JP4825373B2 - Ferroelectric thin film manufacturing method and ferroelectric memory manufacturing method using the same - Google Patents

Ferroelectric thin film manufacturing method and ferroelectric memory manufacturing method using the same Download PDF

Info

Publication number
JP4825373B2
JP4825373B2 JP2001246070A JP2001246070A JP4825373B2 JP 4825373 B2 JP4825373 B2 JP 4825373B2 JP 2001246070 A JP2001246070 A JP 2001246070A JP 2001246070 A JP2001246070 A JP 2001246070A JP 4825373 B2 JP4825373 B2 JP 4825373B2
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric
ferroelectric thin
ultrafine powder
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001246070A
Other languages
Japanese (ja)
Other versions
JP2003060168A (en
Inventor
敬和 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2001246070A priority Critical patent/JP4825373B2/en
Priority to US10/218,988 priority patent/US6740532B2/en
Publication of JP2003060168A publication Critical patent/JP2003060168A/en
Priority to US10/825,033 priority patent/US7195928B2/en
Application granted granted Critical
Publication of JP4825373B2 publication Critical patent/JP4825373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は強誘電体薄膜の形成方法および強誘電体メモリの製造方法に係り、特に強誘電体薄膜の結晶性の向上に関する。
【0002】
【従来の技術】
現在研究されている強誘電体メモリは大きく2つに分けられる。1つは、強誘電体キャパシタの反転電荷量を検出する方式で、強誘電体キャパシタと選択トランジスタとで構成される。
【0003】
もう1つは、強誘電体の自発分極による半導体の抵抗変化を検出する方式のメモリである。この方式の代表的なものが、MFSFETである。これはゲート絶縁膜に強誘電体を用いたMIS構造である。
【0004】
いずれの構造の場合も、強誘電体の膜質がメモリ特性に大きな影響を及ぼすものであることがわかっている。
【0005】
そこで強誘電体薄膜の結晶性を向上するためにいろいろな方法が提案されている。そのひとつにTiシード法と呼ばれるPZT薄膜の結晶化方法が提案されている。
【0006】
この方法は図7に示すように、プラチナPtなどからなる下部電極8表面にスパッタリング法などにより膜厚20nm程度のチタン超薄膜からなるシード層9Lを形成し、この上層にゾルゲル法によりPZT膜9Pを形成する。ここでは出発原料として、Pb(CH3COO)2・3H2O,Zr(t-OC4H9)4,Ti(i-OC3H7)4の混合溶液を用い、この混合溶液をスピンコートした後、150度で乾燥させ、ドライエアー雰囲気において400度で30分の仮焼成を行った。これを5回繰り返した後、O2の雰囲気中で、700℃1分程度の結晶化アニール工程を経て超薄膜9Lからの結晶成長を生ぜしめる。
【0007】
【発明が解決しようとする課題】
この方法では結晶化がはじまる場所が不定なので結晶粒径が制御できず、不均一な大きさの柱状結晶が形成されるため、特性にばらつきが大きく、特に微細化、高集積化に際しては充分な特性を得ることができないという問題があった。
【0008】
また、PZT膜にはならず、酸化チタン(TiO2)層あるいはチタン酸鉛(PbTiO3)層となる箇所もあり、良好な特性を得ることができないという問題があった。
【0009】
また結晶化アニールに際し温度を700℃程度の高温にしなければならなかったため、下地配線などの下地層に悪影響を与えるという問題もあった。
【0010】
本発明は前記実情に鑑みてなされたもので、均一で結晶性の良好な強誘電体薄膜を提供することを目的とする。
【0011】
【課題を解決するための手段】
そこで本発明では、強誘電体薄膜の形成に先立ち、下地を構成する基板表面に、Ti超微粒粉を含む溶液を塗布し、乾燥・焼成して、Ti超微粒粉を含むシード層を形成し、このシード層の上層に、強誘電体薄膜を形成し、このシード層を核として結晶化を行うようにしたことを特徴とする。
【0012】
かかる構成によれば、超微粒粉の存在により、この超微粒粉を核として良好に結晶化が進むため、均一で結晶性の良好な強誘電体薄膜を得ることが可能となる。
また、本発明は、上記強誘電体薄膜の形成方法において、前記シード層を形成する工程は、前記Ti超微粒粉を界面活性剤及びαテルビオールと混合してなる混合液を塗布する工程を含むことを特徴とする。
また、本発明は、上記強誘電体薄膜の形成方法において、前記Ti超微粒粉の粒径は0.5nmから200nmであることを特徴とする。
この超微粒粉は粒径0.5nmから200nm程度とするのが望ましく、さらに望ましくは粒径1nmから50nm程度とする。
また、本発明は、上記強誘電体薄膜の形成方法において、前記Ti超微粒粉の粒径は5nmであり、前記界面活性剤の濃度は0.1wt%〜10wt%であることを特徴とする。
【0013】
ところで、超微粒粉が核になるには、ある程度の原子の数が必要であり、原子1個では核にならず、また0.1nm程度の原子よりは充分に大きいサイズであることが望ましい。一方、核が大きすぎると、核の中心はTiのままで残ってしまう。したがってTiを残さないためには高いアニール温度が必要である。また、200nmを越えると平坦で均一な強誘電体薄膜の形成が不可能となる。また核が大きくなると、溶媒中に分散しにくくなるという不都合がある。
さらにまたこの濃度は、0.00001wt%(0.1wtppm)から1wt%程度とするのが望ましい。
【0014】
また望ましくは、下地を構成する基板表面に、シードとなるチタン超微粒粉を含むシード層を形成する工程と、前記シード層の上層に、PZT薄膜を形成する工程とを含むことを特徴とする。
【0015】
かかる構成によれば、直径5nm程度のチタン超微粒粉の存在により、このチタン超微粒粉を核として良好に結晶化が進むため、均一で結晶性の良好なPZT強誘電体薄膜を得ることが可能となる。
【0016】
望ましくは、前記シード層を形成する工程は、チタン超微粒粉を含む溶液を塗布する工程と、乾燥・焼成する工程とを含むことを特徴とする。
【0017】
かかる構成によれば、容易かつ均一にチタン超微粒粉を配置することが可能となる。
【0018】
望ましくは、前記PZT薄膜を形成する工程はスパッタリング工程を含むことを特徴とする。
【0019】
望ましくは、さらに結晶化のためのアニール工程を含むことを特徴とする。
【0020】
かかる構成によれば、450℃程度と従来よりも低温下での結晶成長が可能となるため、後続の電極形成あるいは絶縁膜の形成工程などにおける加熱工程で結晶化を行うことも可能であるが、結晶化のためのアニール工程を導入することにより、容易に結晶性の良好な強誘電体薄膜を形成することが可能となる。
【0021】
また、以下は、本発明の参考例である。 また、本発明の方法によれば、前記シード層を形成する工程は、下地を構成する基板表面に、強誘電体薄膜の構成元素の少なくとも1種を含む超微粒粉を含む強誘電体薄膜塗布液を塗布する工程と、焼成工程とを含むことを特徴とする。
【0022】
かかる構成によれば、超微粒粉を含む薄膜を形成しているため、この超微粒粉から良好に結晶化が進み、均一で信頼性の高い薄膜形成が可能となる。
【0023】
望ましくは、下地を構成する基板表面に、シードとなるチタン超微粒粉を含むPZT塗布液を塗布する工程と、焼成工程とを含むことを特徴とする。
【0024】
かかる構成によれば、強誘電体薄膜全体に均一に分散された、粒径5nm程度のチタン超微粒粉からなる、シードから結晶成長が始まる。従って、このチタン超微粒粉を核として良好に結晶化が進むため、均一で結晶性の良好なPZT強誘電体薄膜を得ることが可能となる。
【0025】
望ましくは、さらに結晶化のためのアニール工程を含むことを特徴とする。
【0026】
かかる構成によれば、450℃程度と従来よりも低温下での結晶成長が可能となるため、後続の電極形成あるいは絶縁膜の形成工程などにおける加熱工程で結晶化を行うことも可能であるが、結晶化のためのアニール工程を導入することにより、容易に結晶性の良好な強誘電体薄膜を形成することが可能となる。
【0027】
さらにまた、本発明では、MFMIS構造のFETからなる強誘電体メモリの製造方法において、強誘電体薄膜の形成に先立ち、フローティングゲート表面に、Ti超微粒粉および前記強誘電体薄膜の構成元素を含む溶液を塗布し、乾燥・焼成して、前記Ti超微粒粉を含むシード層を形成しておくようにし、この超微粒粉を核として結晶成長を行うようにしたことを特徴とする。
また、本発明は、上記強誘電体メモリの製造方法において、前記シード層を形成する工程は、前記Ti超微粒粉を界面活性剤及びαテルピオネールと混合してなる混合液を塗布する工程を含むことを特徴とする。
【0028】
かかる構成によれば、直径5nm程度の超微粒粉の存在により、この超微粒粉を核として良好に結晶化が進むため、均一で結晶性の良好な強誘電体薄膜を得ることが可能となり、信頼性の高い強誘電体メモリの形成が可能となる。
【0029】
また、以下は、本発明の参考例である。
本発明の参考例では、MFMIS構造のFETからなる強誘電体メモリの製造方法において、前記強誘電体膜の形成工程が、下地を構成する基板表面に、強誘電体薄膜の構成元素の少なくとも1種を含む超微粒粉を含む強誘電体薄膜塗布液を塗布し、強誘電体薄膜を形成し、これを結晶化するようにしている。
【0030】
かかる構成によれば、強誘電体薄膜全体に均一に分散されたシードから結晶成長が始まるため、均一な強誘電体薄膜を得ることができ、微細化に際しても信頼性の高い強誘電体メモリを形成することが可能となる。
【0031】
本発明の参考例によれば、スイッチングトランジスタと強誘電体キャパシタとからなる強誘電体メモリの製造方法であって、前記強誘電体キャパシタの強誘電体薄膜を、第1の電極表面に、強誘電体薄膜の構成元素の少なくとも1種を含む超微粒粉を含む強誘電体薄膜塗布液を塗布し、これを結晶化することによって強誘電体薄膜を形成することを特徴とする。
【0032】
かかる構成によれば、強誘電体薄膜全体に均一に分散されたシードから結晶成長が始まるため、均一な強誘電体薄膜を得ることができ、微細化に際しても信頼性の高い強誘電体メモリを形成することが可能となる。
【0033】
本発明の参考例によれば、スイッチングトランジスタと強誘電体キャパシタとからなる強誘電体メモリの製造方法であって、前記強誘電体キャパシタの強誘電体薄膜を、第1の電極表面に、強誘電体薄膜の構成元素の少なくとも1種を含む超微粒粉を含む強シード層を形成し、このシード層の上層に、強誘電体薄膜を形成し、これを結晶化することによって粒径のそろった結晶からなる強誘電体薄膜を形成することを特徴とする。
【0034】
かかる構成によれば、直径5nm程度の超微粒粉の存在により、この超微粒粉を核として良好に結晶化が進むため、均一で結晶性の良好な強誘電体薄膜を得ることが可能となり、信頼性の高い強誘電体メモリの形成が可能となる。
【0035】
【発明の実施の形態】
本発明に係る強誘電体メモリおよびその製造方法の一実施形態について図面を参照しつつ詳細に説明する。
実施形態1
次に、本発明の第1の実施形態として、PZTを誘電体膜として用いた強誘電体キャパシタを用いた強誘電体メモリについて説明する。図1に、この強誘電体メモリの完成図、図2(a)乃至(e)にその製造工程図を示す。この強誘電体メモリは、シリコン基板1内に形成されたスイッチングトランジスタとしてのMOSFETのソース・ドレイン領域2、3の一方とプラグ7を介して下部電極8a、8bが接続するように、基板表面を覆う絶縁膜6上に強誘電体キャパシタを形成してなる強誘電体メモリ(FRAM)に関するもので、この強誘電体キャパシタの強誘電体薄膜9の結晶性を均一にしたことを特徴とするものである。ここで5はゲート絶縁膜4を介して基板表面に形成されたゲート電極である。強誘電体薄膜9は下部電極表面にチタン超微粒粉を含むシード層を形成しておき、このチタン超微粒粉から結晶成長を生ぜしめるようにして形成された、結晶粒径の均一な結晶からなることを特徴とする。
【0036】
すなわち図1に示すように、高濃度にドープされた多結晶シリコン層からなるプラグ7とイリジウム8aおよび酸化イリジウム8bとの2層膜からなる下部電極8と、下部電極8上に、チタン超微粒粉からなるシード層Sを核とする結晶成長により、結晶性の均一な強誘電体薄膜9(図3参照)と、さらにその上層に酸化イリジウムとイリジウムとの2層膜からなる上部電極10とを形成したことを特徴とする。
【0037】
次に、この強誘電体メモリの製造工程について説明する。
まず、LOCOS法で形成された素子分離絶縁膜1Sで形成された素子領域内にMOSFET(図示せず)の形成されたシリコン基板1の表面を熱酸化し、膜厚600nm程度の酸化シリコン層からなる絶縁膜6を形成した後、この絶縁膜6にコンタクトホールHを形成する。そして、図2(a)に示すように、このコンタクトホール内に高濃度にドープされた多結晶シリコン層を埋め込み、プラグ7を形成した後、基板表面全体にスパッタリング法により膜厚200nm程度のイリジウム層8aを形成し、さらにこの表面を酸化し酸化イリジウム層8bとする。
【0038】
続いてこれをフォトリソグラフィにパターニングし、下部電極8を形成する。
【0039】
こののち、図2(b)に示すように、粒径5nm程度のTi超微粒粉を0.1wt%乃至10wt%の界面活性剤およびαテルピオネールと混合して混合液を塗布する。このようにして表面にTi超微粒粉Sを有するシード層が形成される。
【0040】
この後、ゾルゲル法によって、強誘電体膜9を形成するためのPZT膜9Pを形成する。出発原料として、Pb(CH3COO)2・3H2O,Zr(t-OC4H9)4,Ti(i-OC3H7)4の混合溶液を用いた。この混合溶液をスピンコートした後、150℃で乾燥させ、ドライエアー雰囲気において400℃で30分の仮焼成を行った。これを5回繰り返した。
【0041】
この後、図2(d)に示すように、O2の雰囲気中で、450℃1分の熱処理を施した。
このようにして、図2(e)に示すように、250nmの強誘電体膜10を形成した。なお、ここでは、PbZrxTi1-xO3において、xを0.52として(以下PZT(52/48)と表す)、PZT膜を形成している。
【0042】
さらに、強誘電体膜9の上に、スパッタリングにより酸化イリジウムとイリジウムとの積層膜を形成する。この酸化イリジウム層とイリジウム層との積層膜を、上部電極10とする。ここでは、イリジウム層と酸化イリジウム層とをあわせて200nmの厚さとなるように形成した。このようにして、強誘電体キャパシタを得る。
【0043】
かかる構成によれば、超微粒粉の存在により、図3に説明図を示すようにこの超微粒粉を核として良好に結晶化が進むため、均一で結晶性の良好な強誘電体薄膜を得ることが可能となる。
【0044】
なおこの超微粒粉は粒径0.5nmから200nm程度とするのが望ましく、さらに望ましくは粒径1nmから50nm程度とする。
ところで、超微粒粉が核になるには、ある程度の原子の数が必要であり、原子1個では核にならず、また0.1nm程度の原子よりは充分に大きいサイズであることが望ましい。一方、核が大きすぎると、核の中心はTiのままで残ってしまう。したがってTiを残さないためには高いアニール温度が必要である。また、200nmを越えると平坦で均一な強誘電体薄膜の形成が不可能となる。また核が大きくなると、溶媒中に分散しにくくなるという不都合がある。
【0045】
さらにまたこの濃度は、0.00001wt%(0.1wtppm)から1wt%程度とするのが望ましい。このシード層の形成はTi超微粒粉の周囲を界面活性剤で被覆し、これに、αテルピオネール等の有機溶剤を混合したものを用いたが、有機溶剤としてはこのほかキシレン、トルエン、2メトキシエタノール、ブタノール等を用いることも可能である。
【0046】
また望ましくは、シード層を形成するに際し、チタン超微粒粉を含む溶液を塗布し、こののち、乾燥・焼成するようにしている。
【0047】
かかる構成によれば、容易かつ均一にチタン超微粒粉を配置することが可能となる。
【0048】
また、前記PZT薄膜を形成する工程はゾルゲル法の他スパッタリング法によってよい。
【0049】
また望ましくは、さらに結晶化のためのアニール工程を含むことを特徴とする。
【0050】
かかる構成によれば、450℃程度と従来よりも低温下での結晶成長が可能となるため、後続の電極形成あるいは絶縁膜の形成工程などにおける加熱工程で結晶化を行うことも可能であるが、結晶化のためのアニール工程を導入することにより、容易に結晶性の良好な強誘電体薄膜を形成することが可能となる。
【0051】
本発明の第1の実施形態として、PZTを強誘電体薄膜を用いた強誘電体メモリについて説明したが、このほかSTNを誘電体膜として用いた強誘電体メモリなど他の材料を用いた場合にも適用可能であることはいうまでもない。
【0052】
参考例
次に、参考例としてのMFMIS構造の強誘電体メモリの製造工程について説明する。図4は本発明の方法で形成された強誘電体メモリを示す図、図5(a)乃至(e)は製造工程図である。
【0053】
この例では、MFMIS構造の強誘電体メモリの強誘電体薄膜16の形成をTi超微粒粉を含むゾルゲル液を塗布し、焼成した後、結晶化アニールを行うことにより、均一で結晶性の高い強誘電体薄膜16を形成したことを特徴とするものである。
【0054】
すなわち、シリコン基板1表面に形成されたソースおよびドレイン領域2,3と、これらの間にゲート絶縁膜4を介して形成されたフローティングゲート15と、フローティングゲート15上に形成された強誘電体薄膜16とこの強誘電体薄膜16上に形成されたコントロールゲート17とから構成されている。
【0055】
製造に際しては、まず、図5(a)に示すようにn型シリコン基板1の表面を熱酸化し、膜厚20nm程度の酸化シリコン層4を形成した後、この酸化シリコン層4上にイリジウムをターゲットとして用いてスパッタリング法により、フローティングゲート15となるイリジウム層を形成する。次に、O2の雰囲気中で800度(摂氏、以下同じ)1分の熱処理を行い、イリジウム層の表面に酸化イリジウム層を形成する。
【0056】
次に、このフローティングゲート15の上に、図5(b)に示すようにゾルゲル法によって、強誘電体膜16としてPZT膜を形成する。出発原料として、粒径5nmのチタン超微粒子を0.5wt%と界面活性剤1wt%と、Pb(CH3COO)2・3H2O,Zr(t-OC4H9)4,Ti(i-OC3H7)4の混合溶液を用いた。この混合溶液をスピンコートした後、150度で乾燥させ、ドライエアー雰囲気において400度で30分の仮焼成を行った。これを5回繰り返した後、図5(c)に示すようにO2の雰囲気中で、500度1分の熱処理を施した。このようにして、250nmの強誘電体膜16を形成した。なお、ここでは、PbZrxTi1-xO3において、xを0.52として(以下PZT(52/48)と表す)、PZT膜を形成している。
【0057】
ここでは強誘電体薄膜全体に均一に分散されたシードから結晶成長が始まるため、均一な強誘電体薄膜を得ることができ、微細化に際しても信頼性の高い強誘電体薄膜を形成することが可能となる。
【0058】
さらに、強誘電体膜16の上に、スパッタリングによりイリジウム層および酸化イリジウム層を形成しコントロールゲート17を形成する。ここでは、イリジウム層と酸化イリジウム層とをあわせて200nmの厚さとなるように形成した。
【0059】
そしてこの上層にレジストパターンRを形成し、図5(d)に示すようにこれをマスクとして各層をパターニングし、ソースドレインとなる領域の表面を露呈せしめる。
【0060】
こののち、このゲート電極パターンをマスクとして、ホウ素(B)イオンを注入することにより、図5(e)に示すようにp型拡散層からなるソース・ドレイン領域2,3を形成する。
【0061】
さらに、層間絶縁膜、配線パターンを形成し、強誘電体メモリが完成する。
【0062】
かかる構成によれば、フローティングゲートとコントロールゲートとの間に形成される強誘電体膜が、均一で結晶性の良好な膜となっているため、微細化に際しても、特性のバラツキがなく信頼性の高いものとなっている。
【0063】
なお、強誘電体膜としてPZTを用いたが、STN,SBTなどの強誘電体あるいはBSTなどの高誘電率誘電体膜などにも適用可能である。また、超微粒粉としても強誘電体膜の構成元素を含むものであればよい。
【0064】
【発明の効果】
以上説明してきたように、強誘電体薄膜の形成に先立ち、下地を構成する基板表面に、前記強誘電体薄膜の構成元素を含む超微粒粉を含むシード層を形成し、このシード層の上層に、強誘電体薄膜を形成し、このシード層を核として結晶化を行うようにしているため、超微粒粉の存在により、この超微粒粉を核として良好に結晶化が進むため、均一で結晶性の良好な強誘電体薄膜を得ることが可能となる。
【0065】
また、本発明の方法では、下地を構成する基板表面に、強誘電体薄膜の構成元素の少なくとも1種を含む超微粒粉を含む強誘電体薄膜塗布液を塗布し、超微粒粉を含む薄膜を形成しているため、薄膜全体に分散する超微粒粉から良好に結晶化が進み、均一で信頼性の高い薄膜形成が可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の方法で形成した絶縁膜を用いたFRAMを示す図
【図2】図1のFRAMの製造工程を示す図
【図3】本発明の第1の実施形態の方法を説明する原理説明図
【図4】本発明の第2の実施形態の方法で形成したFRAMを示す説明図
【図5】図4のFRAMの製造工程を示す図
【図6】本発明の第2の実施形態の方法を説明する原理説明図
【図7】従来例の方法を説明する原理説明図
【符号の説明】
h 空孔
1 シリコン基板
1S 素子分離絶縁膜
2 ソース領域
3 ドレイン領域
4 ゲート絶縁膜
5 ゲート電極
6 (層間)絶縁膜
7 プラグ
8 下部電極
S シード層
9 強誘電体膜
10 上部電極
15 フローティングゲート
16 強誘電体膜
17 コントロールゲート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a ferroelectric thin film and a method for manufacturing a ferroelectric memory, and more particularly to improvement in crystallinity of a ferroelectric thin film.
[0002]
[Prior art]
Ferroelectric memories currently being studied are roughly divided into two. One is a method of detecting the inversion charge amount of a ferroelectric capacitor, and is composed of a ferroelectric capacitor and a selection transistor.
[0003]
The other is a memory that detects a change in resistance of a semiconductor due to spontaneous polarization of a ferroelectric. A typical example of this method is an MFSFET. This is a MIS structure using a ferroelectric as a gate insulating film.
[0004]
In any case, it has been found that the film quality of the ferroelectric material has a great influence on the memory characteristics.
[0005]
Therefore, various methods have been proposed to improve the crystallinity of the ferroelectric thin film. As one of them, a crystallization method of a PZT thin film called a Ti seed method has been proposed.
[0006]
In this method, as shown in FIG. 7, a seed layer 9L made of an ultra-thin titanium film having a film thickness of about 20 nm is formed on the surface of the lower electrode 8 made of platinum Pt or the like by sputtering or the like, and a PZT film 9P is formed thereon by a sol-gel method. Form. Here, a mixed solution of Pb (CH 3 COO) 2 3H 2 O, Zr (t-OC 4 H 9 ) 4 , Ti (i-OC 3 H 7 ) 4 is used as a starting material, and this mixed solution is spun. After coating, it was dried at 150 ° C. and pre-baked at 400 ° C. for 30 minutes in a dry air atmosphere. After repeating this five times, crystal growth from the ultrathin film 9L is caused through a crystallization annealing step at 700 ° C. for about 1 minute in an O 2 atmosphere.
[0007]
[Problems to be solved by the invention]
Since the location where crystallization begins is indefinite, the crystal grain size cannot be controlled, and columnar crystals with a non-uniform size are formed, resulting in large variations in characteristics, particularly sufficient for miniaturization and high integration. There was a problem that characteristics could not be obtained.
[0008]
In addition, there is a portion that does not become a PZT film but becomes a titanium oxide (TiO 2 ) layer or a lead titanate (PbTiO 3 ) layer, and there is a problem that good characteristics cannot be obtained.
[0009]
Moreover, since the temperature had to be raised to about 700 ° C. during the crystallization annealing, there was a problem of adversely affecting the underlying layer such as the underlying wiring.
[0010]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a ferroelectric thin film having uniform crystallinity.
[0011]
[Means for Solving the Problems]
Therefore, in the present invention, prior to the formation of the ferroelectric thin film, a solution containing Ti ultrafine powder is applied to the substrate surface constituting the base, dried and fired to form a seed layer containing Ti ultrafine powder. A ferroelectric thin film is formed on the seed layer, and crystallization is performed using the seed layer as a nucleus.
[0012]
According to such a configuration, the presence of the ultrafine powder allows favorable crystallization to proceed with the ultrafine powder as a nucleus, so that it is possible to obtain a ferroelectric thin film with uniform and good crystallinity.
In the method of forming a ferroelectric thin film according to the present invention, the step of forming the seed layer includes a step of applying a mixed liquid obtained by mixing the Ti ultrafine powder with a surfactant and α-terviol. It is characterized by that.
The present invention is also characterized in that, in the method for forming a ferroelectric thin film, the particle size of the Ti ultrafine powder is from 0.5 nm to 200 nm.
The ultrafine powder preferably has a particle size of about 0.5 nm to 200 nm, more preferably about 1 nm to 50 nm.
In the method for forming a ferroelectric thin film according to the present invention, the particle size of the Ti ultrafine powder is 5 nm, and the concentration of the surfactant is 0.1 wt% to 10 wt%. .
[0013]
By the way, in order for the ultrafine powder to become a nucleus, a certain number of atoms are required, and it is desirable that one atom does not become a nucleus and has a size sufficiently larger than an atom of about 0.1 nm. On the other hand, if the nucleus is too large, the center of the nucleus remains Ti. Therefore, a high annealing temperature is necessary in order not to leave Ti. On the other hand, if it exceeds 200 nm, it becomes impossible to form a flat and uniform ferroelectric thin film. Further, when the nucleus becomes large, there is a disadvantage that it becomes difficult to disperse in the solvent.
Furthermore, it is desirable that this concentration be about 0.00001 wt% (0.1 wt ppm) to about 1 wt%.
[0014]
Desirably, the method includes a step of forming a seed layer containing a titanium ultrafine powder serving as a seed on a substrate surface constituting a base, and a step of forming a PZT thin film on the seed layer. .
[0015]
According to such a configuration, because of the presence of titanium ultrafine powder having a diameter of about 5 nm, crystallization proceeds favorably with the titanium ultrafine powder as a nucleus, and thus a PZT ferroelectric thin film having uniform and good crystallinity can be obtained. It becomes possible.
[0016]
Preferably, the step of forming the seed layer includes a step of applying a solution containing ultrafine titanium powder and a step of drying and baking.
[0017]
According to such a configuration, it becomes possible to arrange the titanium ultrafine powder easily and uniformly.
[0018]
Preferably, the step of forming the PZT thin film includes a sputtering step.
[0019]
Preferably, the method further includes an annealing step for crystallization.
[0020]
According to such a configuration, crystal growth is possible at a temperature of about 450 ° C. at a temperature lower than that of the prior art, so that it is possible to perform crystallization in a heating step in the subsequent electrode formation or insulating film formation step. By introducing an annealing process for crystallization, a ferroelectric thin film having good crystallinity can be easily formed.
[0021]
The following is a reference example of the present invention. According to the method of the present invention, the step of forming the seed layer comprises applying a ferroelectric thin film containing ultrafine powder containing at least one of the constituent elements of the ferroelectric thin film on the surface of the substrate constituting the base. It includes a step of applying a liquid and a baking step.
[0022]
According to such a configuration, since a thin film containing ultrafine powder is formed, crystallization proceeds well from the ultrafine powder, and a uniform and highly reliable thin film can be formed.
[0023]
Desirably, the method includes a step of applying a PZT coating solution containing ultrafine titanium powder serving as a seed to the surface of the substrate constituting the base, and a baking step.
[0024]
According to such a configuration, crystal growth starts from a seed made of ultrafine titanium powder having a particle diameter of about 5 nm and uniformly dispersed throughout the ferroelectric thin film. Accordingly, since the crystallization proceeds well with the titanium ultrafine powder as a nucleus, it is possible to obtain a PZT ferroelectric thin film having uniform and good crystallinity.
[0025]
Preferably, the method further includes an annealing step for crystallization.
[0026]
According to such a configuration, crystal growth is possible at a temperature of about 450 ° C. at a temperature lower than that of the prior art, so that it is possible to perform crystallization in a heating step in the subsequent electrode formation or insulating film formation step. By introducing an annealing process for crystallization, a ferroelectric thin film having good crystallinity can be easily formed.
[0027]
Furthermore, according to the present invention, in a method for manufacturing a ferroelectric memory composed of a FET having an MFMIS structure, prior to the formation of the ferroelectric thin film, the Ti ultrafine powder and the constituent elements of the ferroelectric thin film are formed on the floating gate surface. A solution containing the mixture is applied, dried and baked to form a seed layer containing the Ti ultrafine powder, and crystal growth is performed using the ultrafine powder as a nucleus.
In the method for manufacturing a ferroelectric memory according to the present invention, the step of forming the seed layer includes a step of applying a mixed solution obtained by mixing the Ti ultrafine powder with a surfactant and α-terpioneer. it shall be the feature of the containing.
[0028]
According to such a configuration, the presence of the ultrafine powder having a diameter of about 5 nm allows favorable crystallization to proceed with the ultrafine powder as a nucleus, so that it is possible to obtain a ferroelectric thin film with uniform and good crystallinity. A highly reliable ferroelectric memory can be formed.
[0029]
The following is a reference example of the present invention.
In this onset Ming reference example, in the method of manufacturing a ferroelectric memory comprising a FET of MFMIS structure, the step of forming the ferroelectric film, the substrate surface constituting the base, strong of the constituent elements of the dielectric thin film A ferroelectric thin film coating solution containing at least one kind of ultrafine powder is applied to form a ferroelectric thin film, which is crystallized.
[0030]
According to such a configuration, since crystal growth starts from the seed uniformly dispersed throughout the ferroelectric thin film, a uniform ferroelectric thin film can be obtained, and a highly reliable ferroelectric memory can be obtained even in miniaturization. It becomes possible to form.
[0031]
According to a reference example of the present invention , there is provided a method for manufacturing a ferroelectric memory including a switching transistor and a ferroelectric capacitor, wherein the ferroelectric thin film of the ferroelectric capacitor is formed on the first electrode surface. A ferroelectric thin film is formed by applying a ferroelectric thin film coating liquid containing ultrafine powder containing at least one kind of constituent elements of the dielectric thin film and crystallizing the same.
[0032]
According to such a configuration, since crystal growth starts from the seed uniformly dispersed throughout the ferroelectric thin film, a uniform ferroelectric thin film can be obtained, and a highly reliable ferroelectric memory can be obtained even in miniaturization. It becomes possible to form.
[0033]
According to a reference example of the present invention, there is provided a method for manufacturing a ferroelectric memory including a switching transistor and a ferroelectric capacitor, wherein the ferroelectric thin film of the ferroelectric capacitor is formed on the first electrode surface. A strong seed layer containing ultrafine powder containing at least one of the constituent elements of the dielectric thin film is formed, and a ferroelectric thin film is formed on the seed layer and crystallized to form a uniform grain size. A ferroelectric thin film made of a crystal is formed.
[0034]
According to such a configuration, the presence of the ultrafine powder having a diameter of about 5 nm allows favorable crystallization to proceed with the ultrafine powder as a nucleus, so that it is possible to obtain a ferroelectric thin film with uniform and good crystallinity. A highly reliable ferroelectric memory can be formed.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a ferroelectric memory and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings.
Embodiment 1
Next, as a first embodiment of the present invention, a ferroelectric memory using a ferroelectric capacitor using PZT as a dielectric film will be described. FIG. 1 shows a completed diagram of this ferroelectric memory, and FIGS. 2A to 2E show manufacturing process diagrams. This ferroelectric memory has a substrate surface that is connected to one of source / drain regions 2 and 3 of a MOSFET as a switching transistor formed in a silicon substrate 1 and a lower electrode 8a and 8b via a plug 7. The present invention relates to a ferroelectric memory (FRAM) in which a ferroelectric capacitor is formed on an insulating film 6 to be covered, wherein the crystallinity of the ferroelectric thin film 9 of the ferroelectric capacitor is made uniform. It is. Here, 5 is a gate electrode formed on the substrate surface via the gate insulating film 4. The ferroelectric thin film 9 is formed from a crystal having a uniform crystal grain size formed by forming a seed layer containing titanium ultrafine powder on the surface of the lower electrode and generating crystal growth from the titanium ultrafine powder. It is characterized by becoming.
[0036]
That is, as shown in FIG. 1, a plug 7 made of a highly doped polycrystalline silicon layer, a lower electrode 8 made of a two-layer film of iridium 8a and iridium oxide 8b, and titanium ultrafine particles on the lower electrode 8. By crystal growth with a seed layer S made of powder as a nucleus, a uniform crystalline ferroelectric thin film 9 (see FIG. 3), and an upper electrode 10 made of a two-layer film of iridium oxide and iridium on the upper layer, Is formed.
[0037]
Next, the manufacturing process of this ferroelectric memory will be described.
First, the surface of the silicon substrate 1 on which the MOSFET (not shown) is formed in the element region formed by the element isolation insulating film 1S formed by the LOCOS method is thermally oxidized to start from the silicon oxide layer having a thickness of about 600 nm. After forming the insulating film 6, a contact hole H is formed in the insulating film 6. Then, as shown in FIG. 2 (a), a heavily doped polycrystalline silicon layer is buried in the contact hole to form a plug 7, and then the entire surface of the substrate is iridium having a film thickness of about 200 nm by sputtering. A layer 8a is formed, and the surface is further oxidized to form an iridium oxide layer 8b.
[0038]
Subsequently, this is patterned by photolithography to form the lower electrode 8.
[0039]
Thereafter, as shown in FIG. 2 (b), Ti ultrafine powder having a particle size of about 5 nm is mixed with 0.1 wt% to 10 wt% of a surfactant and α-terpione, and a mixed solution is applied. In this way, a seed layer having the Ti ultrafine powder S is formed on the surface.
[0040]
Thereafter, a PZT film 9P for forming the ferroelectric film 9 is formed by a sol-gel method. As a starting material, a mixed solution of Pb (CH 3 COO) 2 .3H 2 O, Zr (t-OC 4 H 9 ) 4 and Ti (i-OC 3 H 7 ) 4 was used. After spin-coating this mixed solution, it was dried at 150 ° C. and pre-baked at 400 ° C. for 30 minutes in a dry air atmosphere. This was repeated 5 times.
[0041]
Thereafter, as shown in FIG. 2D, heat treatment was performed at 450 ° C. for 1 minute in an O 2 atmosphere.
In this way, a 250 nm ferroelectric film 10 was formed as shown in FIG. Here, in PbZr x Ti 1-x O 3 , x is set to 0.52 (hereinafter referred to as PZT (52/48)), and a PZT film is formed.
[0042]
Further, a laminated film of iridium oxide and iridium is formed on the ferroelectric film 9 by sputtering. The laminated film of the iridium oxide layer and the iridium layer is used as the upper electrode 10. Here, the iridium layer and the iridium oxide layer were combined to form a thickness of 200 nm. In this way, a ferroelectric capacitor is obtained.
[0043]
According to such a configuration, because of the presence of the ultrafine powder, crystallization proceeds favorably using the ultrafine powder as a nucleus as shown in FIG. 3, so that a ferroelectric thin film having a uniform and good crystallinity is obtained. It becomes possible.
[0044]
The ultrafine powder preferably has a particle size of about 0.5 nm to 200 nm, more preferably about 1 nm to 50 nm.
By the way, in order for the ultrafine powder to become a nucleus, a certain number of atoms are required, and it is desirable that one atom does not become a nucleus and has a size sufficiently larger than an atom of about 0.1 nm. On the other hand, if the nucleus is too large, the center of the nucleus remains Ti. Therefore, a high annealing temperature is necessary in order not to leave Ti. On the other hand, if it exceeds 200 nm, it becomes impossible to form a flat and uniform ferroelectric thin film. Further, when the nucleus becomes large, there is a disadvantage that it becomes difficult to disperse in the solvent.
[0045]
Furthermore, it is desirable that this concentration be about 0.00001 wt% (0.1 wt ppm) to about 1 wt%. The seed layer was formed by coating the periphery of the Ti ultrafine powder with a surfactant and mixing it with an organic solvent such as α-terpioneel. Other organic solvents include xylene, toluene, It is also possible to use methoxyethanol, butanol or the like.
[0046]
Desirably, when the seed layer is formed, a solution containing ultrafine titanium powder is applied, and then dried and fired.
[0047]
According to such a configuration, it becomes possible to arrange the titanium ultrafine powder easily and uniformly.
[0048]
The step of forming the PZT thin film may be performed by a sputtering method in addition to the sol-gel method.
[0049]
Preferably, it further includes an annealing step for crystallization.
[0050]
According to such a configuration, crystal growth is possible at a temperature of about 450 ° C. at a temperature lower than that of the prior art, so that it is possible to perform crystallization in a heating step in the subsequent electrode formation or insulating film formation step. By introducing an annealing process for crystallization, a ferroelectric thin film having good crystallinity can be easily formed.
[0051]
As the first embodiment of the present invention, the ferroelectric memory using the ferroelectric thin film as PZT has been described. However, in the case where other materials such as a ferroelectric memory using STN as the dielectric film are used. Needless to say, this is also applicable.
[0052]
Reference Example Next, a manufacturing process of a MFMIS structure ferroelectric memory as a reference example will be described. FIG. 4 is a diagram showing a ferroelectric memory formed by the method of the present invention, and FIGS. 5A to 5E are manufacturing process diagrams.
[0053]
In this example, the ferroelectric thin film 16 of the ferroelectric memory having the MFMIS structure is formed by applying a sol-gel solution containing Ti ultrafine powder, firing, and then performing crystallization annealing, thereby achieving uniform and high crystallinity. The ferroelectric thin film 16 is formed.
[0054]
That is, source and drain regions 2 and 3 formed on the surface of the silicon substrate 1, a floating gate 15 formed therebetween through a gate insulating film 4, and a ferroelectric thin film formed on the floating gate 15 16 and a control gate 17 formed on the ferroelectric thin film 16.
[0055]
In manufacturing, first, as shown in FIG. 5A, the surface of the n-type silicon substrate 1 is thermally oxidized to form a silicon oxide layer 4 having a thickness of about 20 nm, and then iridium is deposited on the silicon oxide layer 4. An iridium layer to be the floating gate 15 is formed by sputtering using the target. Next, heat treatment is performed in an O 2 atmosphere at 800 ° C. (the same applies hereinafter) for 1 minute to form an iridium oxide layer on the surface of the iridium layer.
[0056]
Next, a PZT film is formed as the ferroelectric film 16 on the floating gate 15 by a sol-gel method as shown in FIG. As starting materials, 0.5 wt% of ultrafine titanium particles with a particle size of 5 nm, 1 wt% of surfactant, Pb (CH 3 COO) 2 .3H 2 O, Zr (t-OC 4 H 9 ) 4 , Ti (i A mixed solution of —OC 3 H 7 ) 4 was used. After spin-coating this mixed solution, it was dried at 150 degrees and pre-baked at 400 degrees for 30 minutes in a dry air atmosphere. After repeating this five times, as shown in FIG. 5C, heat treatment was performed at 500 ° C. for 1 minute in an O 2 atmosphere. In this way, a 250 nm ferroelectric film 16 was formed. Here, in PbZr x Ti 1-x O 3 , x is set to 0.52 (hereinafter referred to as PZT (52/48)), and a PZT film is formed.
[0057]
Here, crystal growth starts from the seed uniformly dispersed throughout the ferroelectric thin film, so that a uniform ferroelectric thin film can be obtained, and a highly reliable ferroelectric thin film can be formed even when miniaturization is performed. It becomes possible.
[0058]
Further, an iridium layer and an iridium oxide layer are formed on the ferroelectric film 16 by sputtering to form a control gate 17. Here, the iridium layer and the iridium oxide layer were combined to form a thickness of 200 nm.
[0059]
Then, a resist pattern R is formed on this upper layer, and as shown in FIG. 5D, each layer is patterned using this as a mask to expose the surface of the region to be the source / drain.
[0060]
Thereafter, boron (B) ions are implanted using the gate electrode pattern as a mask, thereby forming source / drain regions 2 and 3 made of a p-type diffusion layer as shown in FIG.
[0061]
Further, an interlayer insulating film and a wiring pattern are formed, and a ferroelectric memory is completed.
[0062]
According to such a configuration, the ferroelectric film formed between the floating gate and the control gate is a film having a uniform and good crystallinity. It has become a high thing.
[0063]
Although PZT is used as the ferroelectric film, it can also be applied to a ferroelectric such as STN or SBT or a high dielectric constant dielectric film such as BST. Further, the ultrafine powder may be any powder containing a constituent element of the ferroelectric film.
[0064]
【The invention's effect】
As described above, prior to the formation of the ferroelectric thin film, a seed layer containing ultrafine powder containing the constituent elements of the ferroelectric thin film is formed on the surface of the substrate constituting the base, and an upper layer of the seed layer. In addition, since a ferroelectric thin film is formed and crystallization is performed using this seed layer as a nucleus, crystallization proceeds favorably using this ultrafine powder as a nucleus due to the presence of the ultrafine powder. A ferroelectric thin film having good crystallinity can be obtained.
[0065]
In the method of the present invention, a ferroelectric thin film coating liquid containing ultrafine powder containing at least one kind of constituent element of the ferroelectric thin film is applied to the surface of the substrate constituting the base, and the thin film containing ultrafine powder Therefore, the crystallization proceeds well from the ultrafine powder dispersed throughout the thin film, and a uniform and highly reliable thin film can be formed.
[Brief description of the drawings]
1 is a diagram showing an FRAM using an insulating film formed by the method of the first embodiment of the present invention; FIG. 2 is a diagram showing a manufacturing process of the FRAM of FIG. 1; FIG. 4 is a diagram illustrating the principle of the method according to the embodiment. FIG. 4 is a diagram illustrating the FRAM formed by the method according to the second embodiment of the present invention. FIG. 5 is a diagram illustrating the manufacturing process of the FRAM in FIG. FIG. 7 is a principle explanatory diagram for explaining the method of the second embodiment of the present invention. FIG. 7 is a principle explanatory diagram for explaining a conventional method.
h hole 1 silicon substrate 1S element isolation insulating film 2 source region 3 drain region 4 gate insulating film 5 gate electrode 6 (interlayer) insulating film 7 plug 8 lower electrode S seed layer 9 ferroelectric film 10 upper electrode 15 floating gate 16 Ferroelectric film 17 Control gate

Claims (6)

強誘電体薄膜の形成に先立ち、下地を構成する基板表面に、Ti超微粒粉を含む溶液を塗布し、乾燥・焼成して、前記Ti超微粒粉を含むシード層を形成する工程と、
前記シード層の上層に、前記強誘電体薄膜を形成する工程とを含むことを特徴とする強誘電体薄膜の形成方法。
Prior to the formation of the ferroelectric thin film, a step of applying a solution containing Ti ultrafine powder to the substrate surface constituting the base, drying and firing, and forming a seed layer containing the Ti ultrafine powder ;
Forming a ferroelectric thin film on the seed layer. The method for forming a ferroelectric thin film.
前記シード層を形成する工程は、前記Ti超微粒粉を界面活性剤及びαテルビオールと混合してなる混合液を塗布する工程を含むことを特徴とする請求項1に記載の強誘電体薄膜の形成方法。  2. The ferroelectric thin film according to claim 1, wherein the step of forming the seed layer includes a step of applying a mixed solution obtained by mixing the Ti ultrafine powder with a surfactant and α-terviol. Forming method. 前記Ti超微粒粉の粒径は0.5nmから200nmであることを特徴とする請求項2に記載の強誘電体薄膜の形成方法。  3. The method for forming a ferroelectric thin film according to claim 2, wherein the Ti ultrafine powder has a particle size of 0.5 nm to 200 nm. 前記Ti超微粒粉の粒径は5nmであり、
前記界面活性剤の濃度は0.1wt%〜10wt%であることを特徴とする請求項1に記載の強誘電体薄膜の形成方法。
The particle size of the Ti ultrafine powder is 5 nm,
The method for forming a ferroelectric thin film according to claim 1, wherein the concentration of the surfactant is 0.1 wt% to 10 wt%.
前記シード層を形成する工程は、前記強誘電体薄膜の構成元素を含む溶液を塗布する工程と、
焼成する工程とを含むことを特徴とする請求項1乃至4のいずれか一項に記載の強誘電体薄膜の形成方法。
Forming the seed layer includes applying a solution containing a constituent element of the ferroelectric thin film; and
A method for forming a ferroelectric thin film according to any one of claims 1 to 4, further comprising a firing step.
さらに結晶化のためのアニール工程を含むことを特徴とする請求項1乃至5のいずれか一項に記載の強誘電体薄膜の形成方法。  The method for forming a ferroelectric thin film according to any one of claims 1 to 5, further comprising an annealing step for crystallization.
JP2001246070A 2001-08-14 2001-08-14 Ferroelectric thin film manufacturing method and ferroelectric memory manufacturing method using the same Expired - Fee Related JP4825373B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001246070A JP4825373B2 (en) 2001-08-14 2001-08-14 Ferroelectric thin film manufacturing method and ferroelectric memory manufacturing method using the same
US10/218,988 US6740532B2 (en) 2001-08-14 2002-08-13 Method of manufacturing a ferroelectric thin film
US10/825,033 US7195928B2 (en) 2001-08-14 2004-04-14 Method of manufacturing ferroelectric substance thin film and ferroelectric memory using the ferroelectric substance thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246070A JP4825373B2 (en) 2001-08-14 2001-08-14 Ferroelectric thin film manufacturing method and ferroelectric memory manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2003060168A JP2003060168A (en) 2003-02-28
JP4825373B2 true JP4825373B2 (en) 2011-11-30

Family

ID=19075701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246070A Expired - Fee Related JP4825373B2 (en) 2001-08-14 2001-08-14 Ferroelectric thin film manufacturing method and ferroelectric memory manufacturing method using the same

Country Status (2)

Country Link
US (2) US6740532B2 (en)
JP (1) JP4825373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705037B (en) 2016-03-07 2020-09-21 日商日本匹士克股份有限公司 Adsorption pad

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169658B2 (en) * 2004-01-29 2007-01-30 Infineon Technologies Ag Method for formation of an ultra-thin film and semiconductor device containing such a film
JP3841085B2 (en) 2004-01-29 2006-11-01 セイコーエプソン株式会社 Capacitor, manufacturing method thereof, and semiconductor device
JP4257537B2 (en) * 2005-06-02 2009-04-22 セイコーエプソン株式会社 Ferroelectric layer manufacturing method, electronic device manufacturing method, ferroelectric memory device manufacturing method, piezoelectric element manufacturing method, and ink jet recording head manufacturing method
CN101199053B (en) * 2005-06-09 2011-11-02 富士通半导体股份有限公司 Semiconductor device and manufacturing method thereof
JP4831562B2 (en) * 2005-06-23 2011-12-07 富士通株式会社 Ferroelectric memory device
JP4519810B2 (en) * 2006-06-23 2010-08-04 富士フイルム株式会社 Ferroelectric element and manufacturing method thereof, ferroelectric memory, and ink jet recording head
KR100851982B1 (en) * 2007-02-23 2008-08-12 삼성전자주식회사 Ferroelectric information storage media and methods of manufacturing the same
JP7123622B2 (en) * 2018-05-18 2022-08-23 ルネサスエレクトロニクス株式会社 Semiconductor device and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360468B1 (en) * 1995-03-20 2003-01-24 삼성전자 주식회사 manufacturing method of ferroelectric film, capacator adopting the film and menufacturing method of the capacator
JP3195265B2 (en) * 1997-01-18 2001-08-06 東京応化工業株式会社 Coating solution for forming Bi-based ferroelectric thin film, ferroelectric thin film formed using the same, and ferroelectric memory
JP3190011B2 (en) * 1997-05-23 2001-07-16 ローム株式会社 Ferroelectric memory element and method of manufacturing the same
JP3452800B2 (en) * 1997-06-30 2003-09-29 ヒュンダイ エレクトロニクス インダストリーズ カムパニー リミテッド Highly integrated memory element and method of manufacturing the same
JP4075120B2 (en) * 1998-01-07 2008-04-16 沖電気工業株式会社 Method for manufacturing ferroelectric thin film
TW404021B (en) * 1998-04-09 2000-09-01 Hitachi Ltd Semiconductor memory device and manufacturing method thereof
JP2001053071A (en) * 1999-08-05 2001-02-23 Mitsubishi Electric Corp Manufacture of ferroelectric thin film, electronic device, and liquid material for insulator
JP2001158966A (en) * 1999-12-01 2001-06-12 Ebara Corp Method of manufacturing metal or metal compound thin film
KR100408517B1 (en) * 2000-12-28 2003-12-06 삼성전자주식회사 Manufacturing method for ferroelectric thin film using sol-gel process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705037B (en) 2016-03-07 2020-09-21 日商日本匹士克股份有限公司 Adsorption pad

Also Published As

Publication number Publication date
US20040197937A1 (en) 2004-10-07
US7195928B2 (en) 2007-03-27
US20030054572A1 (en) 2003-03-20
JP2003060168A (en) 2003-02-28
US6740532B2 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
KR100329533B1 (en) Electronic Devices Including Perovskite Oxide Films, Manufacturing Methods And Ferroelectric Capacitors
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
JP3996767B2 (en) Integrated circuit and method of forming integrated circuit
KR20010101386A (en) Ferroelectric memory with ferroelectric thin film having thickness of 90 nanometers or less, and method of making same
JPH06305713A (en) Formation of ferroelectric film by sol-gel method and production of capacitor, and raw material solution therefor
JP4825373B2 (en) Ferroelectric thin film manufacturing method and ferroelectric memory manufacturing method using the same
JP2003510839A (en) Integrated circuit having barrier layer and method of manufacturing the same
JP2001237402A (en) Structured metal oxide containing layer, and method of manufacturing semiconductor structure element
US6365420B2 (en) Method of forming dielectric film with good crystallinity and low leak
JP3159561B2 (en) Electrodes for crystalline thin films
JP2001237384A (en) Method of manufacturing semiconductor device
US20040113186A1 (en) Method of making layered superlattice material with ultra-thin top layer
JPH0969614A (en) Manufacturing method for ferroelectric thin film, dielectric thin film and integrated circuit containing ferroelectric thin film
KR20010109957A (en) LBT solution, method for fabricating LBT solution and method for fabricating LBT thin film and electric device using the same
JP3924928B2 (en) Ferroelectric material and ferroelectric memory
JPH0964309A (en) Semiconductor memory device and its manufacture
JP3363091B2 (en) Manufacturing method of dielectric memory
JP3543916B2 (en) Method of forming ferroelectric capacitor and method of manufacturing nonvolatile semiconductor memory device
JP4268804B2 (en) Method for producing laminated superlattice material having ultrathin upper layer
JP3718943B2 (en) Method for forming ferroelectric film
JPH05343641A (en) Dielectric element and its manufacture
JP3937033B2 (en) Ferroelectric material, method for manufacturing the same, and ferroelectric memory
CN100355042C (en) Method of making layered superlattice material with ultra-thin top layer
JP2003324099A (en) Method for forming dielectric film
JP2007221065A (en) Forming method of ferroelectric capacitor, and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees