)) の値は0.7 となり、この時の容
器の気相中のSiCl4 蒸気の飽和度は90%であった。
Example 3 In Example 1, SiCl 4 was used as a raw material for the core and for the clad.
The carrier gas injection pipe of the above was used to adjust the carrier gas outlet outer diameter r 0 = 0.002 m and the carrier gas outlet depth Le = 0.25 m.
D = 5.3 × 10 −6 m 2 / sec., G = 9.8 m 2 /
sec as., this value where the value calculated in the D · Le / (r O 2 √ (r O · g)) is 2.4, the degree of saturation of SiCl 4 vapor in the gas phase of the container at this time is 100 %Met. For comparison, the carrier gas injection pipe was r 0 = 0.003 m and Le = 0.2 m.
D · Le / (r O 2 √ (r O · g)) of the value 0.7, and the degree of saturation of SiCl 4 vapor in the gas phase of the container at this time was 90%.

【0022】[0022]

【発明の効果】本発明によると、大気圧変動による容器
内の気相圧力変動の影響を小さくし、シリコン化合物及
びドープ用化合物の原料蒸気の気相中での飽和度を99%
以上の一定の高い値に保持してバーナーへ供給すること
により、均一な光学特性を有するシリカ系ガラスを製造
することが出来た。
According to the present invention, the effect of the gas pressure fluctuation in the vessel due to the atmospheric pressure fluctuation is reduced, and the saturation of the raw material vapor of the silicon compound and the doping compound in the gas phase is reduced by 99%.
By maintaining the above-mentioned constant high value and supplying it to the burner, a silica-based glass having uniform optical characteristics could be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を説明するための液体原料供給装置の
縦断面要図。
FIG. 1 is a longitudinal sectional view of a liquid material supply device for explaining the present invention.

【図2】 従来の液体原料供給装置を示す縦断面要図。FIG. 2 is a longitudinal sectional view showing a conventional liquid raw material supply device.

【符号の説明】[Explanation of symbols]

1、11…キャリアーガス流量制御器 2、12…液体原料容器(容器) 3、13…液体原料 4、14…圧力計 5、15…大気圧センサー 6、16…補正演算器 7…絞り弁 8、18…キャリアーガス吹込み管 9、19…原料蒸気供給管 10、20…液体原料補給管 1, 11 ... Carrier gas flow controller 2,12 ... Liquid raw material container (container) 3,13 ... Liquid raw material 4,14 ... Pressure gauge 5,15 ... Atmospheric pressure sensor 6,16 ... Correction calculator 7 ... Throttle valve 8 , 18… Carrier gas injection pipe 9,19… Raw material supply pipe 10,20… Liquid raw material supply pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−288922(JP,A) 特開 昭61−205629(JP,A) 特開 昭61−71832(JP,A) 特開 昭59−92933(JP,A) 特開 昭61−295249(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 8/04 C03B 37/018 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-288922 (JP, A) JP-A-61-205629 (JP, A) JP-A-61-71832 (JP, A) JP-A-59-1987 92933 (JP, A) JP-A-61-295249 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 8/04 C03B 37/018

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気化されたシリコン化合物および必要に
応じて気化されたドープ用化合物を、酸水素火炎中で火
炎加水分解させシリカ微粒子およびドープ材料の微粒子
を発生させ、これら微粒子を回転する種棒上に付着、堆
積させることよりなるシリカ系ガラスの製造方法におい
て、シリコン化合物の液体原料およびドープ用化合物の
液体原料をそれぞれの原料容器に充填し、これらの液体
原料にキャリアーガスをキャリアーガス吹き込み管より
吹き込みバブリングさせて気化させ、該キャリアーガス
と原料蒸気の混合気体をバーナーに供給する液体原料供
給方法における、各々の原料容器内の気相圧力をゲージ
圧1kg/cm2以上2kg/cm2未満における所定圧に保持する
ことを特徴とするシリカ系ガラスの製造方法。
The present invention relates to a seed rod for rotating silica particles and a dope material by flame hydrolysis of a vaporized silicon compound and, if necessary, a doping compound in an oxyhydrogen flame. In a method for producing a silica-based glass, which is deposited and deposited on a liquid material, a liquid material of a silicon compound and a liquid material of a doping compound are filled in respective material containers, and a carrier gas is injected into these liquid materials by a carrier gas blowing pipe. In the liquid raw material supply method in which the mixed gas of the carrier gas and the raw material vapor is supplied to the burner by vaporizing by blowing and bubbling, the gas pressure in each raw material container is set to a gauge pressure of 1 kg / cm 2 or more and less than 2 kg / cm 2. method for producing a silica-based glass, characterized in that to hold the definitive predetermined pressure to.
【請求項2】 気化されたシリコン化合物および必要に
応じて気化されたドープ用化合物の原料蒸気成分のキャ
リアーガス成分中における拡散係数をD 、キャリアーガ
ス吹き込み管のキャリアーガス噴出口半径をrO 、液中
におけるキャリアーガス噴出口の深さをLeとしたとき、
D・Le/(rO 2√(rO・g)) (gは重力加速度)の値が 2.0
以上である請求項1に記載のシリカ系ガラスの製造方
法。
2. The diffusion coefficient of the vaporized silicon compound and, if necessary, the vaporized doping compound in the carrier gas component of the raw material vapor component is D, the radius of the carrier gas outlet of the carrier gas injection pipe is r O , When the depth of the carrier gas outlet in the liquid is Le,
D ・ Le / (r O 2 √ (r O・ g)) (g is the gravitational acceleration) value is 2.0
The method for producing a silica-based glass according to claim 1, which is as described above.
JP8697795A 1995-04-12 1995-04-12 Method for producing silica-based glass Expired - Lifetime JP3192571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8697795A JP3192571B2 (en) 1995-04-12 1995-04-12 Method for producing silica-based glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8697795A JP3192571B2 (en) 1995-04-12 1995-04-12 Method for producing silica-based glass

Publications (2)

Publication Number Publication Date
JPH08283026A JPH08283026A (en) 1996-10-29
JP3192571B2 true JP3192571B2 (en) 2001-07-30

Family

ID=13901941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8697795A Expired - Lifetime JP3192571B2 (en) 1995-04-12 1995-04-12 Method for producing silica-based glass

Country Status (1)

Country Link
JP (1) JP3192571B2 (en)

Also Published As

Publication number Publication date
JPH08283026A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
EP0949212B1 (en) Methods of and systems for vapor delivery control in optical preform manufacture
US4235829A (en) Vapor delivery system and method of maintaining a constant level of liquid therein
EP3450407B1 (en) Method for manufacturing glass matrix
US20050005648A1 (en) Method and apparatus for fabricating an optical fiber preform in ovd
EP0231022B1 (en) Apparatus for the production of porous preform of optical fiber
JPH0781965A (en) Gas producer, method for producing optical waveguide and optical fiber preform and device therefor
CA2292985C (en) Process for producing silica by decomposition of an organosilane
JP3192571B2 (en) Method for producing silica-based glass
CN109423622B (en) Gas supply device and gas supply method
JP3157693B2 (en) Method for producing silica glass-based deposit
JP4277574B2 (en) Gas material supply method and apparatus, and glass fine particle deposit body and glass material manufacturing method using the same
US5207813A (en) Method for producing glass article
JPH11255522A (en) Production of synthetic quartz glass
JP3437109B2 (en) Optical waveguide film forming apparatus and optical waveguide film forming method
JP2003340265A (en) Method and apparatus for vaporizing liquid raw material, and apparatus for producing glass base material
JP3375370B2 (en) Raw material supply device
US11702358B2 (en) Method and apparatus for reproducibly producing a preform for glass fiber manufacture
JPH0332501Y2 (en)
JPS58659Y2 (en) Raw material supply equipment for manufacturing optical fiber base material
JP3788073B2 (en) Manufacturing method of optical fiber preform
JPH02204338A (en) Production of optical fiber preform
JP2003171138A (en) Apparatus for manufacturing optical fiber preform
JPS62113731A (en) Production of base material for optical fiber
JPS63129033A (en) Process for feeding raw material for glass
JPS61186239A (en) Production of parent material for optical fiber and burner therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 13

EXPY Cancellation because of completion of term