JPH08279607A - Manufacture of charge coupled element - Google Patents

Manufacture of charge coupled element

Info

Publication number
JPH08279607A
JPH08279607A JP7078789A JP7878995A JPH08279607A JP H08279607 A JPH08279607 A JP H08279607A JP 7078789 A JP7078789 A JP 7078789A JP 7878995 A JP7878995 A JP 7878995A JP H08279607 A JPH08279607 A JP H08279607A
Authority
JP
Japan
Prior art keywords
electrode
insulating film
type
potential
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7078789A
Other languages
Japanese (ja)
Other versions
JP3014026B2 (en
Inventor
Toru Yamada
徹 山田
Nobuhiko Muto
信彦 武藤
Takashi Nakano
隆 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7078789A priority Critical patent/JP3014026B2/en
Publication of JPH08279607A publication Critical patent/JPH08279607A/en
Application granted granted Critical
Publication of JP3014026B2 publication Critical patent/JP3014026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE: To provide a two-electrode/two phase drive CCD which is driven at low voltage without deterioration in transfer efficiency by suppressing the cavity of electric potential between a transfer region and an electrode. CONSTITUTION: After a P-type well 2, an N-type buried channel layer 3, an insulating film 4 and the first electrode 6 have been formed on an N-type semiconductor substrate 1, P-type impurities are implanted in a self-matching manner using the first electrode 6 as a mask, and an N-type potential barrier layer 8 is formed. Then, after a conductive film 19 has been deposited on the first electrode 6 and the insulating film 4, a conductive side wall 20 is provided on the side face of the first electrode 6 by conducting anisotropic etching. Besides, after an insulating film 9 has been formed by thermally oxidizing the upper surface of the first electrode and the side wall 20, the second electrode is formed on the insulating film 9. By providing the conductive side wall 20 as above-mentioned, the position 13 on the side face of the first electrode is not almost moved back even when the insulating film 9 is formed by thermally oxidizing the first electrode 6, and as the position 13 can be coincided with the position 14 located at the end of the implantation region of the P-type impurities, the cavity of electric potential between the electrodes of transfer region can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体撮像素子やメモリ
素子等に利用される電荷結合素子(チャージ・カップル
ド・デバイス、以下CCDと略す)、更に詳しくは2層
電極2相駆動のCCDの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge coupled device (charge coupled device, hereinafter abbreviated as CCD) used for a solid-state image pickup device, a memory device, and the like, and more specifically, a two-layer electrode two-phase drive CCD Manufacturing method.

【0002】[0002]

【従来の技術】最近、固体撮像素子の多画素化、高速駆
動化が非常に進んでおり、特に駆動周波数の高い水平C
CDにおいて、駆動電圧の低減や転送効率の向上が必要
となっている。
2. Description of the Related Art Recently, the number of pixels of a solid-state image pickup device has been greatly increased, and high-speed driving has been greatly advanced.
In CD, it is necessary to reduce the driving voltage and improve the transfer efficiency.

【0003】図4は、従来の2層電極2相駆動CCDの
製造方法を説明するための図であり、CCDの転送方向
に沿った断面図である。以下、半導体基板がN型、ウェ
ルがP型、埋込チャネル層がN型で構成されている場合
について説明する。従来の製造工程は、例えばN型半導
体基板1にP型不純物とN型不純物を導入することで、
P型ウェル2及びN型埋込チャネル層3を形成し、表面
には、例えば熱酸化膜や酸化膜−窒化膜−酸化膜の3層
構造の膜(ONO膜)等の絶縁膜4を形成し、さらに絶
縁膜4の上に、例えばCVD法等により多結晶シリコン
等の電極層5を形成する(図4(a))。次に、この電
極層5をパターニングし、第1電極6を形成する(図4
(b))。続いて第1電極6をマスクとして自己整合的
に、例えばボロンイオン等のP型不純物7をイオン注入
法等で導入し、N型埋込チャネル層3内にN- 型電位障
壁層8を形成する(図4(c))。その後、第1電極6
を熱酸化することにより絶縁膜9を形成し、絶縁膜4及
び絶縁膜9の上に、例えばCVD法により多結晶シリコ
ン等の電極層10を形成する(図4(d))。最後に電
極層10をパターニングし、第1電極6の隙間を覆う様
に第2電極11を形成する(図4(e))。
FIG. 4 is a view for explaining a method of manufacturing a conventional two-layer electrode two-phase driving CCD, which is a sectional view taken along the transfer direction of the CCD. Hereinafter, a case where the semiconductor substrate is N type, the well is P type, and the buried channel layer is N type will be described. In the conventional manufacturing process, for example, by introducing P-type impurities and N-type impurities into the N-type semiconductor substrate 1,
A P-type well 2 and an N-type buried channel layer 3 are formed, and an insulating film 4 such as a thermal oxide film or a film (ONO film) having a three-layer structure of an oxide film-nitride film-oxide film is formed on the surface. Then, an electrode layer 5 made of polycrystalline silicon or the like is formed on the insulating film 4 by the CVD method or the like (FIG. 4A). Next, the electrode layer 5 is patterned to form the first electrode 6 (FIG. 4).
(B)). Subsequently, using the first electrode 6 as a mask, a P-type impurity 7 such as boron ion is introduced by an ion implantation method or the like to form an N -type potential barrier layer 8 in the N-type buried channel layer 3. (FIG. 4 (c)). Then, the first electrode 6
Is thermally oxidized to form an insulating film 9, and an electrode layer 10 of polycrystalline silicon or the like is formed on the insulating film 4 and the insulating film 9 by, for example, a CVD method (FIG. 4D). Finally, the electrode layer 10 is patterned and the second electrode 11 is formed so as to cover the gap between the first electrodes 6 (FIG. 4E).

【0004】以上の製造工程によって、第1電極6と第
2電極11が交互に並び、第1電極6の下に電荷蓄積領
域24、第2電極11の下に電位障壁領域25を有する
2層電極2相駆動のCCDが完成する。
By the above manufacturing process, the first electrode 6 and the second electrode 11 are alternately arranged, and the two layers having the charge storage region 24 under the first electrode 6 and the potential barrier region 25 under the second electrode 11 are formed. A two-phase electrode driven CCD is completed.

【0005】図5は、形成されたCCDにおいて、電荷
転送の原理を説明するための模式的電位分布図である。
図5(a)に示すように、2つの信号線にVL 及びVH
の電位が印加されている時、信号電荷12は、VH の電
圧が印加されている第1電極6の下の電荷蓄積領域24
に蓄積される。その状態から、2つの信号線の電圧VL
及びVH が入れ替わると、図5(b)に示すようにN型
埋込チャネル層内部の電位の高い部分が移動し、それに
伴って信号電荷12も転送される。以下、同様に2つの
信号線の電圧VL 及びVH を繰り返し入れ替えることに
より、信号電荷12を次々と転送していくことが可能と
なる。
FIG. 5 is a schematic potential distribution diagram for explaining the principle of charge transfer in the formed CCD.
As shown in FIG. 5A, V L and V H are connected to the two signal lines.
Signal potential 12 is applied to the charge accumulation region 24 under the first electrode 6 to which the voltage V H is applied.
Is accumulated in From that state, the voltage V L of the two signal lines
When V H and V H are exchanged with each other, as shown in FIG. 5B, the high potential portion inside the N-type buried channel layer moves, and the signal charge 12 is also transferred accordingly. Hereinafter, similarly, by repeatedly exchanging the voltages V L and V H of the two signal lines, the signal charges 12 can be transferred one after another.

【0006】[0006]

【発明が解決しようとする課題】しかしながら従来の2
層電極2相駆動CCDでは、特に低駆動電圧で信号電荷
を転送させようとした時に、第1電極6と第2電極11
の間の絶縁膜直下において電位の窪み(ディップまたは
ポケットとも称される)が発生しやすく、低駆動電圧で
信号を完全に転送することが困難であるという問題があ
った。
However, the conventional method 2
In the layer electrode two-phase driving CCD, the first electrode 6 and the second electrode 11 are used especially when the signal charge is to be transferred with a low driving voltage.
There is a problem in that a potential dent (also referred to as a dip or a pocket) is likely to occur immediately below the insulating film between them, and it is difficult to completely transfer a signal at a low driving voltage.

【0007】図6は、従来の製造方法の問題点を説明す
るための図であり、N- 型電位障壁層8の近傍の断面図
と模式的な電位分布図である。従来の製造工程では、ボ
ロンイオン等のP型不純物7を、第1電極6をマスクと
して自己整合的にイオン注入法等により注入する(図6
(a))。次に第1電極6を熱酸化して、絶縁膜9を
0.2μm 程度形成するが、この時、第1電極側面の位
置13は熱酸化により後退し、第1電極6の電極長は短
くなってしまう(図6(b))。その後、第1電極6の
隙間を覆うように第2電極11を形成する(図6
(c))。このような製造工程で形成されたCCDで
は、第1電極側面の位置13は、P型不純物の注入領域
端の位置14から離れてしまうため、第1電極6と第2
電極11の間の絶縁膜直下において、電位の窪み15が
発生しやすくなる(図6(d))。特に第1電極6及び
第2電極11下の絶縁膜4がONO膜で形成されている
場合、第1電極6を熱酸化した時の電極側面の位置13
は、熱酸化による絶縁膜9の膜厚とほぼ等しい量だけ後
退するため、結果としてP型不純物の注入領域端の位置
14は、第2電極側面の位置16とほぼ一致するように
なる(図6(c))。
FIG. 6 is a diagram for explaining the problems of the conventional manufacturing method, and is a sectional view and a schematic potential distribution diagram in the vicinity of the N -- type potential barrier layer 8. In the conventional manufacturing process, P-type impurities 7 such as boron ions are implanted in a self-aligned manner by using the first electrode 6 as a mask (see FIG. 6).
(A)). Next, the first electrode 6 is thermally oxidized to form the insulating film 9 with a thickness of about 0.2 μm. At this time, the position 13 on the side surface of the first electrode recedes due to thermal oxidation, and the electrode length of the first electrode 6 is short. (Fig. 6 (b)). Then, the second electrode 11 is formed so as to cover the gap between the first electrodes 6 (see FIG. 6).
(C)). In the CCD formed by such a manufacturing process, the position 13 on the side surface of the first electrode is separated from the position 14 at the end of the P-type impurity implantation region.
Immediately below the insulating film between the electrodes 11, the potential depression 15 is likely to occur (FIG. 6D). In particular, when the insulating film 4 below the first electrode 6 and the second electrode 11 is formed of an ONO film, the position 13 of the electrode side surface when the first electrode 6 is thermally oxidized
Retreat by an amount approximately equal to the film thickness of the insulating film 9 due to thermal oxidation, so that the position 14 at the end of the P-type impurity implantation region substantially coincides with the position 16 on the side surface of the second electrode (FIG. 6 (c)).

【0008】図7は、従来の製造方法で形成されたCC
Dについて、通常の製造工程で行われるP型不純物7
(ここではボロン)の注入後の典型的な熱処理による拡
散を考慮してシミュレーションを行い、N型埋込チャネ
ル層内部に形成される電位分布を、ボロンイオンの注入
量をパラメータとして調べた結果である。図7では、第
1電極6と第2電極11の間隔は0.2μm とし、ボロ
ンイオンの注入領域端の位置14は、第2電極側面の位
置16と一致させた状態でシミュレーションを行ってい
る。ボロンイオン注入量が少量の時は、VL が印加され
ている電極下の電荷蓄積領域24と電位障壁領域25の
間に電位の窪み17が発生する。一方、ボロンイオン注
入量が多くなると、電位の窪み17は消滅していくが、
今度はVLが印加されている電極下の電荷蓄積領域24
と、VH が印加されている電極下の電位障壁領域25の
間に電位の窪み18が発生する。電荷の転送進路に電位
の窪み17及び18が生じている場合、信号電荷の一部
が窪みに取り残されて転送効率が劣化してしまう。これ
を避けるためには、ボロンイオンの注入量を電位の窪み
17及び18が発生しない条件で決める必要がある。V
L =0V,VH =5Vの場合には、ボロンイオンの注入
量が5×1011cm-2〜1×1012cm-2の範囲では、電位
の窪み17及び18はいずれも発生しておらず、転送効
率の劣化を防止することが可能である(図7(a))。
L =0V、VH =3Vの場合では、ボロンイオンの注
入量が5×1011cm-2の時には、電位の窪み17及び1
8はいずれも発生していないが、工程のばらつきでボロ
ンイオンの注入量が変動すると、電位の窪み17及び1
8が発生し、転送効率の劣化が生じる可能性がある(図
7(b))。VL =0V、VH =2Vの場合には、ボロ
ンイオンの注入量をいかなる値にしても、常に電位の窪
み17及び18の片方又は両方が発生し、転送効率が劣
化する(図7(c))。
FIG. 7 shows a CC formed by a conventional manufacturing method.
For D, P-type impurities 7 that are used in the normal manufacturing process
A simulation was performed in consideration of diffusion due to a typical heat treatment after implantation of (here, boron), and the potential distribution formed inside the N-type buried channel layer was investigated by using the implantation amount of boron ions as a parameter. is there. In FIG. 7, the distance between the first electrode 6 and the second electrode 11 is 0.2 μm, and the position 14 at the end of the boron ion implantation region coincides with the position 16 on the side surface of the second electrode for the simulation. . When the boron ion implantation amount is small, a potential depression 17 is generated between the charge accumulation region 24 and the potential barrier region 25 under the electrode to which V L is applied. On the other hand, when the boron ion implantation amount increases, the potential dent 17 disappears,
This time, the charge storage region 24 under the electrode to which V L is applied
Then, a potential depression 18 is generated between the potential barrier regions 25 below the electrodes to which V H is applied. When the potential dents 17 and 18 are formed in the charge transfer path, part of the signal charge is left in the dents, and the transfer efficiency deteriorates. In order to avoid this, it is necessary to determine the boron ion implantation amount under the condition that the potential depressions 17 and 18 do not occur. V
When L = 0 V and V H = 5 V, both of the potential pits 17 and 18 are generated when the boron ion implantation amount is in the range of 5 × 10 11 cm −2 to 1 × 10 12 cm −2. Therefore, it is possible to prevent the transfer efficiency from deteriorating (FIG. 7A).
In the case of V L = 0V and V H = 3V, when the boron ion implantation amount is 5 × 10 11 cm −2 , the potential depressions 17 and 1 are generated.
8 did not occur, but when the boron ion implantation amount fluctuated due to process variations, the potential depressions 17 and 1
8 may occur and the transfer efficiency may deteriorate (FIG. 7B). In the case of V L = 0V and V H = 2V, one or both of the potential pits 17 and 18 are always generated and the transfer efficiency is deteriorated regardless of the boron ion implantation amount (see FIG. 7 ( c)).

【0009】このように、従来の製造方法で形成された
CCDでは、駆動電圧が3V以上の時には、P型不純物
7のイオン注入量を適切に決めることにより、第1電極
6と第2電極11の間の絶縁膜直下において、電位の窪
み17及び18が発生しないため、転送効率の劣化を防
ぐことが可能である。しかし、駆動電圧が3Vよりも小
さい時には、P型不純物7の注入量をいかなる値にして
も電位の窪み17及び18が発生してしまうため、完全
な電荷の転送が行えないという問題があった。
As described above, in the CCD formed by the conventional manufacturing method, when the driving voltage is 3 V or more, the first electrode 6 and the second electrode 11 are appropriately determined by appropriately determining the ion implantation amount of the P-type impurity 7. Since the potential depressions 17 and 18 do not occur immediately below the insulating film between the two, it is possible to prevent the transfer efficiency from deteriorating. However, when the drive voltage is lower than 3V, the potential dents 17 and 18 are generated regardless of the implantation amount of the P-type impurity 7, so that there is a problem that complete charge transfer cannot be performed. .

【0010】本発明の目的は、上記のような従来の問題
点を解決して、低駆動電圧でも転送効率の劣化を防止す
ることが可能な電荷結合素子の製造方法を提供すること
にある。
An object of the present invention is to provide a method of manufacturing a charge-coupled device which can solve the above-mentioned conventional problems and prevent deterioration of transfer efficiency even at a low driving voltage.

【0011】[0011]

【課題を解決するための手段】本発明は、第1導電型半
導体基板上に設けられた第2導電型ウェル上もしくは第
2導電型半導体基板上に、第1導電型埋込チャネル層を
形成し、前記第1導電型埋込チャネル層の上に絶縁膜を
形成し、前記絶縁膜上にストライプ状に並んだ第1の電
極を形成し、前記第1の電極をマスクとして自己整合的
に第2導電型不純物の注入を行い、前記第1の電極の側
面に側壁を形成し、熱酸化によって前記第1の電極及び
必要に応じて前記側壁を絶縁化した後、前記第1の電極
の隙間に第2の電極を形成することを特徴とする電荷結
合素子の製造方法である。
According to the present invention, a first conductivity type buried channel layer is formed on a second conductivity type well or a second conductivity type semiconductor substrate provided on a first conductivity type semiconductor substrate. Then, an insulating film is formed on the first conductivity type buried channel layer, first electrodes arranged in stripes are formed on the insulating film, and the first electrodes are used as a mask in a self-aligned manner. After implanting a second conductivity type impurity to form a sidewall on the side surface of the first electrode and insulating the first electrode and, if necessary, the sidewall by thermal oxidation, A method for manufacturing a charge-coupled device, comprising forming a second electrode in the gap.

【0012】[0012]

【作用】第1電極6と第2電極11の間の絶縁膜直下に
おいて電位の窪み17及び18が発生し易いのは、次の
ように説明することができる。すなわち、ボロンイオン
等のP型不純物7は、N- 型電位障壁層8を形成するた
めに第1電極6をマスクとして自己整合的にイオン注入
される。しかしその後、第1電極6は熱酸化されて電極
長が短くなるため、第1電極側面の位置13は、P型不
純物の注入領域端の位置14から離れる。その結果、第
1電極6と第2電極11の間の絶縁膜直下のN型埋込チ
ャネル層内部に存在するP型不純物は、イオン注入後の
熱処理によって拡散してきたP型不純物しか存在してい
ないため、電位の窪みが発生し易くなっている。
The reason why the potential depressions 17 and 18 are likely to occur immediately below the insulating film between the first electrode 6 and the second electrode 11 can be explained as follows. That is, P-type impurities 7 such as boron ions are ion-implanted in a self-aligned manner using the first electrode 6 as a mask to form the N type potential barrier layer 8. However, after that, the first electrode 6 is thermally oxidized and the electrode length is shortened, so that the position 13 on the side surface of the first electrode is separated from the position 14 at the end of the P-type impurity implantation region. As a result, the P-type impurities existing inside the N-type buried channel layer immediately below the insulating film between the first electrode 6 and the second electrode 11 are only the P-type impurities diffused by the heat treatment after the ion implantation. Since it is not present, a dent in the potential is likely to occur.

【0013】本発明においては、第1電極6を形成し、
この第1電極6をマスクとして自己整合的にP型不純物
7をイオン注入した後、第1電極6に導電性の側壁2
0、又は絶縁性の側壁22を形成する。このように第1
電極6に導電性の側壁20、又は絶縁性の側壁22を設
けることにより、その後の熱酸化の工程で、側壁が導電
性の場合には、導電性の側壁20及び第1電極上面のみ
が熱酸化され、側壁が絶縁性の場合には、第1電極上面
のみが熱酸化されるため、第1電極側面の位置13は後
退しない。従って、熱酸化終了後の第1電極側面の位置
13とP型不純物の注入領域端の位置14はほぼ一致
し、第1電極6と第2電極11の間の絶縁膜直下のN型
埋込チャネル層内部においても、P型不純物が十分に存
在するようにN- 型電位障壁層8が形成されるため、電
位の窪み17及び18は発生しにくくなり、転送効率の
劣化が防止できる。
In the present invention, the first electrode 6 is formed,
The P-type impurity 7 is ion-implanted in a self-aligning manner using the first electrode 6 as a mask, and then the conductive side wall 2 is formed on the first electrode 6.
0 or an insulating side wall 22 is formed. Thus the first
By providing the conductive side wall 20 or the insulating side wall 22 on the electrode 6, only the conductive side wall 20 and the upper surface of the first electrode are heated when the side wall is conductive in the subsequent thermal oxidation step. When the side wall is oxidized and the side wall is insulative, only the upper surface of the first electrode is thermally oxidized, and therefore the position 13 of the side surface of the first electrode does not recede. Therefore, the position 13 of the side surface of the first electrode and the position 14 of the end of the P-type impurity implantation region after the completion of thermal oxidation are substantially aligned with each other, and the N-type buried portion immediately below the insulating film between the first electrode 6 and the second electrode 11 is formed. Since the N -type potential barrier layer 8 is formed so that the P-type impurities are sufficiently present also inside the channel layer, the potential depressions 17 and 18 are less likely to occur, and the deterioration of the transfer efficiency can be prevented.

【0014】[0014]

【実施例】【Example】

(実施例1)図1(a)〜(e)は、本発明の一実施例
を示す断面図である。図1(a)は、従来の製造方法に
おける図4(c)に対応するものであり、そこまでの製
造方法は従来と同一であるのでここでは説明を省略す
る。但し図1(a)の第1電極6は、後の工程で側面に
導電性の側壁20を設けることを考慮して、図4(c)
の第1電極6よりも電極長が短く形成されている。第1
電極6を形成し、N- 型電位障壁層8を形成した後、第
1電極6及び絶縁膜4の上に、例えばCVD法等により
多結晶シリコン等の導電性膜19を形成する(図1
(b))。導電性膜19の膜厚は、第1電極6と第2電
極11の間に形成しようとする絶縁膜9の膜厚によって
変わるが、例えば絶縁膜4がONO膜で形成されてお
り、絶縁膜9の膜厚を0.2μm にする場合には、導電
性膜19は0.2μm 程度の膜厚とする。さらに導電性
膜19に対して異方性エッチングを行い、第1電極6の
側面に導電性の側壁20を形成する(図1(c))。こ
こで導電性の側壁20は、第1電極6と電気的に導通し
ている。その後、第1電極上面及び導電性の側壁20を
熱酸化させて絶縁膜9を形成し、さらに絶縁膜4及び絶
縁膜9の上に、例えばCVD法等により多結晶シリコン
等の電極層10を形成する(図1(d))。最後に電極
層10をパターニングし、第1電極の隙間を覆う第2電
極11を形成する(図1(e))。以上の工程により形
成されたCCDでは、第1電極6と第2電極11の間の
絶縁膜9を形成する際に、第1電極側面の位置13が熱
酸化により後退しないため、第1電極側面の位置13と
P型不純物の注入領域端の位置14が一致している。
(Embodiment 1) FIGS. 1A to 1E are sectional views showing an embodiment of the present invention. FIG. 1 (a) corresponds to FIG. 4 (c) in the conventional manufacturing method, and the manufacturing method up to that point is the same as the conventional manufacturing method, and therefore the description thereof is omitted here. However, the first electrode 6 of FIG. 1A is formed in consideration of the fact that the conductive side wall 20 is provided on the side surface in a later step, and thus the first electrode 6 of FIG.
The electrode length is shorter than that of the first electrode 6. First
After forming the electrode 6 and the N type potential barrier layer 8, a conductive film 19 such as polycrystalline silicon is formed on the first electrode 6 and the insulating film 4 by, for example, the CVD method (FIG. 1).
(B)). The film thickness of the conductive film 19 varies depending on the film thickness of the insulating film 9 to be formed between the first electrode 6 and the second electrode 11. For example, the insulating film 4 is formed of an ONO film. When the film thickness of 9 is 0.2 μm, the conductive film 19 has a film thickness of about 0.2 μm. Further, the conductive film 19 is anisotropically etched to form a conductive side wall 20 on the side surface of the first electrode 6 (FIG. 1C). Here, the conductive side wall 20 is electrically connected to the first electrode 6. After that, the upper surface of the first electrode and the conductive side wall 20 are thermally oxidized to form the insulating film 9, and the electrode layer 10 of polycrystalline silicon or the like is formed on the insulating film 4 and the insulating film 9 by, for example, the CVD method. Formed (FIG. 1D). Finally, the electrode layer 10 is patterned to form the second electrode 11 that covers the gap between the first electrodes (FIG. 1E). In the CCD formed by the above steps, when the insulating film 9 between the first electrode 6 and the second electrode 11 is formed, the position 13 of the first electrode side surface does not recede due to thermal oxidation, so the first electrode side surface Position 13 and position 14 at the end of the P-type impurity implantation region coincide with each other.

【0015】上記のような工程で形成されたCCDにつ
いて、通常の製造工程で行われるP型不純物(ここでは
ボロン)の注入後の典型的な熱処理による拡散を考慮し
てシミュレーションを行い、N型埋込チャネル層内部に
形成される電位分布を、ボロンイオンの注入量をパラメ
ータとして調べた。その結果を図2に示す。図2では、
第1電極6と第2電極11の間隔は0.2μm とし、ボ
ロンイオンの注入領域端の位置14は、第1電極側面の
位置13と一致させた状態でシミュレーションを行って
いる。ボロンイオンの注入量が少量の時には電位の窪み
17が発生し、注入量が多くなると電位の窪み18が発
生するという傾向は、従来の製造方法で形成されたCC
Dと同じである。しかし、N- 型電位障壁層8を形成し
ているボロンの注入領域の位置14が、第1電極側面の
位置13まで広がることにより、電位の窪み17及び1
8の発生が抑制されていることが分かる。VL =0,V
H =5Vの場合には、ボロンイオンの注入量が3×10
11cm-2〜1.2×1012cm-2の範囲で、電位の窪み17
及び18はいずれも発生しない(図2(a))。VL
0,VH =3Vの場合には、ボロンイオンの注入量が3
×1011cm-2〜8×1011cm-2の範囲で、電位の窪み1
7及び18はいずれも発生しない(図2(b))。VL
=0V,VH =2Vの場合においても、ボロンイオンの
注入量が3×1011cm-2〜5×1011cm-2の範囲で、電
位の窪み17及び18はいずれも発生しない。
The CCD formed by the above steps is
In addition, P-type impurities (here,
Considering diffusion due to typical heat treatment after boron implantation
To simulate inside the N-type buried channel layer.
The potential distribution that is formed is determined by the boron ion implantation amount.
I investigated as a data. The result is shown in FIG. In Figure 2,
The distance between the first electrode 6 and the second electrode 11 is 0.2 μm,
The position 14 at the end of the implantation region of the long ions is on the side surface of the first electrode.
Perform a simulation with the position 13 matched
There is. When the boron ion implantation amount is small, the potential dips
17 occurs, and when the injection amount increases, the potential depression 18 is generated.
The tendency to grow is that CC formed by conventional manufacturing methods
Same as D. But N-Forming a mold potential barrier layer 8
The position 14 of the implanted region of boron is the side surface of the first electrode.
By extending to position 13, the depressions 17 and 1 of the potential
It can be seen that the occurrence of No. 8 is suppressed. VL= 0, V
H = 5V, the boron ion implantation amount is 3 × 10
11cm-2~ 1.2 x 1012cm-2In the range of 17
Neither and 18 occur (FIG. 2 (a)). VL=
0, VH= 3 V, the boron ion implantation amount is 3
× 1011cm-2~ 8 × 1011cm-2In the range of 1
Neither 7 nor 18 occurs (FIG. 2 (b)). VL
= 0V, VH= 2V, the boron ion
Injection volume is 3 × 1011cm-2~ 5 × 1011cm-2In the range of
Neither of the indentations 17 and 18 occurs.

【0016】以上のシミュレーション結果から、上記実
施例の製造方法によれば、CCDの駆動電圧が3V以下
であっても、電荷の転送経路に電位の窪み17及び18
が発生するのを抑制することが可能となるため、低駆動
電圧でも転送効率の劣化を防止することができる。さら
に同一の電圧で駆動した場合には、従来の製造方法で形
成されたCCDよりも電荷の転送に寄与する電界が強く
なり、短時間で電荷転送を行うことができるため、より
高速でCCDを駆動させることが可能となる。又、上記
実施例の製造方法によれば、電位の窪み17及び18の
発生しないP型不純物7の注入量の許容範囲は、従来の
製造方法よりも広がるため、工程のばらつきによりP型
不純物7の注入量が変動しても、電位の窪み17及び1
8が発生しにくくなるという効果が得られる。
From the above simulation results, according to the manufacturing method of the above embodiment, even if the driving voltage of the CCD is 3 V or less, the potential depressions 17 and 18 are formed in the charge transfer path.
Since it is possible to suppress the occurrence of the above, it is possible to prevent the deterioration of the transfer efficiency even at a low driving voltage. Further, when driven by the same voltage, the electric field that contributes to the charge transfer becomes stronger than the CCD formed by the conventional manufacturing method, and the charge transfer can be performed in a short time. It becomes possible to drive. Further, according to the manufacturing method of the above-described embodiment, the allowable range of the implantation amount of the P-type impurity 7 in which the potential pits 17 and 18 are not generated is wider than that in the conventional manufacturing method, so that the P-type impurity 7 is not included due to process variations. Even if the injection amount of the
The effect that 8 is less likely to occur is obtained.

【0017】(実施例2)図3(a)〜(e)は、本発
明の第2の実施例を示す断面図である。図3(a)は、
従来の製造方法における図4(c)に対応するものであ
り、そこまでの製造方法は従来と同一であるのでここで
は説明を省略する。但し図3(a)の第1電極6は、後
の工程で側面に絶縁性の側壁22を設けることを考慮し
て、図4(c)の第1電極6よりも電極長が短く形成さ
れている。第1電極6を形成し、N- 型電位障壁層8を
形成した後、第1電極6及び絶縁膜4の上に、例えばC
VD法等により酸化膜や窒化膜等の絶縁性膜21を形成
する(図3(b))。絶縁性膜21の膜厚は、第1電極
6と第2電極11の間隔によって変わるが、間隔を0.
2μm にする場合には、絶縁膜膜21は0.2μm 程度
の膜厚とする。さらに絶縁性膜21に対して異方性エッ
チングを行い、第1電極6の側面に絶縁性の側壁22を
形成する(図3(c))。その後、第1電極6上面を熱
酸化させて絶縁膜23を形成し、絶縁膜4、絶縁膜23
及び絶縁性の側壁22の上に、例えばCVD法等により
多結晶シリコン等の電極層10を形成する(図3
(d))。最後に電極層10をパターニングし、第1電
極の隙間を覆う第2電極11を形成する(図3
(e))。以上の工程により形成されたCCDでは、第
1電極6と第2電極11の間の絶縁膜23を形成する際
に、第1電極側面の位置13は熱酸化によってほとんど
後退しないため、第1電極側面の位置13とP型不純物
の注入領域端の位置14が一致している。
(Embodiment 2) FIGS. 3A to 3E are sectional views showing a second embodiment of the present invention. Figure 3 (a) shows
This corresponds to FIG. 4C in the conventional manufacturing method, and the manufacturing method up to that point is the same as the conventional manufacturing method, and therefore description thereof is omitted here. However, the first electrode 6 of FIG. 3A is formed to have a shorter electrode length than that of the first electrode 6 of FIG. 4C in consideration of providing an insulating side wall 22 on the side surface in a later step. ing. After the first electrode 6 is formed and the N type potential barrier layer 8 is formed, for example, C is formed on the first electrode 6 and the insulating film 4.
An insulating film 21 such as an oxide film or a nitride film is formed by the VD method or the like (FIG. 3B). The film thickness of the insulating film 21 varies depending on the distance between the first electrode 6 and the second electrode 11, but the distance is 0.
When the thickness is 2 μm, the insulating film 21 has a thickness of about 0.2 μm. Further, the insulating film 21 is anisotropically etched to form an insulating side wall 22 on the side surface of the first electrode 6 (FIG. 3C). Then, the upper surface of the first electrode 6 is thermally oxidized to form the insulating film 23, and the insulating film 4 and the insulating film 23 are formed.
Further, the electrode layer 10 made of polycrystalline silicon or the like is formed on the insulating side wall 22 by, for example, the CVD method (FIG. 3).
(D)). Finally, the electrode layer 10 is patterned to form the second electrode 11 that covers the gap between the first electrodes (FIG. 3).
(E)). In the CCD formed by the above steps, when the insulating film 23 between the first electrode 6 and the second electrode 11 is formed, the position 13 on the side surface of the first electrode hardly recedes due to thermal oxidation. The position 13 on the side surface and the position 14 at the end of the P-type impurity implantation region coincide.

【0018】上記実施例の製造方法によってCCDを形
成すれば、実施例1の製造方法によってCCDを形成し
た場合と同様に、低駆動電圧でも転送効率の劣化を防止
することができ、さらに同一の電圧で駆動した場合に
は、高速でCCDを駆動させることが可能となる。又、
工程のばらつきによりP型不純物7の注入量が変動して
も、電位の窪み17及び18が発生しにくくなるという
効果が得られる。
If the CCD is formed by the manufacturing method of the above-mentioned embodiment, the transfer efficiency can be prevented from being deteriorated even at a low driving voltage, similarly to the case where the CCD is formed by the manufacturing method of the first embodiment, and further the same. When driven by the voltage, the CCD can be driven at high speed. or,
Even if the implantation amount of the P-type impurity 7 fluctuates due to the process variation, the effect that the potential depressions 17 and 18 are less likely to occur can be obtained.

【0019】[0019]

【発明の効果】以上詳細に説明したように、本発明によ
れば、2層電極2相駆動のCCDにおいて、第1電極を
マスクとして自己整合的にP型不純物をイオン注入した
後、第1電極に導電性もしくは絶縁性の側壁を形成する
製造方法を利用することにより、従来の製造方法を利用
する場合に比べて、電荷の転送経路に電位の窪みが発生
するのを抑制することができる。従って、本発明によれ
ば、従来よりも転送効率を劣化させることなく、低電圧
でCCDを駆動させることが可能となる。又、同一の電
圧で駆動した場合には、従来の製造方法で形成されたC
CDよりも電荷の転送に寄与する電界が強くなり、短時
間で電荷転送が行えるため、より高速でCCDを駆動さ
せることが可能となる。
As described above in detail, according to the present invention, in the CCD of the two-layer electrode two-phase drive, the first electrode is used as a mask after the P-type impurities are ion-implanted in a self-aligned manner. By using the manufacturing method of forming the conductive or insulating side wall on the electrode, it is possible to suppress the generation of the potential dent in the charge transfer path as compared with the case of using the conventional manufacturing method. . Therefore, according to the present invention, it is possible to drive the CCD at a low voltage without deteriorating the transfer efficiency as compared with the prior art. When driven by the same voltage, C formed by the conventional manufacturing method is used.
The electric field that contributes to the charge transfer becomes stronger than that of the CD, and the charge transfer can be performed in a short time, so that the CCD can be driven at a higher speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の第1の発明の一実施例である2層電極2
相駆動CCDの製造工程を示す断面図である。
FIG. 1 is a two-layer electrode 2 which is an embodiment of the first invention of the present application.
It is sectional drawing which shows the manufacturing process of phase drive CCD.

【図2】本願の第1の発明の一実施例に示した2層電極
2相駆動CCDにおける、ボロンの注入量と埋込チャネ
ル層内の電位分布の関係を示す図である。
FIG. 2 is a diagram showing a relationship between an implantation amount of boron and a potential distribution in a buried channel layer in a two-layer electrode two-phase driving CCD shown in one embodiment of the first invention of the present application.

【図3】本願の第2の発明の一実施例である2層電極2
相駆動のCCDの製造工程を示す断面図である。
FIG. 3 is a two-layer electrode 2 which is an embodiment of the second invention of the present application.
It is sectional drawing which shows the manufacturing process of CCD of a phase drive.

【図4】従来の2層電極2相駆動CCDの製造工程を示
す断面図である。
FIG. 4 is a cross-sectional view showing a manufacturing process of a conventional two-layer electrode two-phase drive CCD.

【図5】2層電極2相駆動CCDにおいて、電荷が転送
される原理を示す模式的電位分布図である。
FIG. 5 is a schematic potential distribution diagram showing the principle of charge transfer in a two-layer electrode two-phase driving CCD.

【図6】従来の2層電極2相駆動CCDにおける、電位
障壁領域近傍の断面図と模式的電位分布図である。
FIG. 6 is a cross-sectional view and a schematic potential distribution diagram in the vicinity of a potential barrier region in a conventional two-layer electrode two-phase drive CCD.

【図7】従来の2層電極2相駆動CCDにおける、ボロ
ンの注入量と埋込チャネル層内の電位分布の関係を示す
図である。
FIG. 7 is a diagram showing a relationship between a boron implantation amount and a potential distribution in a buried channel layer in a conventional two-layer electrode two-phase driving CCD.

【符号の説明】[Explanation of symbols]

1 N型半導体基板 2 P型ウェル 3 N型埋込チャネル層 4 絶縁膜 5 電極層 6 第1電極 7 P型不純物 8 N- 型電位障壁層 9 絶縁膜 10 電極層 11 第2電極 12 信号電荷 13 第1電極側面の位置 14 P型不純物の注入領域端の位置 15 電位の窪み 16 第2電極側面の位置 17 電位の窪み 18 電位の窪み 19 導電性膜 20 導電性の側壁 21 絶縁性膜 22 絶縁性の側壁 23 絶縁膜 24 電荷蓄積領域 25 電位障壁領域1 N-type semiconductor substrate 2 P-type well 3 N-type buried channel layer 4 insulating film 5 electrode layer 6 first electrode 7 P-type impurity 8 N - type potential barrier layer 9 insulating film 10 electrode layer 11 second electrode 12 signal charge 13 Position of first electrode side surface 14 Position of end of P-type impurity implantation region 15 Potential dent 16 Position of second electrode side 17 Potential dent 18 Potential dent 19 Conductive film 20 Conductive sidewall 21 Insulating film 22 Insulating side wall 23 Insulating film 24 Charge storage region 25 Potential barrier region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型半導体基板上に設けられた第2
導電型ウェル上もしくは第2導電型半導体基板上に、第
1導電型埋込チャネル層を形成し、前記第1導電型埋込
チャネル層の上に絶縁膜を形成し、前記絶縁膜上にスト
ライプ状に並んだ第1の電極を形成し、前記第1の電極
をマスクとして自己整合的に第2導電型不純物の注入を
行い、前記第1の電極の側面に側壁を形成し、熱酸化に
よって前記第1の電極及び必要に応じて前記側壁を、絶
縁化した後、前記第1の電極の隙間に第2の電極を形成
することを特徴とする電荷結合素子の製造方法。
1. A second device provided on a first conductivity type semiconductor substrate.
A first conductivity type buried channel layer is formed on a conductivity type well or a second conductivity type semiconductor substrate, an insulating film is formed on the first conductivity type buried channel layer, and stripes are formed on the insulating film. Forming first electrodes arranged in a line, implanting second conductivity type impurities in a self-aligned manner using the first electrodes as a mask, forming sidewalls on the side surfaces of the first electrodes, and performing thermal oxidation. A method of manufacturing a charge-coupled device, comprising: insulating the first electrode and, if necessary, the side wall, and then forming a second electrode in a gap between the first electrodes.
JP7078789A 1995-04-04 1995-04-04 Method for manufacturing charge-coupled device Expired - Fee Related JP3014026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7078789A JP3014026B2 (en) 1995-04-04 1995-04-04 Method for manufacturing charge-coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7078789A JP3014026B2 (en) 1995-04-04 1995-04-04 Method for manufacturing charge-coupled device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10024133A Division JP3119619B2 (en) 1998-02-05 1998-02-05 Charge coupled device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08279607A true JPH08279607A (en) 1996-10-22
JP3014026B2 JP3014026B2 (en) 2000-02-28

Family

ID=13671655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7078789A Expired - Fee Related JP3014026B2 (en) 1995-04-04 1995-04-04 Method for manufacturing charge-coupled device

Country Status (1)

Country Link
JP (1) JP3014026B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344685B1 (en) * 1997-06-27 2002-09-18 닛본 덴기 가부시끼가이샤 Charge transfer device and method for the same
US6778213B1 (en) 1998-04-03 2004-08-17 Nec Electronics Corp. Active X-Y addressable type solid-state image sensor and method of operating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102530241B1 (en) * 2021-09-02 2023-05-08 이종철 Simple Thigh Band for Korean Wrestling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276668A (en) * 1988-04-27 1989-11-07 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276668A (en) * 1988-04-27 1989-11-07 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344685B1 (en) * 1997-06-27 2002-09-18 닛본 덴기 가부시끼가이샤 Charge transfer device and method for the same
US6778213B1 (en) 1998-04-03 2004-08-17 Nec Electronics Corp. Active X-Y addressable type solid-state image sensor and method of operating the same

Also Published As

Publication number Publication date
JP3014026B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US6188104B1 (en) Trench DMOS device having an amorphous silicon and polysilicon gate
TW499738B (en) Method to produce a multi-bit-memory-cell
US6034393A (en) Nonvolatile semiconductor memory device using trench isolation and manufacturing method thereof
JP5247737B2 (en) Memory array
JP2002203919A (en) Semiconductor device and method of manufacturing nonvolatile memory
JP2001044435A (en) Highly conductive trench structure
US8378395B2 (en) Methods of fabricating field effect transistors having protruded active regions
JP3183396B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2009123944A (en) Semiconductor device and its manufacturing method
US6410973B2 (en) Thin film SOI MOSFET
JPH08279607A (en) Manufacture of charge coupled element
JPH11186416A (en) Non-volatile semiconductor storage device and its manufacture
TWI278043B (en) Method for fabricating self-aligned recessed-gate MOS transistor device
JPH10125904A (en) Silicon carbide semiconductor device
JP3796227B2 (en) Method for manufacturing charge coupled device
JP3119619B2 (en) Charge coupled device and method of manufacturing the same
JP3057792B2 (en) Method for manufacturing thin film transistor
KR100583391B1 (en) Stack Structured FinFET Transistor And CMOS Inverter Structures and Method for Manufacturing
KR20000011189A (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2004006671A (en) Charge coupled device and manufacturing method thereof
JPH05343680A (en) Manufacturing method of semiconductor device
JP2742432B2 (en) Method for manufacturing semiconductor device
JPH0640586B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JP3122670B2 (en) Charge transfer device and method of manufacturing the same
JP2003298048A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees