JPH08277435A - Mo-si alloy excellent in heat resistance - Google Patents

Mo-si alloy excellent in heat resistance

Info

Publication number
JPH08277435A
JPH08277435A JP7874795A JP7874795A JPH08277435A JP H08277435 A JPH08277435 A JP H08277435A JP 7874795 A JP7874795 A JP 7874795A JP 7874795 A JP7874795 A JP 7874795A JP H08277435 A JPH08277435 A JP H08277435A
Authority
JP
Japan
Prior art keywords
alloy
total
heat resistance
less
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7874795A
Other languages
Japanese (ja)
Inventor
Soji Hasegawa
宗司 長谷川
Nobuo Otsuka
伸夫 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7874795A priority Critical patent/JPH08277435A/en
Publication of JPH08277435A publication Critical patent/JPH08277435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce an Mo-Si alloy excellent in castability and toughness as well as heat resistance and usable even at an ultrahigh temp. of 1500 deg.C. CONSTITUTION: This Mo-Si alloy excellent in heat resistance is the one having a compsn. contg., by weight, 35 to 45% Si and total >5% of one or >= two kinds among <=25% Co, <=5% Ni and <=10% Fe, and the balance Mo with inevitable impurities, or is the one in which the same alloy furthermore contains one or two kinds among A group elements and B group elements by the following quantity: A group elements (Ca, Mg, B and rare earth elements): one or more kinds by 0.01 to 0.3wt.% in total and B group elements (Cr, W, V, Zr, Ti, Nb, Ta, Al, Mn and Cu): one or more kinds by 0.1 to 5.0wt.% in total.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1500℃の超高温でも使用
可能な耐熱性に優れるMo−Si系合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Mo-Si alloy which has excellent heat resistance and can be used even at an extremely high temperature of 1500 ° C.

【0002】[0002]

【従来の技術】酸化スケ−ルを生成させずに鋼材等の被
加熱材を加熱、熱処理する炉として光輝焼鈍炉が知られ
ている。この炉は燃焼ガスをラジアントチュ−ブとよば
れる加熱炉管の内部に流すことで炉内を間接的に加熱
し、還元性ガスを炉内に導入した炉雰囲気とすることで
被加熱材の酸化を防止するタイプの炉である。現在のと
ころ、光輝熱処理炉で用いられるラジアントチュ−ブ等
の材料の耐熱温度はせいぜい1150℃程度までのため、被
加熱材の加熱温度をたかだか1000℃までしか上げること
ができない。
2. Description of the Related Art A bright annealing furnace is known as a furnace for heating and heat-treating a material to be heated such as a steel material without generating an oxide scale. This furnace indirectly heats the inside of the furnace by flowing a combustion gas into a heating furnace tube called a radiant tube, and creates a furnace atmosphere in which a reducing gas is introduced into the furnace, thereby heating the material to be heated. It is a type of furnace that prevents oxidation. At present, the heat-resistant temperature of materials such as radiant tubes used in bright heat treatment furnaces is at most about 1150 ° C, so that the heating temperature of the material to be heated can be raised to at most 1000 ° C.

【0003】1300℃を超える超高温でも使用可能な材料
として、Mo等の耐火金属(refractory metal)の珪化物
が知られている。例えば特公昭53-35889号公報には、被
覆用合金として、CoまたはNiとMoおよびCrから選択され
る三種の重遷移金属とSiからなり、重遷移金属の内の二
種の合計量が60原子%以上で、その中にラベス相が30〜
85容量%の割合で存在する、摩耗や腐食に対して顕著な
抵抗性を有する合金が提案されている。
As a material that can be used even at an extremely high temperature exceeding 1300 ° C., a silicide of refractory metal such as Mo is known. For example, JP-B-53-35889 discloses a coating alloy composed of three heavy transition metals selected from Co or Ni, Mo and Cr and Si, and the total amount of two heavy transition metals being 60. At least more than atomic%, the Laves phase in it is 30 ~
Alloys have been proposed which are present in a proportion of 85% by volume and have outstanding resistance to wear and corrosion.

【0004】また、特開昭53-40612号公報には、Moを40
%以上含むMo基金属基地に遊離炭素を0.01〜20%含有す
る SiC繊維を 2〜80体積%複合させた SiC繊維強化Mo基
複合材料が提案されている。
Further, in Japanese Patent Application Laid-Open No. 53-40612, Mo is added to 40
%, A SiC fiber-reinforced Mo-based composite material has been proposed in which 2 to 80% by volume of SiC fiber containing 0.01 to 20% of free carbon is compounded in a Mo-based metal matrix containing at least 0.1%.

【0005】さらに、従来公知の合金、例えばMoSi2
1300℃を超える超高温酸化性ガス雰囲気中で極めて良好
な耐高温酸化性を有するものの、低温度域で極端に脆い
材料であり、このような脆い金属間化合物をラジアント
チュ−ブ等の加熱炉管等への形状に成形することが難し
い。また実炉では加熱、冷却により加熱炉管に熱衝撃が
加わるため、加熱炉用材料にはこの熱衝撃で破損しない
だけの靭性が要求される。具体的には常温においてシャ
ルピ−衝撃値で5J/cm2程度以上要求されるが、MoSi2
金はガラスのように脆く、加熱炉管等へ成形加工するこ
とは無論、実炉使用における熱衝撃に到底耐えられない
という問題を有している。
Further, conventionally known alloys such as MoSi 2 are
Although it has extremely good high temperature oxidation resistance in an ultrahigh temperature oxidizing gas atmosphere exceeding 1300 ° C, it is a material that is extremely brittle in the low temperature range, and such brittle intermetallic compounds are heated in a heating furnace such as a radiant tube. It is difficult to mold it into a shape such as a pipe. Further, in an actual furnace, a heating furnace is heated and cooled so that a thermal shock is applied to the heating furnace tube. Therefore, the heating furnace material is required to have toughness that is not damaged by the thermal shock. Specifically, at room temperature, a Charpy impact value of about 5 J / cm 2 or more is required, but MoSi 2 alloy is brittle like glass, and of course it can be formed into a heating furnace tube, etc. It has a problem that it can not stand at all.

【0006】このため1500℃程度の超高温において使用
可能な耐熱性にすぐれたラジアントチュ−ブ等の加熱炉
用材料が得られれば、スラブやビレット等の加熱に光輝
炉を適用することができ、被加熱材の加熱や熱処理時に
生成するスケ−ルを完全に防止することで、被加熱材の
歩留まりや品質向上と共に生産工程の省略を図ることが
できる。
Therefore, if a heating furnace material such as a radiant tube having excellent heat resistance that can be used at an ultrahigh temperature of about 1500 ° C. is obtained, a bright furnace can be applied to heating a slab, a billet or the like. By completely preventing the scale generated during heating or heat treatment of the material to be heated, the yield and quality of the material to be heated can be improved and the production process can be omitted.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、1500
℃の超高温でも使用可能な耐熱性のみでなく、鋳造性、
靭性にも優れた、特に、ラジアントチューブ等の加熱炉
用材料として有用なMo−Si系合金を提供することにあ
る。
SUMMARY OF THE INVENTION The object of the present invention is 1500
Not only heat resistance that can be used even at ultra high temperature of ℃, castability,
An object of the present invention is to provide a Mo-Si alloy which is excellent in toughness and is particularly useful as a material for a heating furnace such as a radiant tube.

【0008】[0008]

【課題を解決するための手段】本発明者らは、1300℃を
超える超高温酸化性ガス雰囲気中で極めて良好な耐高温
酸化性を有するものの、低温度域で極端に脆い材料であ
るMoSi2 を基本組成とし、その鋳造性や靭性を改善する
ために組織および化学成分の面から検討を重ねた結果、
下記の知見を得、本発明を完成させるに至った。
Means for Solving the Problems The present inventors have found that MoSi 2 which has extremely good high temperature oxidation resistance in an ultrahigh temperature oxidizing gas atmosphere exceeding 1300 ° C., but is extremely brittle in a low temperature range. As a result of repeated studies from the aspect of structure and chemical composition in order to improve castability and toughness,
The following findings were obtained and the present invention was completed.

【0009】ア−ク溶解炉や誘導加熱炉でMoSi2 を溶
解した後、溶湯が凝固するごく初期の過程(2000 ℃〜19
00℃) において、凝固組織はまず化学成分の異なる二種
類の相に分離し、しかるのちこの二種類の相はより低い
温度域(1900 ℃以下) で互いに反応して最終の単相凝固
組織となる。この時、二種類の凝固組織相は界面エネル
ギーが著しく高く、この温度域で異質の二相界面が離反
し易いため多数の空孔(ボイド)が発生し、靭性を低下
させている。
After the MoSi 2 is melted in an arc melting furnace or an induction heating furnace, the very early stage (2000 ° C.
At 00 ℃), the solidification structure first separates into two phases with different chemical components, and then these two phases react with each other in the lower temperature range (1900 ℃ and below) to form the final single-phase solidification structure. Become. At this time, the interfacial energies of the two types of solidified texture phases are remarkably high, and in this temperature range, the dissimilar two-phase interfaces are easily separated from each other, so that a large number of voids (voids) are generated and the toughness is lowered.

【0010】凝固過程における空孔生成の主原因とな
る二相間の分離を防止するため、凝固・冷却過程で延性
を有する第三相を析出させることによって凝固時に発生
する凝固応力を緩和して二相間の分離が防止される。そ
れにより、空孔の生成が抑制されて靭性が向上する。
In order to prevent the separation between the two phases, which is the main cause of void formation during the solidification process, the solidification stress generated during solidification is relaxed by precipitating a ductile third phase during the solidification / cooling process. Separation between phases is prevented. This suppresses the formation of pores and improves toughness.

【0011】Co、Ni、Feは、高温強度の向上のみでな
く、 CoSi2、 NiSi2、 FeSi2等の延性を有する第三相の
析出を促進し、凝固時に発生する応力を緩和し欠陥を減
少させ凝固割れや引け巣を防ぐのに有効な元素である。
Co, Ni and Fe not only improve the high temperature strength but also promote the precipitation of a ductile third phase such as CoSi 2 , NiSi 2 and FeSi 2 to relieve the stress generated during solidification and reduce defects. It is an element effective in reducing solidification cracking and preventing shrinkage cavities.

【0012】ここに本発明が要旨とするところは、重量
%で、Si:35〜45%、およびCo:25%以下、Ni:25%以
下、Fe:10%以下の1種または2種以上を合計で 5%を
超え25%以下含有し、残部がMoおよび不可避的不純物か
らなることを特徴とする耐熱性に優れたMo−Si系合金で
ある。
The gist of the present invention is one or more of Si: 35 to 45%, Co: 25% or less, Ni: 25% or less, Fe: 10% or less, in weight%. Is a Mo-Si alloy excellent in heat resistance, characterized by containing more than 5% and 25% or less in total, and the balance being Mo and inevitable impurities.

【0013】上記合金が、さらに下記量のA群元素およ
びB群元素のうちの1種または2種を含む耐熱性に優れ
たMo−Si系合金である。
The above alloy is a Mo--Si alloy having excellent heat resistance, which further contains one or two of the following amounts of Group A elements and Group B elements.

【0014】A群元素(Ca、Mg、B、希土類元素):1
種以上を合計で0.01〜 0.3重量% B群元素(Cr、W、V、Zr、Ti、Nb、Ta、Al、Mn、C
u):1種以上を合計で 0.1〜 5.0重量%
Group A elements (Ca, Mg, B, rare earth elements): 1
0.01 to 0.3% by weight in total of more than one species B group element (Cr, W, V, Zr, Ti, Nb, Ta, Al, Mn, C
u): 0.1 to 5.0% by weight in total of 1 or more

【0015】[0015]

【作用】[Action]

Si:35〜45% 1500℃程度の超高温における高温強度、耐酸化性といっ
たの耐熱性の点から、MoSi2 合金を基本成分とした。そ
のため、Si含有量を35〜45%とする。Si含有量が35%未
満の時は高温での耐酸化性が低下すると共に、マトリッ
クスとなる正方晶の MoSi2の十分な量を得ることができ
ず高温強度が低下する。一方、Si含有量が45%を超える
と靭性が低下する。従い、Si含有量を35〜45%とした。
Si: 35-45% MoSi 2 alloy was used as a basic component from the viewpoint of heat resistance such as high temperature strength and oxidation resistance at an ultrahigh temperature of about 1500 ℃. Therefore, the Si content is set to 35 to 45%. When the Si content is less than 35%, the oxidation resistance at high temperature decreases, and it is not possible to obtain a sufficient amount of tetragonal MoSi 2 that serves as a matrix, and the high temperature strength decreases. On the other hand, if the Si content exceeds 45%, the toughness decreases. Therefore, the Si content is set to 35 to 45%.

【0016】Co、Ni、Fe:Co、Ni、Feは高温強度改善に
有効な元素である。さらに、延性に富む CoSi2、NiS
i2、 FeSi2等の第三相の析出を促進し、MoSi2 が凝固時
に二相に分離して発生する応力を緩和させる。それによ
り凝固割れや引け巣等の欠陥の発生を防止することがで
き、靭性も向上させることができる。その効果を得るた
めには、Co、Ni、Feの1種または2種以上を合計で 5%
を超えて含有させる必要がある。含有量が 5%以下の場
合は、延性に優れた第三相の析出が不十分となり凝固割
れや引け巣が発生し、さらに靭性も低下する。
Co, Ni, Fe: Co, Ni and Fe are effective elements for improving high temperature strength. In addition, ductile CoSi 2 and NiS
i 2, to promote a third phase of deposition of FeSi 2, etc., to relieve stress MoSi 2 is generated to separate into two phases during solidification. As a result, the occurrence of defects such as solidification cracking and shrinkage cavities can be prevented, and toughness can also be improved. To achieve this effect, one or more of Co, Ni, and Fe should be 5% in total.
It is necessary to contain more than. When the content is 5% or less, the precipitation of the third phase having excellent ductility is insufficient, solidification cracking and shrinkage cavities occur, and the toughness also decreases.

【0017】一方、Co、Niが各々25%を、Feでは10%を
超えて過剰に含有させると低融点化合物の体積率が増加
しかえって靭性が低下する。また、2種以上を同時に含
有させる場合でも多いと靭性が低下する傾向があるた
め、Co、Ni、Feの合計量の上限を25%とする。なお、Fe
についてはCoやNiと複合して含有させる場合でも、その
内のFe含有量は10%を上限とする。
On the other hand, when Co and Ni are contained in excess of 25% and Fe in excess of 10%, the volume fraction of the low melting point compound is increased and the toughness is lowered. Further, even if two or more kinds are contained at the same time, the toughness tends to decrease if the content is large, so the upper limit of the total amount of Co, Ni, and Fe is set to 25%. Note that Fe
As for the above, even if it is contained in a complex form with Co or Ni, the Fe content in that is up to 10%.

【0018】A群元素(Ca、Mg、B、希土類元素):1
種以上を合計で0.01〜 0.3% 加工性を改善するため、必要に応じてCa、Mg、B、希土
類元素の1種以上を含有させる。これらの合金元素は合
金中のO(酸素)と反応し、合金中に固溶する酸素量を
低減させ、加工性改善に寄与する。その効果は含有量が
0.01%以上で認められ、 0.3%を超えてもその効果が飽
和するため、A群元素の含有量を1種以上の合計量で0.
01〜 0.3%とした。
Group A elements (Ca, Mg, B, rare earth elements): 1
0.01 to 0.3% in total of at least one kind In order to improve workability, one or more kinds of Ca, Mg, B, and rare earth elements are contained as necessary. These alloying elements react with O (oxygen) in the alloy, reduce the amount of oxygen that forms a solid solution in the alloy, and contribute to improving workability. The effect is that the content is
It is recognized in 0.01% or more, and even if it exceeds 0.3%, the effect is saturated, so the content of group A elements is 0.
It was set to 01 to 0.3%.

【0019】B群元素(Cr、W、V、Zr、Ti、Nb、Ta、
Al、Mn、Cu):1種以上を合計で 0.1%〜 5.0%: 超高温における高温強度を改善する目的で、必要に応じ
てCr、W、V、Zr、Ti、Nb、Ta、Al、Mn、Cuのうちの1
種以上を合計で 0.1%〜 5.0%含有させることができ
る。これらの合金元素は基材中に固溶し合金の高温強度
アップに寄与する。その効果は含有量が 0.1%以上で認
められる。一方、 5.0%を超えて含有すると凝固組織の
マトリックス中にCrSi2 やTi5Si3等の耐熱性や延性に乏
しい相が析出するようになり、耐熱性や靭性の低下を招
く。
Group B elements (Cr, W, V, Zr, Ti, Nb, Ta,
Al, Mn, Cu): 0.1% to 5.0% in total of 1 or more: Cr, W, V, Zr, Ti, Nb, Ta, Al, if necessary, for the purpose of improving high temperature strength at ultrahigh temperature. One of Mn and Cu
A total of 0.1% to 5.0% can be contained. These alloy elements form a solid solution in the base material and contribute to the high temperature strength of the alloy. The effect is recognized when the content is 0.1% or more. On the other hand, when the content exceeds 5.0%, a phase having poor heat resistance and ductility such as CrSi 2 and Ti 5 Si 3 is precipitated in the matrix of the solidified structure, resulting in deterioration of heat resistance and toughness.

【0020】さらに、上記元素以外にC、Nは基材中に
固溶し高温強度を改善する作用を有する。したがい、こ
の効果を積極的に得たい場合には、C、Nの1種または
2種を合計量で0.01%以上含有させるのが好ましい。一
方、その合計量が 0.5%を超えると、Moの炭化物や窒化
物が過剰に析出し靭性が低下するため、含有させる場合
の上限は 0.5%とする。
Further, in addition to the above elements, C and N have a function of forming a solid solution in the base material to improve the high temperature strength. Therefore, in order to positively obtain this effect, it is preferable to contain one or two of C and N in a total amount of 0.01% or more. On the other hand, if the total amount exceeds 0.5%, carbides and nitrides of Mo will be excessively precipitated and the toughness will decrease, so the upper limit for inclusion is 0.5%.

【0021】なお、本発明合金は、延性の優れた第2相
を析出させることによって凝固時に発生する凝固応力を
緩和し鋼塊の靭性を向上させ、凝固時の欠陥を減少させ
ることができるため、公知の方法で成形、加工すること
ができる。
The alloy of the present invention is capable of relaxing the solidification stress generated during solidification by precipitating the second phase having excellent ductility, improving the toughness of the steel ingot, and reducing defects during solidification. Can be molded and processed by a known method.

【0022】しかし、特に2000〜1800℃の異なる二相の
組織が共存する凝固、冷却過程の温度域で外部からなん
らかの力、たとえば遠心力を付加することで、凝固組織
中の空孔を顕著に少なくでき、靭性も著しく向上する。
そのため、、例えばラジアントチューブ等の管状に成
形、加工する場合には遠心鋳造法を用いるのが好まし
い。
However, voids in the solidified tissue are remarkably formed by applying some force from the outside, for example, centrifugal force, in the temperature range of solidification and cooling processes in which two-phase tissues having different temperatures of 2000 to 1800 ° C. coexist. It can be reduced and the toughness is significantly improved.
Therefore, it is preferable to use the centrifugal casting method when forming and processing into a tubular shape such as a radiant tube.

【0023】また、遠心鋳造時の鋳型は、下記(1)式
を満たす回転数Nで行うのが好ましい。例えば、外径 2
10mm、厚さ10mm、長さ3000mmの管を製造する場合は、85
0rpmの回転数で製造することで、寸法公差についても特
に問題なく、鋳造割れや引け巣のない管を製造できる。
Further, it is preferable that the centrifugal casting is performed at a rotational speed N satisfying the following formula (1). For example, outer diameter 2
If you want to manufacture a tube with a thickness of 10 mm, a thickness of 10 mm, and a length of 3000 mm, 85
By manufacturing at a rotation speed of 0 rpm, there is no particular problem with dimensional tolerance, and a tube without casting cracks or shrinkage cavities can be manufactured.

【0024】 回転数N(rpm )≧(10000 ×D-1/2)・・・・(1) ただし、Dは鋳造管の内径(mm)Rotational speed N (rpm) ≧ (10000 × D −1/2 ) ... (1) where D is the inner diameter (mm) of the casting pipe

【0025】[0025]

【実施例】表1〜3に化学成分を示す本発明合金および
表4に示す比較合金を真空遠心鋳造機を用いて製造し
た。溶解原料はMo、Si、Co、Ni、Fe等の金属粉末を用
い、十分混合したものをルツボに入れ、真空誘導加熱炉
でそれぞれ2Kgずつ溶解した。
EXAMPLES Inventive alloys having chemical compositions shown in Tables 1 to 3 and comparative alloys shown in Table 4 were produced using a vacuum centrifugal casting machine. Metallic powders of Mo, Si, Co, Ni, Fe, etc. were used as melting raw materials, and a well-mixed material was put into a crucible and melted in an amount of 2 kg each in a vacuum induction heating furnace.

【0026】溶湯はAr気流中で内径60mmの高速回転する
鋼製の鋳型内面に約2分かけて流し込み、外径60mm、内
径40mm、長さ 200mmの管を製作した。なお、鋳込み時の
鋳型回転速度は2000rpm に調整した。
The molten metal was poured into an inner surface of a steel mold having an inner diameter of 60 mm and rotating at a high speed in an Ar stream for about 2 minutes to produce a tube having an outer diameter of 60 mm, an inner diameter of 40 mm and a length of 200 mm. The mold rotation speed during casting was adjusted to 2000 rpm.

【0027】鋳造性の評価は、上記遠心鋳造法によって
作製したインゴットの凝固割れの有無を目視観察し、割
れのない場合を○、割れがある場合を×とした。
The castability was evaluated by visually observing the presence or absence of solidification cracks in the ingot produced by the centrifugal casting method.

【0028】また、引け巣の評価は、管を半割りにし
て、引け巣の肉厚方向厚さを測定し、引け巣の厚さが全
厚の50%を超える場合を×、全厚の25〜50%の場合を
△、全厚の25%未満の場合を○とした。
The shrinkage cavity is evaluated by dividing the tube in half and measuring the thickness in the thickness direction of the shrinkage cavity. When the thickness of the shrinkage cavity exceeds 50% of the total thickness, x is calculated. The case of 25 to 50% was evaluated as △, and the case of less than 25% of the total thickness was evaluated as ○.

【0029】さらに、作成した管の肉厚中央部から、JI
S Z 2202に指定された4号衝撃試験片の1/4 の大きさに
相当する衝撃試験片(幅2.5mm )を機械加工により切り
出し、常温でJIS Z 2242に基づく衝撃試験に供した。ま
た同様に合金の高温引張性質を調査するため、JIS Z 22
01に記載された 14A号試験片( 6mm径)を切り出し、15
00℃で引張試験に供した。
Further, from the center of the wall thickness of the created pipe, JI
An impact test piece (width 2.5 mm) corresponding to 1/4 the size of the No. 4 impact test piece specified in SZ 2202 was cut out by machining and subjected to an impact test based on JIS Z 2242 at room temperature. Similarly, in order to investigate the high temperature tensile properties of alloys, JIS Z 22
Cut out the No. 14A test piece (6 mm diameter) described in 01,
It was subjected to a tensile test at 00 ° C.

【0030】鋳造性、引け巣の評価と共に、衝撃試験で
の衝撃値および高温引張試験での引張強さを表1〜4に
合わせて示す。
In addition to the evaluation of castability and shrinkage cavity, the impact value in the impact test and the tensile strength in the high temperature tensile test are shown in Tables 1 to 4.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】表1〜3から、本発明合金ではMo、Siにさ
らにCo、Ni、Feを添加することにより凝固割れや引け巣
が抑制される。また、本発明合金では 9J/cm2 以上の衝
撃値が得られ、本発明合金は実用上問題のないレベルの
靭性を有しており、特に、A群元素(Ca、Mg、B、希土
類元素)を添加した場合にはより高い衝撃値となってい
る。さらに、1500℃と超高温でも高い引張強度を有して
おり、特に、B群元素(Cr、W、Fe、V、Zr、Ti、Nb、
Ta、Al、Ni、Co、Mn、Cu)を添加した場合は、より高い
強度となっている。
From Tables 1 to 3, in the alloy of the present invention, solidification cracking and shrinkage cavities are suppressed by further adding Co, Ni and Fe to Mo and Si. Further, the alloy of the present invention has an impact value of 9 J / cm 2 or more, and the alloy of the present invention has a toughness at a level that poses no problem in practical use. In particular, Group A elements (Ca, Mg, B, rare earth elements) ) Is added, the impact value is higher. Furthermore, it has high tensile strength even at an extremely high temperature of 1500 ° C, and in particular, it contains B group elements (Cr, W, Fe, V, Zr, Ti, Nb,
When Ta, Al, Ni, Co, Mn, Cu) is added, the strength is higher.

【0036】一方、表4の比較合金の内、従来のMo−Si
のみの合金は凝固割れや引け巣が発生し、衝撃値、高温
強度共に低い。Si含有量が下限を外れる場合は高温強度
が著しく低下しており、上限を外れる場合は靭性が劣化
している。また、Co、Ni、Feの含有量が下限を外れる場
合は凝固割れや引け巣が発生し衝撃値も低下している、
一方上限を外れる場合も衝撃値が低下している。さら
に、B群元素が過度に添加された場合も衝撃値が低下し
ている。
On the other hand, among the comparative alloys in Table 4, the conventional Mo-Si
Nozomi alloy has solidification cracking and shrinkage cavities, and both impact value and high temperature strength are low. When the Si content is out of the lower limit, the high temperature strength is remarkably reduced, and when it is out of the upper limit, the toughness is deteriorated. Further, when the content of Co, Ni, Fe is less than the lower limit, solidification cracking and shrinkage cavities occur, and the impact value also decreases.
On the other hand, when the value exceeds the upper limit, the impact value is lowered. Furthermore, the impact value is lowered when the group B element is excessively added.

【0037】さらに、一部の本発明合金について 上記
の 14A号試験片( 6mm径)を用いて常温引張試験を行
い、破断部の絞り値で合金の加工性を評価した。その結
果も表1〜2に合わせて示す。なお、絞りは試験後の径
減少量を元の径( 6mm)で除した値である。この結果か
らA群元素(Ca、Mg、B、希土類元素)を添加した合金
の絞り値は、これらの元素を添加していない合金と比べ
て向上しており、これらの合金元素が合金の加工性を改
善効果を有することが分かる。
Further, some of the alloys of the present invention were subjected to a room temperature tensile test using the above-mentioned No. 14A test piece (6 mm diameter), and the workability of the alloy was evaluated by the drawing value of the fractured part. The results are also shown in Tables 1 and 2. The aperture is the value obtained by dividing the amount of diameter reduction after the test by the original diameter (6 mm). From these results, the aperture value of the alloys added with the group A elements (Ca, Mg, B, rare earth elements) is improved as compared with the alloys not added with these elements. It can be seen that it has the effect of improving sex.

【0038】[0038]

【発明の効果】本発明合金は、1300℃を超える超高温酸
化性ガス雰囲気においてきわめて優れた耐高温酸化性を
有すると共に、使用中の熱衝撃に対しても十分な抵抗性
を有している。
The alloy of the present invention has extremely high temperature oxidation resistance in an ultrahigh temperature oxidizing gas atmosphere exceeding 1300 ° C. and has sufficient resistance to thermal shock during use. .

【0039】したがい、本発明合金をラジアントチュ−
ブに用いることで、被加熱材の加熱温度が1300℃程度と
なる光輝炉の高温化が可能となるため、スケ−ルロスを
はじめとする種々のスケ−ル問題を一挙に解決すること
ができる。
Accordingly, the alloy of the present invention was added to a radiant tube.
By using it for heating, it is possible to raise the temperature of the bright furnace where the heating temperature of the material to be heated reaches about 1300 ° C, and it is possible to solve various scale problems including scale loss all at once. .

【0040】[0040]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Si:35〜45%、およびCo:25%
以下、Ni:25%以下、Fe:10%以下の1種または2種以
上を合計で 5%を超え25%以下含有し、残部がMoおよび
不可避的不純物からなることを特徴とする耐熱性に優れ
たMo−Si系合金。
1. Si: 35-45%, and Co: 25% in weight%.
The heat resistance is characterized by containing one or two or more of Ni: 25% or less and Fe: 10% or less in total of more than 5% and 25% or less, with the balance being Mo and inevitable impurities. Excellent Mo-Si alloy.
【請求項2】重量%で、Si:35〜45%、およびCo:25%
以下、Ni:25%以下、Fe:10%以下の1種または2種以
上を合計で 5%を超え25%以下含有し、さらに、Ca、M
g、B、希土類元素の1種以上を合計で0.01〜 0.3重量
%含み、残部がMoおよび不可避的不純物からなることを
特徴とする耐熱性に優れたMo−Si系合金。
2. Si: 35-45%, and Co: 25% in weight%.
In the following, Ni: 25% or less, Fe: 10% or less, or a total of more than 5% and 25% or less, and Ca, M
A Mo-Si alloy having excellent heat resistance, which comprises 0.01 to 0.3% by weight in total of one or more of g, B, and rare earth elements, and the balance being Mo and inevitable impurities.
【請求項3】重量%で、Si:35〜45%、およびCo:25%
以下、Ni:25%以下、Fe:10%以下の1種または2種以
上を合計で 5%を超え25%以下含有し、さらに、Cr、
W、V、Zr、Ti、Nb、Ta、Al、Mn、Cuの1種以上を合計
で 0.1〜 5.0重量%含み、残部がMoおよび不可避的不純
物からなることを特徴とする耐熱性に優れたMo−Si系合
金。
3. Si: 35-45% and Co: 25% in weight%.
In the following, Ni: 25% or less, Fe: 10% or less, or a total of more than 5% and 25% or less, and Cr,
Excellent heat resistance characterized by containing 0.1 to 5.0% by weight in total of one or more of W, V, Zr, Ti, Nb, Ta, Al, Mn, and Cu, with the balance being Mo and inevitable impurities. Mo-Si alloy.
【請求項4】重量%で、Si:35〜45%、およびCo:25%
以下、Ni:25%以下、Fe:10%以下の1種または2種以
上を合計で 5%を超え25%以下含有し、さらに、Ca、M
g、B、希土類元素の1種以上を合計で0.01〜 0.3重量
%、およびCr、W、V、Zr、Ti、Nb、Ta、Al、Mn、Cuの
1種以上を合計で 0.1〜 5.0重量%含み、残部がMoおよ
び不可避的不純物からなることを特徴とする耐熱性に優
れたMo−Si系合金。
4. Si: 35-45% and Co: 25% in weight%.
In the following, Ni: 25% or less, Fe: 10% or less, or a total of more than 5% and 25% or less, and Ca, M
0.01 to 0.3% by weight of one or more of g, B and rare earth elements, and 0.1 to 5.0% by weight of one or more of Cr, W, V, Zr, Ti, Nb, Ta, Al, Mn and Cu in total. %, And the balance is Mo and inevitable impurities, and is a Mo-Si alloy with excellent heat resistance.
JP7874795A 1995-04-04 1995-04-04 Mo-si alloy excellent in heat resistance Pending JPH08277435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7874795A JPH08277435A (en) 1995-04-04 1995-04-04 Mo-si alloy excellent in heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7874795A JPH08277435A (en) 1995-04-04 1995-04-04 Mo-si alloy excellent in heat resistance

Publications (1)

Publication Number Publication Date
JPH08277435A true JPH08277435A (en) 1996-10-22

Family

ID=13670489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7874795A Pending JPH08277435A (en) 1995-04-04 1995-04-04 Mo-si alloy excellent in heat resistance

Country Status (1)

Country Link
JP (1) JPH08277435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089176A1 (en) * 2011-12-16 2013-06-20 株式会社アライドマテリアル Heat-resistant alloy and manufacturing method therefor
WO2014112151A1 (en) * 2013-01-16 2014-07-24 国立大学法人東北大学 Alloy and method for producing same
GB2529763A (en) * 2014-08-28 2016-03-02 MTU Aero Engines AG Creep and Oxidation-Resistant Molybdenum Superalloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089176A1 (en) * 2011-12-16 2013-06-20 株式会社アライドマテリアル Heat-resistant alloy and manufacturing method therefor
JPWO2013089176A1 (en) * 2011-12-16 2015-04-27 株式会社アライドマテリアル Heat-resistant alloy and method for producing the same
WO2014112151A1 (en) * 2013-01-16 2014-07-24 国立大学法人東北大学 Alloy and method for producing same
JP5876943B2 (en) * 2013-01-16 2016-03-02 国立大学法人東北大学 Alloy and production method thereof
JPWO2014112151A1 (en) * 2013-01-16 2017-01-19 国立大学法人東北大学 Alloy and production method thereof
GB2529763A (en) * 2014-08-28 2016-03-02 MTU Aero Engines AG Creep and Oxidation-Resistant Molybdenum Superalloy

Similar Documents

Publication Publication Date Title
JP4031992B2 (en) High manganese duplex stainless steel with excellent hot workability and method for producing the same
JP4424503B2 (en) Steel bar and wire rod
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JP3397092B2 (en) Al-containing austenitic stainless steel with excellent hot workability
WO2022123812A1 (en) Method for manufacturing austenitic stainless steel strip
JPH03104832A (en) Gamma-titanium-aluminum alloy modified with chrome and silicon and its manufacture
JP2022119890A (en) PRECIPITATION HARDENING TYPE Ni ALLOY AND METHOD FOR PRODUCING THE SAME
JP7129057B2 (en) Method for producing Ti-based alloy
JP5162492B2 (en) Ni-based intermetallic alloy with high hardness
JPH08277435A (en) Mo-si alloy excellent in heat resistance
JP2007063576A (en) Alloy for nonferrous molten metal
JP5070617B2 (en) Tantalum-silicon alloy and products containing the same and method of manufacturing the same
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP4672433B2 (en) Heat-resistant casting alloy and manufacturing method thereof
JP3821368B2 (en) Manufacturing method of high clean maraging steel
JPH1017977A (en) Molybdenum-silicon alloy and its melting method
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JPH08100243A (en) Highly heat resistant iron-bas alloy
JP4213901B2 (en) Low thermal expansion casting alloy having excellent hardness and strength at room temperature and low cracking susceptibility during casting, and method for producing the same
JP5554180B2 (en) Austenitic stainless steel
JPH08199238A (en) Production of wire rod of high strength and low thermal expansion alloy
JPH07331377A (en) Heating furnace tube excellent in heat resistance and toughness and its production
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
JPS58100654A (en) Aluminum alloy for casting with superior heat resistance
JP3573344B2 (en) Manufacturing method of highly clean maraging steel