JPH08279599A - Preparation of ferroelectricity capacitor - Google Patents

Preparation of ferroelectricity capacitor

Info

Publication number
JPH08279599A
JPH08279599A JP8061414A JP6141496A JPH08279599A JP H08279599 A JPH08279599 A JP H08279599A JP 8061414 A JP8061414 A JP 8061414A JP 6141496 A JP6141496 A JP 6141496A JP H08279599 A JPH08279599 A JP H08279599A
Authority
JP
Japan
Prior art keywords
ferroelectric
layer
film
pzt
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8061414A
Other languages
Japanese (ja)
Other versions
JP3902807B2 (en
Inventor
Wan-In Lee
完寅 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH08279599A publication Critical patent/JPH08279599A/en
Application granted granted Critical
Publication of JP3902807B2 publication Critical patent/JP3902807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ferroelectric capacitor, by forming a seed layer with perovskite structure by annealing a first ferroelectric film, forming a second ferroeleciric film thereon, and forming a ferroelectric film with perovskite structure by annealing this. SOLUTION: A conductive oxide layer containing RuOx is evaporated on an insulating film 20 of a substrate 10. And a conductive oxide layer (a lower electrode) 30 is completed by thermally processing that in the air. First PZT sol-gel solution is applied on the RuOx lower electrode 30, and a first PZT film is formed. A seed layer 40 is obtained by thermally processing the first PZT film in oxygen atmosphere after baking that. A second ferroelectric film is formed by applying second PZT sol-gel solution on the seed layer 40, and a PZT film 50 is obtained by baking the second ferroelectric film. A PZT film is obtained by annealing that. A RuOx upper electrode 60 is provided by evaporating RuOx on the PZT film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は強誘電性キャパシタ
の製造方法に係り、特にFRAM(Ferroelectric Rand
om Access Memory)にメモリセルとして使用される強誘
電性キャパシタの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ferroelectric capacitor, and more particularly to a FRAM (Ferroelectric Rand).
om Access Memory) and a method of manufacturing a ferroelectric capacitor used as a memory cell.

【0002】[0002]

【従来の技術】強誘電性物質として多用されているPZ
T(PbZr1-xTixO3)は分極値が非常に大きく、電気特性
及び材料特性に優れる反面、耐久性は劣る短所があっ
た。
2. Description of the Related Art PZ which is widely used as a ferroelectric substance
T (PbZr1-xTixO3) has a very large polarization value and is excellent in electrical characteristics and material characteristics, but has a disadvantage of poor durability.

【0003】繰り返されたスイッチングによりキャパシ
タの残留分極が減少し、ヒステリシスループの形状が変
わるような強誘電体の分極特性が低下する現象を疲労と
いう。
Fatigue is a phenomenon in which remanent polarization of a capacitor is reduced by repeated switching and the polarization characteristic of a ferroelectric substance is changed such that the shape of a hysteresis loop is changed.

【0004】キャパシタがメモリ素子として用いられる
ためには1012サイクル程度で繰り返される記録/再生
に対して耐久性が求められる。しかしながら、Pt(白
金)を電極として使用するPZT系列のキャパシタは、
106 サイクル以後からは疲労現象が深化され、109
サイクル以上では強誘電性性質が現れなくてキャパシタ
としての機能を果たすことができなくなる。反面、RuOx
電極を用いるPZT系列の強誘電性キャパシタは優秀な
疲労特性を有することにより長時間にかけて使用できる
という長所を有する。RuOx 電極を使用するキャパシ
タにおいて、PZTフィルムはRuOx 電極上にゾルー
ゲル法により形成されるが、このゾルーゲル法では均一
な厚さのPZTフィルムを得ることができなく、また純
粋なペロブスカイト相の構造が得られない問題があっ
た。結局、このような問題によれば漏れ電流が少ない、
即ち実用性のあるキャパシタを製造することは困難であ
る。しかしながら、Pt電極を適用したキャパシタの場
合、PZTフィルム膜の形成後に熱処理過程を経ると均
一な厚さと純粋なペロブスカイト相のPZTフィルムが
得られる。これとは異なり、RuOx 電極を使用するキ
ャパシタの場合はPt電極を適用するような処理過程を
経ても均一な厚さの膜を形成することが困難であり、パ
イロクロール(pyrochlore)という二次相が多量現れ
る。PZTフィルムの表面を光学顕微鏡で詳しく調べる
と、半径が0.1〜5μm程度の丸い半点が集まってい
るロゼット構造が観察される。このロゼット構造はペロ
ブスカイトの核が多く形成されないときに現れる。PZ
Tの構成元素であるPbがRuOx層上にPZTフィル
ムからRuOx 層の内部に拡散されて消失されることに
よりペロブスカイトの核の形成が困難になる。PZTフ
ィルムを得るためには、スピンコーティング方法により
形成されたPZTフィルムを酸素雰囲気中で600〜7
00℃の範囲で約30分間加熱したり、RTA(rapid
thermal annealing )過程により700〜850℃の程
度で加熱する。このような熱処理過程でPbがRuOx
層の内部に拡散されることによりロゼット構成が形成さ
れると考えられる。ロゼット構造を観察した結果、ロゼ
ット部位は純粋なペロブスカイト構造であり、これらロ
ゼット相互間の境界部位はパイロクロール(pyrochlor
e)とペロブスカイトとの混合構造であり、このような
境界面を通してキャパシタに蓄積された電流が漏れる。
一般にRuOx /PZT/RuOx 積層構造のキャパシ
タは漏れ電流が10-5μA/cm2 以上であってPt/
PZT/Ptキャパシタに比して10倍以上大きく、か
つ、PZTフィルムの表面が滑らかでないのでエッチン
グ又は多層膜の形成などの工程を行うことは困難であ
る。
In order for a capacitor to be used as a memory device, it is required to have durability against recording / reproduction that is repeated in about 10 12 cycles. However, a PZT series capacitor that uses Pt (platinum) as an electrode is
After 10 6 cycles, the fatigue phenomenon deepened and 10 9
When it is cycled or longer, the ferroelectric property does not appear and it becomes impossible to function as a capacitor. On the other hand, RuOx
The PZT series ferroelectric capacitor using electrodes has an advantage that it can be used for a long period of time due to its excellent fatigue characteristics. In a capacitor using a RuO x electrode, a PZT film is formed on the RuO x electrode by a sol-gel method, but the sol-gel method cannot obtain a PZT film having a uniform thickness and has a pure perovskite phase structure. There was a problem that could not be obtained. After all, according to such a problem, leakage current is small,
That is, it is difficult to manufacture a practical capacitor. However, in the case of a capacitor to which a Pt electrode is applied, a PZT film having a uniform thickness and a pure perovskite phase can be obtained by performing a heat treatment process after forming the PZT film film. On the other hand, in the case of a capacitor using a RuO x electrode, it is difficult to form a film having a uniform thickness even if a Pt electrode is applied, and it is difficult to form a secondary film called pyrochlore. A lot of phases appear. When the surface of the PZT film is examined in detail with an optical microscope, a rosette structure in which round half points having a radius of about 0.1 to 5 μm are gathered is observed. This rosette structure appears when many perovskite nuclei are not formed. PZ
T is a constituent element of Pb is formed of perovskite nuclei by being lost is diffused into the RuO x layer becomes difficult of PZT films on RuO x layer. In order to obtain a PZT film, a PZT film formed by a spin coating method is used in an oxygen atmosphere at 600-7.
Heat in the range of 00 ℃ for about 30 minutes, RTA (rapid
Heating is performed at a temperature of 700 to 850 ° C. by a thermal annealing) process. In such a heat treatment process, Pb is RuO x
It is believed that the rosette configuration is formed by diffusion inside the layer. As a result of observing the rosette structure, the rosette site is a pure perovskite structure, and the boundary site between these rosettes is pyrochlore (pyrochlor).
It is a mixed structure of e) and perovskite, and the electric current stored in the capacitor leaks through such an interface.
Generally, a capacitor having a RuO x / PZT / RuO x laminated structure has a leakage current of 10 −5 μA / cm 2 or more and Pt /
It is more than 10 times larger than that of a PZT / Pt capacitor, and the surface of the PZT film is not smooth, so it is difficult to perform a process such as etching or forming a multilayer film.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、ロゼ
ット構造の生成を抑制して膜の厚さを均一にすることに
より純粋なペロブスカイト構造を有する強誘電性フィル
ムを形成しうる強誘電性キャパシタの製造方法を提供す
るにある。
It is an object of the present invention to form a ferroelectric film having a pure perovskite structure by suppressing the formation of a rosette structure and making the film thickness uniform. A method of manufacturing a capacitor is provided.

【0006】また、本発明の他の目的は、優秀な疲労特
性を持ち、漏れ電流の少ない強誘電性キャパシタの製造
方法を提供するにある。
Another object of the present invention is to provide a method of manufacturing a ferroelectric capacitor having excellent fatigue characteristics and a small leakage current.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めに本発明の強誘電性キャパシタの製造方法は、(a)
第1導電性酸化物上に第1強誘電性物質よりなるゾルー
ゲル溶液を塗布して第1強誘電性膜を形成する段階と、
(b)前記第1強誘電性膜をベーキングする段階と、
(c)前記第1強誘電性膜をアニリングしてペロブスカ
イト構造のシードレーヤーを形成する段階と、(d)前
記シードレーヤーの表面に第2強誘電性物質よりなるゾ
ルーゲル溶液を塗布して第2強誘電性膜を形成する段階
と、(e)前記第2強誘電性膜をベーキングする段階
と、(f)前記第2強誘電性膜をアニリングしてペロブ
スカイト構造を有する強誘電性フィルムを形成する段階
とを含むことを特徴とする。
In order to achieve the above object, a method of manufacturing a ferroelectric capacitor according to the present invention comprises (a)
Forming a first ferroelectric film by applying a sol-gel solution including a first ferroelectric substance on the first conductive oxide;
(B) baking the first ferroelectric film,
(C) a step of annealing the first ferroelectric film to form a seed layer having a perovskite structure, and (d) applying a sol-gel solution of a second ferroelectric material to the surface of the seed layer to form a second layer. Forming a ferroelectric film; (e) baking the second ferroelectric film; and (f) annealing the second ferroelectric film to form a ferroelectric film having a perovskite structure. And a step of performing.

【0008】また、前記目的を達成するために本発明の
強誘電性キャパシタの製造方法は、(a)RuOx 層上
に第1強誘電性物質よりなる第1ゾルーゲル溶液を塗布
して第1強誘電体層を備える段階と、(b)前記第1強
誘電体層をベーキングする段階と、(c)前記第1強誘
電体層をアニリングしてペロブスカイト構造のシードレ
ーヤーを得る段階と、(d)前記シードレーヤーの上に
強誘電性物質よりなる第2ゾルーゲル溶液を塗布して第
2強誘電体層を備える段階と、(e)前記第2強誘電体
層をベーキングする段階と、(f)前記第2強誘電体層
をアニリングしてPZTフィルムを得る段階とを含むこ
とを特徴とする。
In order to achieve the above object, the method of manufacturing a ferroelectric capacitor according to the present invention comprises: (a) applying a first sol-gel solution of a first ferroelectric substance on a RuO x layer, and Providing a ferroelectric layer, (b) baking the first ferroelectric layer, and (c) annealing the first ferroelectric layer to obtain a perovskite structure seed layer. d) applying a second sol-gel solution of a ferroelectric substance on the seed layer to provide a second ferroelectric layer; and (e) baking the second ferroelectric layer. f) annealing the second ferroelectric layer to obtain a PZT film.

【0009】前記本発明の製造方法において、前記シー
ドレーヤーの厚さは出来る限り薄いものがよく、特に1
0〜100nm程度の範囲が望ましい。そして、強誘電
性フィルム、例えばPZTフィルムのためのPZTゾル
ーゲル溶液の塗布及び第2強誘電体層のベーキング段階
を所望の厚さを得るために数回繰り返す必要がある。こ
のシードレーヤーとPZTフィルムをアニリングする段
階ではRTA工程でシードレーヤーとPZTフィルムを
高温で瞬間的に加熱することにより、純粋なペロブスカ
イト構造のシードレーヤーとPZTフィルムを形成する
ことができる。
In the manufacturing method of the present invention, the seed layer is preferably as thin as possible.
The range of about 0 to 100 nm is desirable. Then, the application of the PZT sol-gel solution for the ferroelectric film, for example the PZT film, and the baking step of the second ferroelectric layer need to be repeated several times to obtain the desired thickness. In the step of annealing the seed layer and the PZT film, the seed layer and the PZT film having a pure perovskite structure can be formed by instantaneously heating the seed layer and the PZT film at a high temperature in the RTA process.

【0010】このような本発明によれば、ペロブスカイ
トの構造を有するシードレーヤーはIrOx 、Rh
x 、RuOx 、TiOx のうち少なくともいずれか一
つよりなる導電性酸化物層の表面上に形成され、シード
レーヤーは後続くPZTフィルムの形成過程においてP
ZT膜のペロブスカイト構造の成長を補助する。かつ、
強誘電性フィルムの表面、即ちPZTフィルムの表面は
非常に平坦になる。
According to the present invention, the seed layer having the perovskite structure is made of IrO x , Rh.
O x, RuO x, is formed on the surface of the conductive oxide layer made of at least any one of TiO x, Shidoreya P is in the process of forming, after subsequent PZT film
It assists the growth of the perovskite structure of the ZT film. And,
The surface of the ferroelectric film, that is, the surface of the PZT film becomes very flat.

【0011】また、前記PZTゾルーゲル溶液にドープ
剤が加えられるとき、所望のペロブスカイト構造の生成
が促進され、ドープ剤としてはNb、Ta、Laのうち
少なくともいずれか一つである。
When a doping agent is added to the PZT sol-gel solution, generation of a desired perovskite structure is promoted, and the doping agent is at least one of Nb, Ta and La.

【0012】[0012]

【発明の実施の形態】以下、添付した図面に基づき本発
明を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the accompanying drawings.

【0013】本発明のキャパシタの基板としてはSiウ
ェーハまたはSiO2 膜が300nmの厚さで形成され
たSiウェーハが用いられる。
As the substrate of the capacitor of the present invention, a Si wafer or a Si wafer having a SiO 2 film formed to a thickness of 300 nm is used.

【0014】先ず図1を参照すれば、本発明の製造方法
はRuOx 下部電極を形成する段階と、下部電極上にシ
ードレーヤーを形成する段階と、シードレーヤーの上に
強誘電性フィルム、例えばPZTフィルムを形成する段
階、そして前記PZTフィルムの上にRuOx 上部電極
を形成する段階とを含む。このような段階を具体的に調
べると次の通りである。
Referring first to FIG. 1, the manufacturing method of the present invention comprises the steps of forming a RuO x bottom electrode, forming a seed layer on the bottom electrode, and forming a ferroelectric film on the seed layer, such as a ferroelectric film. Forming a PZT film, and forming a RuO x top electrode on the PZT film. The detailed examination of such a stage is as follows.

【0015】図2及び図3を参照すれば、基板10の絶
縁膜20の上に反応性スパッタリング法によりIr
x 、RhOx 、RuOx 及びTiOx のうち少なくと
もいずれか一つ、望ましくはRuOx を含む導電性酸化
物層を300nmの厚さで蒸着させる。このような反応
性スパッタリングのための条件において、アルゴンと酸
素の分圧比は70:30、圧力は200〜500mTorr
、パワーは200〜600Wとする。スパッタリング
が完了した後には、大気中で600℃程度の温度で約1
時間熱処理して導電性酸化物層(下部電極)30を完成
する。
Referring to FIGS. 2 and 3, Ir is deposited on the insulating film 20 of the substrate 10 by reactive sputtering.
O x, at least one of RhO x, RuO x and TiO x, preferably depositing a conductive oxide layer containing RuO x a thickness of 300 nm. Under such conditions for reactive sputtering, the partial pressure ratio of argon and oxygen is 70:30 and the pressure is 200 to 500 mTorr.
, And the power is 200 to 600 W. After the sputtering is completed, the temperature of about 600 ℃ in the atmosphere is about 1
The conductive oxide layer (lower electrode) 30 is completed by heat treatment for a period of time.

【0016】図4に示したように前記RuOx 膜の上に
シードレーヤーを形成する段階においては、先ず第1P
ZTゾルーゲル溶液をn−propanol/acetic 酸1:1溶
液で希釈して0.05〜0.3Mとする。調剤された第
1PZTゾルーゲル溶液をスピンコータにより前記Ru
x 下部電極上に所定の厚さで塗布して第1PZT膜を
形成する。この際、スピンコータの回転速度は2000
〜5000RPM、回転時間は40秒程度である。この
ように形成された第1PZT膜を250℃で5分間ベー
キングした後、拡散炉またはRTA装置を用いて酸素雰
囲気で熱処理して図4に示したようにシードレーヤー4
0を得る。シードーレーヤー40の厚さは105〜70
nm程度である。RTA法を適用する場合、昇温速度は
10〜200℃/sec 、加熱温度は650〜850℃で
あり、全体熱処理時間は20〜200秒が望ましい。
In the step of forming a seed layer on the RuO x film as shown in FIG.
The ZT sol-gel solution is diluted with 1: 1 n-propanol / acetic acid solution to 0.05-0.3M. The prepared first PZT sol-gel solution was applied to the Ru coating using a spin coater.
A first PZT film is formed by applying a predetermined thickness on the O x lower electrode. At this time, the rotation speed of the spin coater is 2000.
The rotation time is about 40 seconds. The first PZT film thus formed was baked at 250 ° C. for 5 minutes, and then heat-treated in an oxygen atmosphere using a diffusion furnace or an RTA apparatus, and the seed layer 4 was formed as shown in FIG.
Get 0. Seed layer 40 has a thickness of 105 to 70
It is about nm. When the RTA method is applied, the heating rate is 10 to 200 ° C./sec, the heating temperature is 650 to 850 ° C., and the total heat treatment time is preferably 20 to 200 seconds.

【0017】以上のような過程によりシードレーヤーを
得た後、シードレーヤーの上に0.4Mとして用意され
たPZT及びドーピングされたPZT前駆物質(precur
sor)溶液、即ち第2PZTゾルーゲル溶液を前記シー
ドレーヤーの上に塗布して第2強誘電性フィルムを得、
これをベーキングする過程を例えば3回繰り返して図5
に示したように所望の厚さのPZT膜50を得る。これ
を600〜700℃で30分間酸素雰囲気でアニリング
したり、RTA装置で650〜850℃で30秒間アニ
リングするが、その昇温速度は10〜200℃/sec で
ある。SEM(Scanning Electron Microscopy)及びX
RD(X-Ray Diffractometer)方法で得られたPZTフ
ィルムを測定した結果、その厚さは300nm程度であ
り、純粋なペロブスカイト構造が形成されたことを確か
めた。前記第1、第2PZTゾルーゲル溶液にはドープ
剤を0.5〜7モル%比率として含ませるが、ドープ剤
はアニリング時、PZT物質内にペロブスカイト構造の
生成を促進させる。このようなドーピング元素としては
Nb、Ta、Laなどがあり、このうち少なくとも一つ
を選択することができる。前記のようなドーピング元素
によれば、Pb(NbZr)TiOx 、Pb(TaZ
r)TiOx またはPb(LaZr)TiOxが得られ
る。
After obtaining the seed layer by the above process, PZT prepared as 0.4M on the seed layer and the doped PZT precursor (precur) are prepared.
sor) solution, ie, a second PZT sol-gel solution, is applied on the seed layer to obtain a second ferroelectric film,
The process of baking this is repeated three times, for example, as shown in FIG.
A PZT film 50 having a desired thickness is obtained as shown in FIG. This is annealed in an oxygen atmosphere at 600 to 700 ° C. for 30 minutes, or annealed at 650 to 850 ° C. for 30 seconds by an RTA apparatus, and the temperature rising rate is 10 to 200 ° C./sec. SEM (Scanning Electron Microscopy) and X
As a result of measuring the PZT film obtained by the RD (X-Ray Diffractometer) method, the thickness was about 300 nm, and it was confirmed that a pure perovskite structure was formed. The first and second PZT sol-gel solutions contain a doping agent in a proportion of 0.5 to 7 mol%, and the doping agent promotes the formation of a perovskite structure in the PZT material during annealing. Such doping elements include Nb, Ta, La and the like, and at least one of them can be selected. According to the above doping elements, Pb (NbZr) TiO x , Pb (TaZ
r) TiO x or Pb (LaZr) TiO x is obtained.

【0018】最終的に図6に示したように直径75μm
のシャドウマスクを用いて前記PZTフィルムの上にR
uOx を蒸着してRuOx 上部電極60を備える。光学
顕微鏡で測定した結果、形成された電極の幅は4.5×
10-5、その厚さは150nmであった。
Finally, as shown in FIG. 6, the diameter is 75 μm.
R on the PZT film using the shadow mask of
A RuO x upper electrode 60 is provided by depositing uO x . As a result of measuring with an optical microscope, the width of the formed electrode is 4.5 ×
The thickness was 10 −5 and the thickness was 150 nm.

【0019】以上のような過程において、前記シードレ
ーヤーは、RuOx のRu成分のPZTフィルムのPb
成分がそれぞれPZTフィルムとRuOx 膜に拡散され
ることを防止する拡散防止障壁としての機能と、PZT
フィルムに対するペロブスカイト相の誘発層としての機
能を果たす。
In the above process, the seed layer is formed of Pb of PZT film of RuO x Ru component.
PZT, which functions as a diffusion barrier that prevents the components from diffusing into the PZT film and the RuO x film, respectively.
Serves as a perovskite phase inducer for the film.

【0020】以上の過程で本発明者は三つのサンプルを
製作したが、一つは拡散炉でアニリングさせたものであ
り、他の一つはRTA装置でアニリングさせたものであ
り、もう一つは同一な条件で従来の方法で製作したもの
である。本発明による二つのサンプルの物理的特性を測
定するにおいて、ヒステリシスループ、耐久性および漏
れ電流などの測定には Radient社の Standard RT66A, R
T6000HVS及びヒュレットパッカード社の HP8116Aパルス
発生器などを用いた。
In the above process, the present inventor produced three samples, one of which was annealed in the diffusion furnace, the other of which was annealed by the RTA apparatus, and the other of which was annealed. Is manufactured by a conventional method under the same conditions. In measuring the physical properties of two samples according to the invention, the Radient Standard RT66A, R is used for measuring hysteresis loop, durability and leakage current.
The T6000HVS and HP8116A pulse generator manufactured by Hulet Packard were used.

【0021】製作された二つのRuOx /PZT/Ru
x キャパシタのヒステリシスループを測定した結果、
拡散炉で熱処理されたものよりRTA装置で熱処理され
たものが優秀な残留分極値を示した。そして、漏れ電流
においては、両者が類似な結果を示し、シードレーヤー
を適用しない従来の方法によるキャパシタに比して1/
10未満である10-6A/cm2 以下の値を示した。こ
のようなキャパシタの漏れ電流値は白金を電極物質とし
て用いる、即ちPt/PZT/Ptキャパシタの値とほ
ぼ同様な水準である。そして、疲労特性を測定するにお
いて、1MHz5ボルトの階段形パルス波を利用してキ
ャパシタの疲労を測定した結果、1012スイッチングサ
イクルの間、残留分極が10%程度減り、漏れ電流値の
変化はほとんどなかった。かつ、PZTフィルム表面の
平滑度が高くて一般的にRAMの製作に求められるエッ
チング及び多層膜の形成に有利であることがわかった。
Two manufactured RuO x / PZT / Ru
As a result of measuring the hysteresis loop of the O x capacitor,
What was heat-treated by the RTA apparatus showed a better remanent polarization value than that which was heat-treated by the diffusion furnace. Then, in the leakage current, both show similar results, and are 1 / third as compared with the capacitor by the conventional method in which the seed layer is not applied.
A value of 10 -6 A / cm 2 or less, which is less than 10, was shown. The leakage current value of such a capacitor is almost the same level as that of a Pt / PZT / Pt capacitor using platinum as an electrode material. Then, in measuring the fatigue characteristics, as a result of measuring the fatigue of the capacitor by using a stepped pulse wave of 1 MHz and 5 V, the residual polarization was reduced by about 10% during 10 12 switching cycles, and the change in the leakage current value was almost zero. There wasn't. It was also found that the surface of the PZT film has a high smoothness, which is advantageous for etching and formation of a multilayer film generally required for manufacturing a RAM.

【0022】[0022]

【実施例】スピンコータを4000RPMで回転させな
がら、基板上に備えられたRuOx 膜の上に0.1Mの
PZT溶液を1回塗布し、これを250℃で5分間ベー
キングした。これをRTA装置でアニリングして約30
nm厚さをシードレーヤーを形成した。熱処理条件として
酸素を2リットル/min で流入させ、昇温速度を60℃
/sec 、熱処理温度を750℃、熱処理所要時間は30
秒であった。
Example While rotating the spin coater at 4000 RPM, a 0.1 M PZT solution was applied once on the RuO x film provided on the substrate, and this was baked at 250 ° C. for 5 minutes. Approximately 30 by annealing this with RTA equipment
A seed layer with a thickness of nm was formed. Oxygen is introduced at a rate of 2 liters / min as a heat treatment condition, and the heating rate is 60 ° C.
/ Sec, heat treatment temperature is 750 ° C, heat treatment time is 30
It was seconds.

【0023】シードレーヤーが完成されれば、スピンコ
ータを2000RPMで回転させながら、この上に0.
4MのPZT溶液をスピンコーティング法により塗布し
た後、250℃の温度でベーキングを施す。このような
スピンコーティング及びベーキングは所望の厚さのPZ
Tフィルムを得るために3回繰り返して施した。引き続
き、RTA装置で熱処理して300nmnmの厚さを有す
るペロブスカイト構造のPZTフィルムを得た。この際
の熱処理条件は、酸素21/min 、昇温速度60℃/se
c 、熱処理温度を750℃とし、所要時間は30秒であ
った。このような過程を経て得たPZTフィルムはその
表面が非常に平滑でロゼット構造が全然見だされない。
熱処理の完了後には蒸着法により前記PZTフィルムの
上にRuOx 上部電極を形成して電気的特性を測定し
た。その結果、残留分極値は20μC/cm2 であっ
て、1012疲労サイクルの間、残留分極値は10%未満
に減った。また、初期の漏れ電流は5×10-7A/cm
2 であり、1012疲労サイクル以後は1.0×10-6
/cm2 を保った。
When the seed layer is completed, spin coater is rotated at 2000 RPM, while the spin coater is rotated to 0.
After applying a 4M PZT solution by spin coating, baking is performed at a temperature of 250 ° C. Such spin coating and baking can be performed with PZ having a desired thickness.
Repeated three times to obtain T film. Then, it heat-processed by RTA apparatus and the PZT film of the perovskite structure which has a thickness of 300 nmnm was obtained. The heat treatment conditions at this time are as follows: oxygen 21 / min, heating rate 60 ° C./se
c, the heat treatment temperature was 750 ° C., and the required time was 30 seconds. The PZT film obtained through such a process has a very smooth surface and no rosette structure is found.
After the heat treatment was completed, a RuO x upper electrode was formed on the PZT film by a vapor deposition method to measure electrical characteristics. As a result, the remanent polarization value was 20 μC / cm 2 , and the remanent polarization value was reduced to less than 10% during 10 12 fatigue cycles. The initial leakage current is 5 × 10 −7 A / cm.
2 and 1.0 × 10 -6 A after 10 12 fatigue cycles
/ Cm 2 was maintained.

【0024】[0024]

【比較例】従来の方法により、スピンコータ2000R
PMで回転させながらRuOx 膜上に0.4MのPZT
溶液を塗布して続けて250℃でベーキングするが、塗
布とベーキングを3回繰り返す。その後、拡散炉で熱処
理して300nm厚さのペロブスカイト構造のPZTフィ
ルムを得た。熱処理条件としては酸素を2リットル/mi
n で流入させ、熱処理温度は650℃、所要時間は30
分であった。
[Comparative Example] Spin coater 2000R by the conventional method
0.4M PZT on RuO x film while rotating with PM
The solution is applied and subsequently baked at 250 ° C., but application and baking are repeated three times. Then, heat treatment was performed in a diffusion furnace to obtain a PZT film having a perovskite structure having a thickness of 300 nm. Oxygen is 2 liter / mi as heat treatment condition
The heat treatment temperature is 650 ° C and the time is 30
It was a minute.

【0025】このように製作された従来の方法によるP
ZTフィルムを測定した結果、PZTフィルムの表面に
0.5〜1μmの直径を有するロゼットパターンが覆わ
れていた。また、電気的な特性を測定するためにPZT
フィルムの上にRuOx 上部電極を形成した。電気的な
特性の測定結果、残留分極値は20μC/cm2 であ
り、漏れ電流レベルが高かった。即ち、初期電流漏れ値
は5×10-5A/cm2であり、109 疲労サイクル以
後には5×10-4A/cm2 に急増した。
The P produced by the conventional method as described above
As a result of measuring the ZT film, the surface of the PZT film was covered with a rosette pattern having a diameter of 0.5 to 1 μm. In addition, to measure the electrical characteristics, PZT
A RuO x upper electrode was formed on the film. As a result of measuring the electrical characteristics, the residual polarization value was 20 μC / cm 2 , and the leakage current level was high. That is, the initial current leakage value is 5 × 10 -5 A / cm 2 , the 109 fatigue cycles since soared to 5 × 10 -4 A / cm 2 .

【0026】[0026]

【発明の効果】以上のように、シードレーヤーを有する
本発明によるキャパシタはシードレーヤーを適用しない
従来の方法によるキャパシタより低い漏れ電流を示すだ
けでなく、既存のPt/PZT/Ptキャパシタ値とほ
ぼ同一な水準の漏れ電流を有する。かつ、疲労特性にお
いても残留分極値がシードレーヤーなしに製作されたP
ZTフィルムより本発明によるPZTフィルムがさらに
大きいことがわかる。また、本発明によるPZTフィル
ムはロゼット構造がないので、従来の方法のPZTフィ
ルムより表面の平滑度が高い。
As described above, the capacitor according to the present invention having the seed layer not only exhibits lower leakage current than the conventional capacitor without the seed layer, but also has almost the same leakage current as the existing Pt / PZT / Pt capacitor value. They have the same level of leakage current. Also, in terms of fatigue characteristics, the remanent polarization value was P without the seed layer.
It can be seen that the PZT film according to the present invention is larger than the ZT film. Further, since the PZT film according to the present invention does not have a rosette structure, the surface smoothness is higher than that of the conventional PZT film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法のフローチャートである。FIG. 1 is a flowchart of a manufacturing method of the present invention.

【図2】本発明の製造方法による工程図である。FIG. 2 is a process drawing of the manufacturing method of the present invention.

【図3】本発明の製造方法による工程図である。FIG. 3 is a process drawing of the manufacturing method of the present invention.

【図4】本発明の製造方法による工程図である。FIG. 4 is a process drawing of the manufacturing method of the present invention.

【図5】本発明の製造方法による工程図である。FIG. 5 is a process drawing of the manufacturing method of the present invention.

【図6】本発明の製造方法による工程図である。FIG. 6 is a process drawing of the manufacturing method of the present invention.

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 (a)第1導電性酸化物上に第1強誘電
性物質よりなるゾルーゲル溶液を塗布して第1強誘電性
膜を形成する段階と、 (b)前記第1強誘電性膜をベーキングする段階と、 (c)前記第1強誘電性膜をアニリングしてペロブスカ
イト構造のシードレーヤーを形成する段階と、 (d)前記シードレーヤーの表面に第2強誘電性物質よ
りなるゾルーゲル溶液を塗布して第2強誘電性膜を形成
する段階と、 (e)前記第2強誘電性膜をベーキングする段階と、 (f)前記第2強誘電性膜をアニリングしてペロブスカ
イト構造を有する強誘電性フィルムを形成する段階とを
含むことを特徴とする強誘電性キャパシタの製造方法。
1. A step of: (a) applying a sol-gel solution of a first ferroelectric substance on a first conductive oxide to form a first ferroelectric film; and (b) the first ferroelectric film. Baking the conductive film, (c) annealing the first ferroelectric film to form a seed layer having a perovskite structure, and (d) forming a seed ferroelectric layer on the surface of the seed layer. Applying a sol-gel solution to form a second ferroelectric film, (e) baking the second ferroelectric film, and (f) annealing the second ferroelectric film to provide a perovskite structure. And a step of forming a ferroelectric film having: a.
【請求項2】 前記第1導電性酸化物層の導電性酸化物
はIrOx 、RhOx 、RuOx 及びTiOx よりなる
グループから選択された少なくともいずれか一つである
ことを特徴とする請求項1に記載の強誘電性キャパシタ
の製造方法。
2. The conductive oxide of the first conductive oxide layer is at least one selected from the group consisting of IrO x , RhO x , RuO x, and TiO x. Item 2. A method for manufacturing a ferroelectric capacitor according to Item 1.
【請求項3】 前記酸化物層はシリコン基板上に備えら
れることを特徴とする請求項1に記載の強誘電性キャパ
シタの製造方法。
3. The method of manufacturing a ferroelectric capacitor according to claim 1, wherein the oxide layer is provided on a silicon substrate.
【請求項4】 前記第1酸化物層はシリコン酸化物基板
に備えられることを特徴とする請求項1に記載の強誘電
性キャパシタの製造方法。
4. The method of manufacturing a ferroelectric capacitor according to claim 1, wherein the first oxide layer is provided on a silicon oxide substrate.
【請求項5】 前記強誘電性フィルムの上に第2導電性
酸化物層を形成する段階をさらに含むことを特徴とする
請求項1に記載の強誘電性キャパシタの製造方法。
5. The method of claim 1, further comprising forming a second conductive oxide layer on the ferroelectric film.
【請求項6】 前記第2導電性酸化物層の導電性酸化物
はIrOx 、RhOx 、RuOx 及びTiOx よりなる
グループから選択された少なくともいずれか一つである
ことを特徴とする請求項5に記載の強誘電性キャパシタ
の製造方法。
6. The conductive oxide of the second conductive oxide layer is at least one selected from the group consisting of IrO x , RhO x , RuO x, and TiO x. Item 6. A method for manufacturing a ferroelectric capacitor according to Item 5.
【請求項7】 前記シードレーヤーはPZTレーヤーで
あることを特徴とする請求項1に記載の強誘電性キャパ
シタの製造方法。
7. The method of manufacturing a ferroelectric capacitor according to claim 1, wherein the seed layer is a PZT layer.
【請求項8】 前記強誘電性フィルムはPZTフィルム
であることを特徴とする請求項1に記載の強誘電性キャ
パシタの製造方法。
8. The method of manufacturing a ferroelectric capacitor according to claim 1, wherein the ferroelectric film is a PZT film.
【請求項9】 前記シードレーヤーの厚さは5〜7nm
であることを特徴とする請求項1に記載の強誘電性キャ
パシタの製造方法。
9. The seed layer has a thickness of 5 to 7 nm.
The method for manufacturing a ferroelectric capacitor according to claim 1, wherein
【請求項10】 前記(d)段階と(e)段階を多数回
繰り返すことを特徴とする請求項1に記載の強誘電性キ
ャパシタの製造方法。
10. The method of manufacturing a ferroelectric capacitor according to claim 1, wherein the steps (d) and (e) are repeated many times.
【請求項11】 前記(c)段階と(f)段階のうち少
なくともいずれか一つをRTA装置で施すことを特徴と
する請求項1に記載の強誘電性キャパシタの製造方法。
11. The method of manufacturing a ferroelectric capacitor according to claim 1, wherein at least one of the steps (c) and (f) is performed by an RTA apparatus.
【請求項12】 RTA装置の昇温速度は10〜200
℃/minの範囲値を有することを特徴とする請求項1
1に記載の強誘電性キャパシタの製造方法。
12. The heating rate of the RTA apparatus is 10 to 200.
2. Having a range value of ° C / min.
1. A method for manufacturing a ferroelectric capacitor according to 1.
【請求項13】 RTA装置の加熱温度は650〜85
0℃の範囲値を有することを特徴とする請求項11に記
載の強誘電性キャパシタの製造方法。
13. The heating temperature of the RTA device is 650-85.
The method for manufacturing a ferroelectric capacitor according to claim 11, having a range value of 0 ° C.
【請求項14】 前記段階(e)及び(f)のうち少な
くともいずれか一つが加熱温度を650〜850℃、そ
して加熱時間を20〜200秒として施されることを特
徴とする請求項1に記載の強誘電性キャパシタの製造方
法。
14. The method according to claim 1, wherein at least one of steps (e) and (f) is performed with a heating temperature of 650 to 850 ° C. and a heating time of 20 to 200 seconds. A method of manufacturing the ferroelectric capacitor described.
【請求項15】 (a)RuOx 層上に第1強誘電性物
質よりなる第1ゾルーゲル溶液を塗布して第1強誘電体
層を備える段階と、 (b)前記第1強誘電体層をベーキングする段階と、 (c)前記第1強誘電体層をアニリングしてペロブスカ
イト構造のシードレーヤーを得る段階と、 (d)前記シードレーヤーの上に強誘電性物質よりなる
第2ゾルーゲル溶液を塗布して第2強誘電体層を備える
段階と、 (e)前記第2強誘電体層をベーキングする段階と、 (f)前記第2強誘電体層をアニリングしてPZTフィ
ルムを得る段階とを含むことを特徴とする強誘電性キャ
パシタの製造方法。
15. (a) providing a first ferroelectric layer by applying a first sol-gel solution comprising a first ferroelectric substance on the RuO x layer, and (b) the first ferroelectric layer B), (c) obtaining a seed layer having a perovskite structure by annealing the first ferroelectric layer, and (d) depositing a second sol-gel solution of a ferroelectric substance on the seed layer. Coating to provide a second ferroelectric layer, (e) baking the second ferroelectric layer, and (f) annealing the second ferroelectric layer to obtain a PZT film. A method of manufacturing a ferroelectric capacitor, comprising:
【請求項16】 (a)第1導電性酸化物層上に第1P
ZTゾルーゲル溶液を塗布して第1強誘電体層を備える
段階と、 (b)前記第1強誘電体層をベーキングする段階と、 (c)前記第1強誘電体層をアニリングしてPZTシー
ドレーヤーを得る段階と、 (d)前記シードレーヤーの上に第2PZTゾルーゲル
溶液を塗布して第2強誘電体層を備える段階と、 (e)前記第2強誘電体層をベーキングする段階と、 (f)前記第2強誘電体層をアニリングしてPZTフィ
ルムを得る段階とを含むことを特徴とする強誘電性キャ
パシタの製造方法。
16. (a) A first P on the first conductive oxide layer.
Applying a ZT sol-gel solution to provide a first ferroelectric layer; (b) baking the first ferroelectric layer; and (c) annealing the first ferroelectric layer to form a PZT seed. Obtaining a layer, (d) applying a second PZT sol-gel solution onto the seed layer to provide a second ferroelectric layer, and (e) baking the second ferroelectric layer. (F) Annealing the second ferroelectric layer to obtain a PZT film, the method of manufacturing a ferroelectric capacitor.
【請求項17】 前記第1PZTゾルーゲル溶液と第2
PZTゾルーゲル溶液のうちいずれか一つにドープ剤が
含有されていることを特徴とする請求項16に記載の強
誘電性キャパシタの製造方法。
17. The first PZT sol-gel solution and a second PZT sol-gel solution
The method of manufacturing a ferroelectric capacitor according to claim 16, wherein any one of the PZT sol-gel solutions contains a doping agent.
【請求項18】 前記ドープ剤はNb,Ta及びLaよ
りなるグループから選択されたいずれか一つであること
を特徴とする請求項17に記載の強誘電性キャパシタの
製造方法。
18. The method of manufacturing a ferroelectric capacitor according to claim 17, wherein the dopant is one selected from the group consisting of Nb, Ta and La.
【請求項19】 前記ドープ剤の濃度は0.5〜7モル
%の範囲内であることを特徴とする請求項18に記載の
強誘電性キャパシタの製造方法。
19. The method of manufacturing a ferroelectric capacitor according to claim 18, wherein the concentration of the doping agent is in the range of 0.5 to 7 mol%.
【請求項20】 (a)RuOx 層上に第1PZTゾル
ーゲル溶液を塗布して第1強誘電体層を形成する段階
と、 (b)前記第1強誘電体層をベーキングする段階と、 (c)前記第1強誘電体層をアニリングしてPZTシー
ドレーヤーを形成する段階と、 (d)前記PZTシードレーヤーの上に第PZTゾルー
ゲル溶液を塗布して第2強誘電体層を形成する段階と、 (e)前記第2強誘電体層をベーキングする段階と、 (f)前記第2強誘電体層をアニリングしてペロブスカ
イト構造を有するPZTフィルムを形成する段階とを含
むことを特徴とする強誘電性キャパシタの製造方法。
20. (a) applying a first PZT sol-gel solution on the RuO x layer to form a first ferroelectric layer; and (b) baking the first ferroelectric layer. c) annealing the first ferroelectric layer to form a PZT seed layer, and (d) applying a PZT sol-gel solution on the PZT seed layer to form a second ferroelectric layer. And (e) baking the second ferroelectric layer, and (f) annealing the second ferroelectric layer to form a PZT film having a perovskite structure. Manufacturing method of ferroelectric capacitor.
【請求項21】 前記第1PZTゾルーゲル溶液と第2
PZTゾルーゲル溶液のうち少なくともいずれか一つに
ドープ剤が含有されていることを特徴とする請求項20
に記載の強誘電性キャパシタの製造方法。
21. The first PZT sol-gel solution and the second PZT sol-gel solution.
21. A doping agent is contained in at least one of the PZT sol-gel solutions.
A method of manufacturing a ferroelectric capacitor as described in 1.
【請求項22】 前記ドープ剤はNb、Ta及びLaよ
りなるグループから選択されたいずれか一つであること
を特徴とする請求項21に記載の強誘電性キャパシタの
製造方法。
22. The method of manufacturing a ferroelectric capacitor according to claim 21, wherein the dopant is one selected from the group consisting of Nb, Ta and La.
【請求項23】 前記ドープ剤の濃度は0.5〜7モル
%の範囲内であることを特徴とする請求項22に記載の
強誘電性キャパシタの製造方法。
23. The method of manufacturing a ferroelectric capacitor according to claim 22, wherein the concentration of the dopant is in the range of 0.5 to 7 mol%.
【請求項24】 前記シードレーヤーは前記RuOx
Ru成分とPZTフィルムのPb成分がそれぞれ前記P
ZTフィルムとRuOx 膜に拡散されることを防止する
拡散防止障壁の機能を有することを特徴とする請求項2
2に記載の強誘電性キャパシタの製造方法。
24. In the seed layer, the Ru component of RuO x and the Pb component of a PZT film are the P component, respectively.
3. A diffusion barrier which prevents diffusion into the ZT film and the RuO x film.
2. The method for manufacturing a ferroelectric capacitor according to 2.
【請求項25】 前記シードレーヤーは前記PZTフィ
ルムにペロブスカイト相を誘導する誘導層としての役割
を果たすことを特徴とする請求項22に記載の強誘電性
キャパシタの製造方法。
25. The method of claim 22, wherein the seed layer serves as an induction layer that induces a perovskite phase in the PZT film.
【請求項26】 (a)基板にRuOx 層を形成する段
階と、 (b)前記RuOx 層に5〜70nmの厚さを有するP
ZTシードレーヤーを形成する段階と、 (c)前記PZTシードレーヤーの上にPbZrTiO
x 、Pb(NbZr)TiOx 、Pb(TaZr)Ti
x またはPb(LaZr)TiOx よりなる強誘電体
層を形成する段階とを含むことを特徴とする強誘電性キ
ャパシタの製造方法。
26. (a) forming a RuO x layer on the substrate; and (b) P having a thickness of 5 to 70 nm on the RuO x layer.
Forming a ZT seed layer, and (c) forming PbZrTiO on the PZT seed layer.
x , Pb (NbZr) TiO x , Pb (TaZr) Ti
O x or Pb (LaZr) strong production method of a dielectric capacitor which comprises a step of forming a ferroelectric layer made of TiO x.
JP06141496A 1995-03-20 1996-03-18 Method for manufacturing ferroelectric capacitor Expired - Fee Related JP3902807B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR95P5785 1995-03-20
KR1019950005785A KR100360468B1 (en) 1995-03-20 1995-03-20 manufacturing method of ferroelectric film, capacator adopting the film and menufacturing method of the capacator

Publications (2)

Publication Number Publication Date
JPH08279599A true JPH08279599A (en) 1996-10-22
JP3902807B2 JP3902807B2 (en) 2007-04-11

Family

ID=19410119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06141496A Expired - Fee Related JP3902807B2 (en) 1995-03-20 1996-03-18 Method for manufacturing ferroelectric capacitor

Country Status (4)

Country Link
US (1) US5913117A (en)
JP (1) JP3902807B2 (en)
KR (1) KR100360468B1 (en)
NL (1) NL1002667C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358147B1 (en) * 2000-12-30 2002-10-25 주식회사 하이닉스반도체 Method for forming ferroelectric capacitor
US6495412B1 (en) 1998-09-11 2002-12-17 Fujitsu Limited Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
US6936876B2 (en) 2000-04-28 2005-08-30 Sharp Kabushiki Kaisha Semiconductor device having ferroelectric thin film and fabricating method therefor
JP2006024748A (en) * 2004-07-08 2006-01-26 Fujitsu Ltd Semiconductor device with ferroelectric capacitor and its manufacturing method
JP2006041425A (en) * 2004-07-30 2006-02-09 Fujitsu Ltd Semiconductor device having ferroelectric capacitor and manufacturing method therefor
JP2010187003A (en) * 2010-03-08 2010-08-26 Seiko Epson Corp Precursor composition and method of manufacturing piezoelectric element

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0165484B1 (en) * 1995-11-28 1999-02-01 김광호 Method of depositing ta2o5 and apparatus thereof
JP3587004B2 (en) * 1996-11-05 2004-11-10 ソニー株式会社 Capacitor structure of semiconductor memory cell and method of manufacturing the same
US6096597A (en) * 1997-01-31 2000-08-01 Texas Instruments Incorporated Method for fabricating an integrated circuit structure
US6162698A (en) * 1997-06-28 2000-12-19 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a capacitor in a semiconductor device
US6190728B1 (en) * 1997-09-29 2001-02-20 Yazaki Corporation Process for forming thin films of functional ceramics
TW370723B (en) * 1997-11-27 1999-09-21 United Microelectronics Corp Method for reducing current leakage of high capacitivity materials
KR100458084B1 (en) * 1997-12-27 2005-06-07 주식회사 하이닉스반도체 Ferroelectric Capacitor Formation Method with Lower Electrode with Reduced Leakage Current
KR100275726B1 (en) * 1997-12-31 2000-12-15 윤종용 Ferroelectric memory device and fabrication method thereof
KR100292819B1 (en) * 1998-07-07 2001-09-17 윤종용 Capacitor and manufacturing method thereof
US6586790B2 (en) * 1998-07-24 2003-07-01 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6316797B1 (en) * 1999-02-19 2001-11-13 Advanced Technology Materials, Inc. Scalable lead zirconium titanate(PZT) thin film material and deposition method, and ferroelectric memory device structures comprising such thin film material
JP2000349249A (en) 1999-06-08 2000-12-15 Oki Electric Ind Co Ltd Manufacture of semiconductor storage device
JP4445091B2 (en) * 2000-04-07 2010-04-07 康夫 垂井 Ferroelectric memory element
US20020003085A1 (en) * 2000-05-19 2002-01-10 Chandran Ravi R. Multilayer electrochemical cell technology using sol-gel processing applied to ceramic oxygen generator
KR100472731B1 (en) * 2000-06-30 2005-03-08 주식회사 하이닉스반도체 Method for forming semiconductor device capable of omitting seed layer etch process
KR100379941B1 (en) * 2001-03-06 2003-04-11 주승기 Fabrication method of large single-grained ferroelectric thin film and fabrication method of ferroelectric memory device using the same
US6507060B2 (en) * 2001-05-23 2003-01-14 Winbond Electronics Corp. Silicon-based PT/PZT/PT sandwich structure and method for manufacturing the same
JP4825373B2 (en) * 2001-08-14 2011-11-30 ローム株式会社 Ferroelectric thin film manufacturing method and ferroelectric memory manufacturing method using the same
DE10153288A1 (en) * 2001-10-31 2003-05-15 Infineon Technologies Ag Manufacturing process for a semiconductor device
US6932851B2 (en) * 2001-11-02 2005-08-23 The Trustees Of Princeton University Methods for the preparation of metallic alloy nanoparticles and compositions thereof
JP4286492B2 (en) * 2002-06-13 2009-07-01 富士通株式会社 Method for manufacturing ferroelectric capacitor
US7031138B2 (en) * 2002-12-09 2006-04-18 Infineon Technologies Ag Ferroelectric capacitor and process for its manufacture
US7229662B2 (en) * 2003-12-16 2007-06-12 National University Of Singapore Heterolayered ferroelectric thin films and methods of forming same
JP2006228415A (en) * 2005-02-17 2006-08-31 Samsung Electronics Co Ltd Data recording medium utilizing ferroelectric layer and method of manufacturing the same
US7307280B1 (en) * 2005-09-16 2007-12-11 Spansion Llc Memory devices with active and passive doped sol-gel layers
JP6036460B2 (en) * 2013-03-26 2016-11-30 三菱マテリアル株式会社 Method for forming PNbZT ferroelectric thin film
WO2019005174A1 (en) * 2017-06-30 2019-01-03 Intel Corporation Apparatus for generating rf second and higher harmonics

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437139A (en) * 1982-12-17 1984-03-13 International Business Machines Corporation Laser annealed dielectric for dual dielectric capacitor
US4946710A (en) * 1987-06-02 1990-08-07 National Semiconductor Corporation Method for preparing PLZT, PZT and PLT sol-gels and fabricating ferroelectric thin films
US5142437A (en) * 1991-06-13 1992-08-25 Ramtron Corporation Conducting electrode layers for ferroelectric capacitors in integrated circuits and method
US5164808A (en) * 1991-08-09 1992-11-17 Radiant Technologies Platinum electrode structure for use in conjunction with ferroelectric materials
US5192871A (en) * 1991-10-15 1993-03-09 Motorola, Inc. Voltage variable capacitor having amorphous dielectric film
JP2834355B2 (en) * 1991-11-25 1998-12-09 松下電器産業株式会社 Method of manufacturing ferroelectric thin film construct
JPH05251351A (en) * 1992-01-08 1993-09-28 Sharp Corp Formation method of ferroelectric thin film
US5185689A (en) * 1992-04-29 1993-02-09 Motorola Inc. Capacitor having a ruthenate electrode and method of formation
US5572052A (en) * 1992-07-24 1996-11-05 Mitsubishi Denki Kabushiki Kaisha Electronic device using zirconate titanate and barium titanate ferroelectrics in insulating layer
US5258093A (en) * 1992-12-21 1993-11-02 Motorola, Inc. Procss for fabricating a ferroelectric capacitor in a semiconductor device
US5471364A (en) * 1993-03-31 1995-11-28 Texas Instruments Incorporated Electrode interface for high-dielectric-constant materials
JPH0793969A (en) * 1993-09-22 1995-04-07 Olympus Optical Co Ltd Ferroelectric capacitance element
US5589284A (en) * 1994-08-01 1996-12-31 Texas Instruments Incorporated Electrodes comprising conductive perovskite-seed layers for perovskite dielectrics
US5719417A (en) * 1996-11-27 1998-02-17 Advanced Technology Materials, Inc. Ferroelectric integrated circuit structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495412B1 (en) 1998-09-11 2002-12-17 Fujitsu Limited Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
US6936876B2 (en) 2000-04-28 2005-08-30 Sharp Kabushiki Kaisha Semiconductor device having ferroelectric thin film and fabricating method therefor
KR100358147B1 (en) * 2000-12-30 2002-10-25 주식회사 하이닉스반도체 Method for forming ferroelectric capacitor
JP2006024748A (en) * 2004-07-08 2006-01-26 Fujitsu Ltd Semiconductor device with ferroelectric capacitor and its manufacturing method
JP2006041425A (en) * 2004-07-30 2006-02-09 Fujitsu Ltd Semiconductor device having ferroelectric capacitor and manufacturing method therefor
JP2010187003A (en) * 2010-03-08 2010-08-26 Seiko Epson Corp Precursor composition and method of manufacturing piezoelectric element

Also Published As

Publication number Publication date
US5913117A (en) 1999-06-15
JP3902807B2 (en) 2007-04-11
KR100360468B1 (en) 2003-01-24
KR960036049A (en) 1996-10-28
NL1002667C2 (en) 1998-09-21
NL1002667A1 (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP3902807B2 (en) Method for manufacturing ferroelectric capacitor
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
JP3113141B2 (en) Ferroelectric crystal thin film coated substrate, method of manufacturing the same, and ferroelectric thin film device using ferroelectric crystal thin film coated substrate
US5358889A (en) Formation of ruthenium oxide for integrated circuits
US6323057B1 (en) Method of producing a thin-film capacitor
JPH0855967A (en) Manufacture of ferroelectric thin film capacitor
JPH08340085A (en) Substrate coated with ferroelectric thin film, its manufacture, and capacitor-structure device
JPH10326755A (en) Method of forming preferred orientation-controlled platinum films using oxygen and element manufactured thereby
JPH08306231A (en) Substrate covered with thin film of ferroelectric substance, its manufacture, and nonvolatile memory constructed the substrate
US5751540A (en) Ferroelectric capacitor with rhodium electrodes
JPH08339715A (en) Ferroelectric thin film-covered substrate and its manufacture and capacitor structure element
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
TW200811891A (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
US7545625B2 (en) Electrode for thin film capacitor devices
JP2004079607A (en) Dielectric element and manufacturing method of dielectric element
JPH08213560A (en) Ferroelectric capacitor and its manufacture
JPH09129827A (en) Ferroelectric capacitor
JP4416230B2 (en) Manufacturing method of electronic device
JPH088403A (en) Substrate covered with ferroelectric crystal thin film ferroelectric thin film element including the same, and method of manufacturing the ferroelectric thin film element
JPH09321234A (en) Ferroelectric thin film device, manufacture thereof and ferroelectric memory device
JP3267278B2 (en) Method for manufacturing semiconductor device
JPH09501019A (en) Thin film capacitor on gallium arsenide substrate and method of manufacturing the same
JP2003023139A (en) Single c-axis pgo thin film electrode with superior smooth surface and uniformity and its forming method
JP2000007430A (en) Ferroelectric material and ferroelectric memory
JP2000031411A (en) Manufacture of ferroelectric thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees