WO2014112151A1 - Alloy and method for producing same - Google Patents

Alloy and method for producing same Download PDF

Info

Publication number
WO2014112151A1
WO2014112151A1 PCT/JP2013/073399 JP2013073399W WO2014112151A1 WO 2014112151 A1 WO2014112151 A1 WO 2014112151A1 JP 2013073399 W JP2013073399 W JP 2013073399W WO 2014112151 A1 WO2014112151 A1 WO 2014112151A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
alloy
composition ratio
less
samples
Prior art date
Application number
PCT/JP2013/073399
Other languages
French (fr)
Japanese (ja)
Inventor
吉見享祐
丸山公一
後藤孝
宮本慎平
金子昂弘
森山貴裕
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2014557315A priority Critical patent/JP5876943B2/en
Publication of WO2014112151A1 publication Critical patent/WO2014112151A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/06Casting non-ferrous metals with a high melting point, e.g. metallic carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to an alloy and a manufacturing method thereof, for example, an alloy containing Mo, Si and B and a manufacturing method thereof.
  • Alloys used for high-pressure turbines and the like are required to be lightweight, high in strength and excellent in heat resistance.
  • an alloy there is a molybdenum alloy containing molybdenum (Mo).
  • Mo molybdenum
  • an alloy containing Mo, Si (silicon) and B (boron) for example, Patent Documents 1 and 2) and an MHC alloy containing hafnium (Hf) are known.
  • Non-patent Documents 1 and 2 the eutectic reaction temperature between Mo and Mo 5 SiB 2 is about 2060 ° C. to 2100 ° C.
  • Mo and TiC titanium carbide
  • Mo and ZrC zirconium carbide
  • Mo and ZrC zirconium carbide
  • Molybdenum alloy has a high melting point, and is formed by extruding powder sintered body. For this reason, in order to mold a complicated shape, cutting or the like is performed, and the manufacturing cost is increased. On the other hand, when a molded body is formed with powder sintering, problems such as a decrease in strength occur. On the other hand, expensive equipment is used to melt and cast the molybdenum alloy. Therefore, there is a demand for an alloy that is lightweight, has high strength, has excellent heat resistance, and can be melted at a relatively low temperature so that it can be easily manufactured by a casting method.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an alloy that is lightweight, has high strength, has excellent heat resistance, and is soluble at a relatively low temperature.
  • the present invention is an alloy having Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N as main components.
  • ADVANTAGE OF THE INVENTION According to this invention, the alloy which is lightweight and high intensity
  • At least one element of Ti, Zr, and Hf may be Ti, and at least one element of C and N may be C.
  • the structure is a co-phase Mo 5 SiB 2 and TiC to.
  • the Mo composition ratio is 52 atomic% or more and 80 atomic% or less
  • the Si composition ratio is 1.5 atomic% or more and 25 atomic% or less
  • the B composition ratio is 3 atomic% or more and It is 25 atomic% or less
  • the composition ratio of Ti is 0.1 atomic% or more and 15 atomic% or less
  • the composition ratio of C is 0.1 atomic% or more and 15 atomic% or less. it can.
  • the Mo composition ratio is 60 atomic% or more and 75 atomic% or less
  • the Si composition ratio is 1.7 atomic% or more and 6.7 atomic% or less
  • the B composition ratio is 3.3 atomic%.
  • the composition ratio of Ti is 5.0 atomic% or more and 15.0 atomic% or less
  • the composition ratio of C is 5.0 atomic% or more and 15.0 atomic%. It can be set as the structure which is atomic% or less.
  • the composition ratio of Ti is 10 atomic% or more, and the composition ratio of C is 10 atomic% or less.
  • At least one element of Ti, Zr, and Hf may be Zr, and at least one element of C and N may be C.
  • the structure is a co-phase Mo 5 SiB 2 and ZrC to.
  • the present invention is to manufacture an alloy containing Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N by using a casting method.
  • An alloy production method characterized by the following. ADVANTAGE OF THE INVENTION According to this invention, the alloy which is lightweight and high intensity
  • At least one element of Ti, Zr, and Hf may be Ti, and at least one element of C and N may be C.
  • At least one element of Ti, Zr, and Hf may be Zr, and at least one element of C and N may be C.
  • FIG. 1 is a diagram showing a method for manufacturing an alloy in Examples and Comparative Examples.
  • FIG. 2A and FIG. 2B are observation photographs of the microstructures of samples A1 and A2, respectively.
  • FIGS. 3A and 3B are observation photographs of the microstructures of samples A3 and A4, respectively.
  • 4 (a) and 4 (b) are observation photographs of the microstructures of samples B1 and B2, respectively.
  • FIG. 5A and FIG. 5B are observation photographs of the microstructures of samples B3 and B4, respectively.
  • FIG. 6 is a diagram showing the measurement results of the stress-strain curve at 1400 ° C. for samples A1 to A4.
  • FIG. 7 is a diagram showing measurement results of stress-strain curves at 1400 ° C. for samples B1 to B4.
  • FIG. 1 is a diagram showing a method for manufacturing an alloy in Examples and Comparative Examples.
  • FIG. 2A and FIG. 2B are observation photographs of the microstructures of samples A1 and A2, respectively.
  • FIG. 8 is a diagram showing the measurement results of peak stress with respect to the temperature of samples A3 and B3.
  • FIG. 9 is a diagram showing the measurement results of Young's modulus with respect to the temperatures of samples A3 and B3.
  • FIG. 10 is a diagram showing the densities of samples A1 to A4 and B1 to B4.
  • FIG. 1 is a diagram showing a method for manufacturing an alloy in Examples and Comparative Examples. Referring to FIG. 1, each material is weighed (step S10). As materials, Mo, Si, B, TiC and Ti were used. The weighed material is melted using the arc melting method (step S12). An alloy is cast from the melted material (step S14).
  • Table 1 is a table showing the weight% (wt%) and atomic% (at%) of each element of the prepared sample.
  • No. Samples 2, 5, 9 and 14 correspond to samples A1 to A4, respectively.
  • Samples 4, 8, 13 and 16 correspond to samples B1 to B4, respectively.
  • No. 1 to No. 28, Si: B 1: 2 (atomic ratio).
  • No. 1 to No. 16, Ti: C 1: 1 (atomic ratio).
  • No. 17 to No. 28, Ti: C x (1 ⁇ x ⁇ 2): 1 (atomic ratio).
  • Table 2 is a table showing the density of each sample and the results of investigation on dissolution at 1800 ° C., 1900 ° C. and 2000 ° C.
  • Table 3 is a table showing the results of investigating the weight% (wt%), atomic% (at%), and dissolution at 1800 ° C., 1900 ° C., 2000 ° C. and 2100 ° C. of each element of a sample prepared as a comparative example. .
  • the density of all the measured samples of Examples is 9.01 g / cm 3 or less.
  • Sample No. All samples after 5 were dissolved at 2000 ° C. It can be seen that the melting point decreases when the Mo composition ratio is 60 atomic% or more and 75 atomic% or less. Moreover, it turns out that a density is small.
  • a sample to be dissolved tends to have a high composition ratio of Si and B and a small composition ratio of Ti and C.
  • the Si composition ratio is preferably 1.7 atomic percent or more, more preferably 3.3 atomic percent or more, and even more preferably 5.0 atomic percent or more.
  • the composition ratio of Si is preferably 6.7 atomic% or less.
  • the composition ratio of B is preferably 3.3 atomic% or more, more preferably 6.7 atomic% or more, and further preferably 10 atomic% or more.
  • the composition ratio of B is preferably 13.3 atomic% or less.
  • the composition ratio of Ti is preferably 15.0 atomic% or less, more preferably 13.3 atomic% or less, and further preferably 12.5 atomic% or less.
  • the composition ratio of Ti is preferably 5.0 atomic% or more.
  • the composition ratio of C is preferably 15.0 atomic% or less, more preferably 13.3 atomic% or less, and further preferably 12.5 atomic% or less.
  • the composition ratio of C is preferably 5.0 atomic% or more.
  • the composition ratio of Ti is made larger than the composition ratio of C.
  • the density becomes 8.6 g / cm 3 or less and can be dissolved at 2000 ° C.
  • the C composition ratio is 10 atomic% or less and the Ti composition ratio is 10 atomic% or more.
  • FIGS. 2A to 3B are observation photographs of the microstructures of samples A1 to A4, respectively. The fine structure was observed using SEM (scanning electron microscope). Mo ss is a solid solution phase of Mo, T 2 is a phase of Mo 5 SiB 2 , Mo 2 C is a phase of Mo 2 C, and TiC is a phase of TiC. As shown in FIGS. 2A to 3B, samples A1 to A4 are found to be a co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and TiC.
  • FIGS. 4A to 5B are observation photographs of the microstructures of samples B1 to B4, respectively. Similar to FIGS. 2A to 3B, the microstructure was observed using a SEM (scanning electron microscope). As shown in FIGS. 4 (a) to 5 (b), the samples B1 to B4, like the samples A1 to B4, are a co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and TiC. Recognize.
  • FIG. 6 is a diagram showing the measurement results of the stress-strain curve at 1400 ° C. for samples A1 to A4. For comparison, a stress-strain curve of an MHC alloy is shown. Referring to FIG. 6, the yield strength of each sample was more than twice that of the MHC alloy. In particular, a sample having a small composition ratio of TiC and a high composition ratio of SiB 2 has a high yield strength. Thus, it can be seen that Samples A1 to A4 have high strength at high temperatures.
  • FIG. 7 is a diagram showing measurement results of stress-strain curves at 1400 ° C. for samples B1 to B4. For comparison, a stress-strain curve of an MHC alloy is shown. Referring to FIG. 7, the yield strength of each sample was higher than that of the MHC alloy. In particular, a sample having a small composition ratio of TiC and a high composition ratio of SiB 2 has a high yield strength. Thus, it can be seen that the samples B1 to B4 are high in strength at high temperatures, similar to the samples A1 to A4.
  • FIG. 8 is a diagram showing the measurement results of peak stress with respect to the temperature of samples A3 and B3.
  • the peak stress ⁇ indicates the peak value of the stress ⁇ in the stress-strain curve.
  • the peak stresses of MHC (molybdenum / hafnium carbide) alloy, TZM (titanium / zirconium / molybdenum) alloy, and Mo0.6-Si7.9-B are shown.
  • the white circle is B3, the white square is A3, the black circle is the MHC alloy, and the black square is the measurement point of the TZM alloy.
  • the slanted white square is the value described in the literature of Mo-6.1Si-7.9B.
  • the curve is an approximate curve.
  • Sample B3 has a higher peak stress at any temperature than Mo-6.1Si-7.9B, MHC alloy and TZM alloy known as heat-resistant alloys. At 1000 ° C., the peak stress is 1800 MPa, which is very large compared to MHC alloy, TZM alloy, and Mo-6.1Si-7.9B alloy. Moreover, at 1600 degreeC, it has a peak stress of about 400 MPa. Sample A3 has a peak stress comparable to that of sample B3 at 1400 ° C. The sample A3 is considered to have a peak stress comparable to that of the sample B3 at other temperatures. In addition, it is considered that the peak stress at a high temperature is large in the other samples as well as the sample B3. As described above, an alloy containing Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N as a main component is at a high temperature of 1000 ° C. or more. Excellent high strength.
  • FIG. 9 is a diagram showing the measurement results of Young's modulus with respect to the temperatures of samples A3 and B3. For comparison, the Young's modulus of W (tungsten), Mo, Mo-2Si alloy and Mo-3Si alloy is shown. Referring to FIG. 9, each sample has a higher Young's modulus from room temperature to 1000 ° C. than Mo and Mo—Si alloy. Thus, it can be seen that Samples A3 and B3 have high rigidity at high temperatures.
  • FIG. 10 is a diagram showing the densities of samples A1 to A4 and B1 to B4. For comparison, the densities of pure Ni (nickel), Rene′N5 alloy, TMS-138 alloy, Mo 5 SiB 2 and pure Mo are shown. Referring to FIG. 6, the density of samples A1 to A4 and B1 to B4 is 8.7 g / cm 3 to 9.01 g / cm 3 . Samples A1 to A4 and B1 to B4 have a density lower than that of pure Mo, and the same density as that of Ni 'alloys Rene′N5 alloy, TMS-138 alloy, and Mo 5 SiB 2 .
  • Ni, ReneN5 alloy and TMS-138 alloy are small in density and lightweight, but have a melting point of about 1400 ° C. and cannot be used as a high heat-resistant alloy used at about 1500 ° C.
  • Mo 5 SiB 2 is lightweight and highly heat resistant, but has a melting point of about 2200 ° C. and is difficult to manufacture by a casting method.
  • the alloys according to the examples are mainly composed of Mo, Si, B, Ti and C. Thereby, as shown in Table 3, it can melt
  • the composition ratio of Mo is 52 atomic% or more and 80 atomic% or less
  • the composition ratio of Si is 1.5 atomic% or more and 25 atomic% or less
  • the composition ratio of B is 3 atomic% or more and 25 atomic% or less.
  • the composition ratio of Ti is preferably 0.1 atomic% or more and 15 atomic% or less
  • the composition ratio of C is preferably 0.1 atomic% or more and 15 atomic% or less.
  • the Mo composition ratio is preferably 80 atomic% or less in order to lower the melting point. In order to increase the strength, the Mo composition ratio is preferably 52 atomic% or more. Since it is based on the Mo—Si—B ternary system, the composition ratio of Si is 1.5 atomic% or more and 25 atomic% or less, and the composition ratio of B is 3 atomic% or more and 25 atomic% or less. Is preferred. Ti and C are preferably 0.1 atomic percent or more for lowering the melting point.
  • these alloys have a low melting point, high strength and high strength due to the co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and TiC. Light weight can be realized.
  • the melting temperature is set to 2100 ° C. or lower, so that the Mo composition ratio is 65 atomic% or more and the B composition ratio is 20 It is preferably at most atomic%. Further, the Mo composition ratio is preferably 75 atomic% or less.
  • the composition ratio of B is preferably 10 atomic% or more. In order to set the melting temperature to 2000 ° C. or less, it is preferable that the Mo composition ratio is 67 atomic% or more and the B composition ratio is 15 atomic% or less.
  • the composition ratio of Mo is preferably 73 atomic percent or less.
  • the composition ratio of B is preferably 10 atomic% or more.
  • the density is 9.1 g / cm 3 or more. Therefore, it is difficult to reduce the weight of the alloy.
  • the density of the alloy can be about 8.8 g / cm 3 .
  • the melting temperature increases. In the examples, the density can be reduced to about 9.0 g / cm 3 or less, and the melting temperature can be lowered. Therefore, it can be melted at a relatively low temperature and the alloy can be easily reduced in weight.
  • Zr and Hf have the same period as Ti in the periodic table, and the properties are similar to Ti.
  • the affinity with C or N is large. Therefore, Zr and Hf can be used instead of Ti.
  • Ti is preferable for weight reduction.
  • N shows the same behavior as C when alloyed, N can be used instead of C. Therefore, the alloy may be composed mainly of Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N.
  • the alloy can be mainly composed of Mo, Si, B, Zr and C. Further, the alloy can contain Mo, Si, B, Ti, Zr and C as main components. In this case, since the alloy is a co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and ZrC, the melting point is low, and high strength and light weight can be realized.
  • Mo, Si, B, TiC, TiN, Ti, Zr, or the like can be used as appropriate.
  • a material melting method in step S12 a plasma melting method or the like can be used in addition to the arc melting method.
  • An alloy mainly composed of Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N is dissolved at a temperature of about 2000 ° C. It can be manufactured using inexpensive equipment. Further, a product having a complicated shape and / or a large product can be easily manufactured. Further, the strength can be increased at a temperature of 1000 ° C. or higher, and the weight can be reduced. For this reason, this alloy can be applied to a high-pressure turbine blade of a jet engine or a gas turbine as a heat-resistant alloy. Moreover, it can be applied to various processing tools and special molds in place of WC (tungsten carbide). Furthermore, it can be used for a high-temperature and high-pressure vessel.
  • WC tungsten carbide

Abstract

The present invention relates to an alloy that is mainly composed of Mo, Si, B, Ti, at least one of Zr and Hf, and at least one of C and N. The present invention also relates to a method for producing an alloy that is mainly composed of Mo, Si, B, Ti, at least one of Zr and Hf, and at least one of C and N by a casting process.

Description

合金およびその製造方法Alloy and production method thereof
 本発明は合金およびその製造方法に関し、例えばMo、SiおよびBを含む合金およびその製造方法に関する。 The present invention relates to an alloy and a manufacturing method thereof, for example, an alloy containing Mo, Si and B and a manufacturing method thereof.
 高圧タービン等に用いられる合金は、軽量かつ高強度であり耐熱性に優れることが求められる。このような合金としてモリブデン(Mo)を含むモリブデン合金がある。例えば、Mo、Si(シリコン)およびB(ホウ素)を含む合金(例えば特許文献1および2)やハフニウム(Hf)を含むMHC合金が知られている。 Alloys used for high-pressure turbines and the like are required to be lightweight, high in strength and excellent in heat resistance. As such an alloy, there is a molybdenum alloy containing molybdenum (Mo). For example, an alloy containing Mo, Si (silicon) and B (boron) (for example, Patent Documents 1 and 2) and an MHC alloy containing hafnium (Hf) are known.
 MoとMoSiBとの共晶反応温度は、2060℃から2100℃程度であることが知られている(非特許文献1および2)。一方、MoとTiC(炭化チタン)とは共晶反応することが知られている。MoとTiCとの共晶温度は約2175℃であることが知られている(非特許文献3)。また、MoとZrC(炭化ジルコニウム)とは共晶反応することが知られている。MoとZrCとの共晶温度は約2500℃であることが知られている(非特許文献3)。 It is known that the eutectic reaction temperature between Mo and Mo 5 SiB 2 is about 2060 ° C. to 2100 ° C. (Non-patent Documents 1 and 2). On the other hand, it is known that Mo and TiC (titanium carbide) undergo a eutectic reaction. It is known that the eutectic temperature of Mo and TiC is about 2175 ° C. (Non-patent Document 3). Mo and ZrC (zirconium carbide) are known to undergo a eutectic reaction. It is known that the eutectic temperature of Mo and ZrC is about 2500 ° C. (Non-patent Document 3).
特開2004-115833号公報JP 2004-115833 A 特開2008-114258号公報JP 2008-114258 A
 モリブデン合金は融点が高いため、粉末焼結体を押出加工等して成型される。このため、複雑な形状を成型するためには、切削加工等を行なうことになり、製造コストが高くなる。逆に、粉末焼結のままで成形体とした場合には、強度の低下等の問題が発生する。一方、モリブデン合金を溶解し鋳造するためには、高額な設備を用いることになる。そこで、鋳造法により簡単に製造可能とするため、軽量かつ高強度であり耐熱性に優れ、かつ比較的低温において溶解可能な合金が求められている。 Molybdenum alloy has a high melting point, and is formed by extruding powder sintered body. For this reason, in order to mold a complicated shape, cutting or the like is performed, and the manufacturing cost is increased. On the other hand, when a molded body is formed with powder sintering, problems such as a decrease in strength occur. On the other hand, expensive equipment is used to melt and cast the molybdenum alloy. Therefore, there is a demand for an alloy that is lightweight, has high strength, has excellent heat resistance, and can be melted at a relatively low temperature so that it can be easily manufactured by a casting method.
 本発明は、上記課題に鑑みなされたものであり、軽量かつ高強度であり耐熱性に優れ、かつ比較的低温において溶解可能な合金を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an alloy that is lightweight, has high strength, has excellent heat resistance, and is soluble at a relatively low temperature.
 本発明は、Moと、Siと、Bと、Tiと、ZrおよびHfの少なくとも1つの元素と、CおよびNの少なくとも1つの元素と、を主成分とすることを特徴とする合金である。本発明によれば、軽量かつ高強度であり耐熱性に優れ、かつ比較的低温において溶解可能な合金を提供することができる。 The present invention is an alloy having Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N as main components. ADVANTAGE OF THE INVENTION According to this invention, the alloy which is lightweight and high intensity | strength, is excellent in heat resistance, and can melt | dissolve in a comparatively low temperature can be provided.
 上記構成において、鋳造された構成とすることができる。 In the above configuration, it may be a cast configuration.
 上記構成において、前記Ti、ZrおよびHfの少なくとも1つの元素はTiであり、前記CおよびNの少なくとも1つの元素はCである構成とすることができる。 In the above configuration, at least one element of Ti, Zr, and Hf may be Ti, and at least one element of C and N may be C.
 上記構成において、Mo固溶体相、MoC、MoSiBおよびTiCの共相である構成とすることができる。 In the above structure, it is possible to Mo solid solution phase, Mo 2 C, the structure is a co-phase Mo 5 SiB 2 and TiC to.
 上記構成において、Moの組成比は52原子%以上かつ80原子%以下であり、Siの組成比は1.5原子%以上かつ25原子%以下であり、Bの組成比は3原子%以上かつ25原子%以下であり、Tiの組成比は0.1原子%以上かつ15原子%以下であり、Cの組成比は、0.1原子%以上かつ15原子%以下である構成とすることができる。 In the above configuration, the Mo composition ratio is 52 atomic% or more and 80 atomic% or less, the Si composition ratio is 1.5 atomic% or more and 25 atomic% or less, and the B composition ratio is 3 atomic% or more and It is 25 atomic% or less, the composition ratio of Ti is 0.1 atomic% or more and 15 atomic% or less, and the composition ratio of C is 0.1 atomic% or more and 15 atomic% or less. it can.
 上記構成において、Moの組成比は60原子%以上かつ75原子%以下であり、Siの組成比は1.7原子%以上かつ6.7原子%以下であり、Bの組成比は3.3原子%以上かつ13.3原子%以下であり、Tiの組成比は5.0原子%以上かつ15.0原子%以下であり、Cの組成比は、5.0原子%以上かつ15.0原子%以下である構成とすることができる。 In the above configuration, the Mo composition ratio is 60 atomic% or more and 75 atomic% or less, the Si composition ratio is 1.7 atomic% or more and 6.7 atomic% or less, and the B composition ratio is 3.3 atomic%. The composition ratio of Ti is 5.0 atomic% or more and 15.0 atomic% or less, and the composition ratio of C is 5.0 atomic% or more and 15.0 atomic%. It can be set as the structure which is atomic% or less.
 上記構成において、Tiの組成比は10原子%以上であり、かつCの組成比は10原子%以下である構成とすることができる。 In the above configuration, the composition ratio of Ti is 10 atomic% or more, and the composition ratio of C is 10 atomic% or less.
 上記構成において、前記Ti、ZrおよびHfの少なくとも1つの元素はZrであり、前記CおよびNの少なくとも1つの元素はCである構成とすることができる。 In the above configuration, at least one element of Ti, Zr, and Hf may be Zr, and at least one element of C and N may be C.
 上記構成において、Mo固溶体相、MoC、MoSiBおよびZrCの共相である構成とすることができる。 In the above structure, it is possible to Mo solid solution phase, Mo 2 C, the structure is a co-phase Mo 5 SiB 2 and ZrC to.
 本発明は、Moと、Siと、Bと、Tiと、ZrおよびHfの少なくとも1つの元素と、CおよびNの少なくとも1つの元素と、を主成分とする合金を鋳造法を用い製造することを特徴とする合金の製造方法である。本発明によれば、軽量かつ高強度であり耐熱性に優れ、かつ比較的低温において溶解可能な合金を提供することができる。 The present invention is to manufacture an alloy containing Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N by using a casting method. An alloy production method characterized by the following. ADVANTAGE OF THE INVENTION According to this invention, the alloy which is lightweight and high intensity | strength, is excellent in heat resistance, and can melt | dissolve in a comparatively low temperature can be provided.
 上記構成において、前記Ti、ZrおよびHfの少なくとも1つの元素はTiであり、前記CおよびNの少なくとも1つの元素はCである構成とすることができる。 In the above configuration, at least one element of Ti, Zr, and Hf may be Ti, and at least one element of C and N may be C.
 上記構成において、前記Ti、ZrおよびHfの少なくとも1つの元素はZrであり、前記CおよびNの少なくとも1つの元素はCである構成とすることができる。 In the above configuration, at least one element of Ti, Zr, and Hf may be Zr, and at least one element of C and N may be C.
 本発明によれば、軽量かつ高強度であり耐熱性に優れ、かつ比較的低温において溶解可能な合金を提供することができる。 According to the present invention, it is possible to provide an alloy that is light and high in strength, excellent in heat resistance, and soluble at a relatively low temperature.
図1は、実施例および比較例における合金の製造方法を示す図である。FIG. 1 is a diagram showing a method for manufacturing an alloy in Examples and Comparative Examples. 図2(a)および図2(b)は、それぞれ試料A1およびA2の微細組織の観察写真である。FIG. 2A and FIG. 2B are observation photographs of the microstructures of samples A1 and A2, respectively. 図3(a)および図3(b)は、それぞれ試料A3およびA4の微細組織の観察写真である。FIGS. 3A and 3B are observation photographs of the microstructures of samples A3 and A4, respectively. 図4(a)および図4(b)は、それぞれ試料B1およびB2の微細組織の観察写真である。4 (a) and 4 (b) are observation photographs of the microstructures of samples B1 and B2, respectively. 図5(a)および図5(b)は、それぞれ試料B3およびB4の微細組織の観察写真である。FIG. 5A and FIG. 5B are observation photographs of the microstructures of samples B3 and B4, respectively. 図6は、試料A1~A4の1400℃における応力-歪み曲線の測定結果を示す図である。FIG. 6 is a diagram showing the measurement results of the stress-strain curve at 1400 ° C. for samples A1 to A4. 図7は、試料B1~B4の1400℃における応力-歪み曲線の測定結果を示す図である。FIG. 7 is a diagram showing measurement results of stress-strain curves at 1400 ° C. for samples B1 to B4. 図8は、試料A3およびB3の温度に対するピーク応力の測定結果を示す図である。FIG. 8 is a diagram showing the measurement results of peak stress with respect to the temperature of samples A3 and B3. 図9は、試料A3およびB3の温度に対するヤング率の測定結果を示す図である。FIG. 9 is a diagram showing the measurement results of Young's modulus with respect to the temperatures of samples A3 and B3. 図10は、試料A1~A4およびB1~B4の密度を示す図である。FIG. 10 is a diagram showing the densities of samples A1 to A4 and B1 to B4.
 本発明者らは、Moと、Siと、Bと、Ti(チタン)、Zr(シルコニウム)およびHf(ハフニウム)の少なくとも1つの元素と、C(炭素)およびN(窒素)の少なくとも1つの元素と、を主成分とすることにより、軽量かつ高強度であり耐熱性に優れ、かつ比較的低温において溶解可能な合金を製造可能であることを見出した。以下、本発明の実施例について説明する。 We have at least one element of Mo, Si, B, Ti (titanium), Zr (silconium) and Hf (hafnium), and at least one element of C (carbon) and N (nitrogen). As a main component, the inventors have found that it is possible to produce an alloy that is lightweight, has high strength, has excellent heat resistance, and is soluble at a relatively low temperature. Examples of the present invention will be described below.
 Mo、Si、B、TiおよびCを主成分とする試料を作製した。比較例として、Mo、SiおよびBを主成分とする試料を作製した。図1は、実施例および比較例における合金の製造方法を示す図である。図1を参照し、各材料を秤量する(ステップS10)。材料としては、Mo、Si、B、TiCおよびTiを用いた。アーク溶解法を用い秤量した材料を溶解させる(ステップS12)。溶解した材料により合金を鋳造する(ステップS14)。 A sample mainly composed of Mo, Si, B, Ti and C was prepared. As a comparative example, a sample mainly composed of Mo, Si and B was prepared. FIG. 1 is a diagram showing a method for manufacturing an alloy in Examples and Comparative Examples. Referring to FIG. 1, each material is weighed (step S10). As materials, Mo, Si, B, TiC and Ti were used. The weighed material is melted using the arc melting method (step S12). An alloy is cast from the melted material (step S14).
 表1は、作製した試料の各元素の重量%(wt%)および原子%(at%)を示す表である。
Figure JPOXMLDOC01-appb-T000001
Table 1 is a table showing the weight% (wt%) and atomic% (at%) of each element of the prepared sample.
Figure JPOXMLDOC01-appb-T000001
 No.2、5、9および14の試料が、それぞれ試料A1からA4に対応し、No.4、8、13および16の試料が、それぞれ試料B1からB4に対応する。No.1からNo.28において、Si:B=1:2(原子比)である。No.1からNo.16において、Ti:C=1:1(原子比)である。No.17からNo.28において、Ti:C=x(1<x≦2):1(原子比)である。 No. Samples 2, 5, 9 and 14 correspond to samples A1 to A4, respectively. Samples 4, 8, 13 and 16 correspond to samples B1 to B4, respectively. No. 1 to No. 28, Si: B = 1: 2 (atomic ratio). No. 1 to No. 16, Ti: C = 1: 1 (atomic ratio). No. 17 to No. 28, Ti: C = x (1 <x ≦ 2): 1 (atomic ratio).
 表2は、各試料の密度および、1800℃、1900℃および2000℃における溶解を調査した結果を示す表である。
Figure JPOXMLDOC01-appb-T000002
Table 2 is a table showing the density of each sample and the results of investigation on dissolution at 1800 ° C., 1900 ° C. and 2000 ° C.
Figure JPOXMLDOC01-appb-T000002
 表3は、比較例として作製した試料の各元素の重量%(wt%)、原子%(at%)および1800℃、1900℃、2000℃および2100℃における溶解を調査した結果を示す表である。
Figure JPOXMLDOC01-appb-T000003
Table 3 is a table showing the results of investigating the weight% (wt%), atomic% (at%), and dissolution at 1800 ° C., 1900 ° C., 2000 ° C. and 2100 ° C. of each element of a sample prepared as a comparative example. .
Figure JPOXMLDOC01-appb-T000003
 表2および表3において、「-」は調査していないことを示す。「溶解」の項において、「○」は全て溶解したことを示す。「△」は部分的に溶解したことを示す。「×」は溶解しないことを示す。 In Tables 2 and 3, “-” indicates that no investigation was conducted. In the “dissolved” section, “◯” indicates that all were dissolved. “Δ” indicates partial dissolution. “X” indicates that it does not dissolve.
 表1および表2のように、測定した全ての実施例の試料において、密度は9.01g/cm以下である。試料No.5以降の試料は、全て2000℃において溶解した。Moの組成比が60原子%以上かつ75原子%以下において、融点が低下することがわかる。また、密度が小さいことがわかる。溶解する試料は、SiおよびBの組成比が高く、TiおよびCの組成比が小さい傾向にある。Siの組成比は、1.7原子%以上が好ましく、3.3原子%以上がより好ましく、5.0原子%以上がさらに好ましい。Siの組成比は、6.7原子%以下が好ましい。Bの組成比は、3.3原子%以上が好ましく、6.7原子%以上がより好ましく、10原子%以上がさらに好ましい。Bの組成比は、13.3原子%以下が好ましい。Tiの組成比は、15.0原子%以下が好ましく、13.3原子%以下がより好ましく、12.5原子%以下がさらに好ましい。Tiの組成比は、5.0原子%以上が好ましい。Cの組成比は、15.0原子%以下が好ましく、13.3原子%以下がより好ましく、12.5原子%以下がさらに好ましい。Cの組成比は、5.0原子%以上が好ましい。 As shown in Tables 1 and 2, the density of all the measured samples of Examples is 9.01 g / cm 3 or less. Sample No. All samples after 5 were dissolved at 2000 ° C. It can be seen that the melting point decreases when the Mo composition ratio is 60 atomic% or more and 75 atomic% or less. Moreover, it turns out that a density is small. A sample to be dissolved tends to have a high composition ratio of Si and B and a small composition ratio of Ti and C. The Si composition ratio is preferably 1.7 atomic percent or more, more preferably 3.3 atomic percent or more, and even more preferably 5.0 atomic percent or more. The composition ratio of Si is preferably 6.7 atomic% or less. The composition ratio of B is preferably 3.3 atomic% or more, more preferably 6.7 atomic% or more, and further preferably 10 atomic% or more. The composition ratio of B is preferably 13.3 atomic% or less. The composition ratio of Ti is preferably 15.0 atomic% or less, more preferably 13.3 atomic% or less, and further preferably 12.5 atomic% or less. The composition ratio of Ti is preferably 5.0 atomic% or more. The composition ratio of C is preferably 15.0 atomic% or less, more preferably 13.3 atomic% or less, and further preferably 12.5 atomic% or less. The composition ratio of C is preferably 5.0 atomic% or more.
 No.17からNo.28においては、Tiの組成比をCの組成比より大きくする。例えば、1<Tiの組成比/Cの組成比≦2である。これにより、密度が8.6g/cm以下となり、かつ2000℃において溶解できる。例えば、Cの組成比を10原子%以下とし、かつTiの組成比を10原子%以上とすることが好ましい。 No. 17 to No. In 28, the composition ratio of Ti is made larger than the composition ratio of C. For example, 1 <Ti composition ratio / C composition ratio ≦ 2. Thereby, the density becomes 8.6 g / cm 3 or less and can be dissolved at 2000 ° C. For example, it is preferable that the C composition ratio is 10 atomic% or less and the Ti composition ratio is 10 atomic% or more.
 図2(a)から図3(b)は、それぞれ試料A1~A4の微細組織の観察写真である。微細組織はSEM(走査型電子顕微鏡)を用いて観察した。MossはMoの固溶体相、Tは、MoSiBの相、MoCはMoCの相、TiCはTiCの相を示している。図2(a)から図3(b)のように、試料A1~A4は、Mo固溶体相、MoC、MoSiBおよびTiCの共相であることがわかる。 FIGS. 2A to 3B are observation photographs of the microstructures of samples A1 to A4, respectively. The fine structure was observed using SEM (scanning electron microscope). Mo ss is a solid solution phase of Mo, T 2 is a phase of Mo 5 SiB 2 , Mo 2 C is a phase of Mo 2 C, and TiC is a phase of TiC. As shown in FIGS. 2A to 3B, samples A1 to A4 are found to be a co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and TiC.
 図4(a)から図5(b)は、それぞれ試料B1~B4の微細組織の観察写真である。図2(a)から図3(b)と同様に、微細組織をSEM(走査型電子顕微鏡)を用いて観察した。図4(a)から図5(b)のように、試料B1~B4は、試料A1~B4と同様に、Mo固溶体相、MoC、MoSiBおよびTiCの共相であることがわかる。 FIGS. 4A to 5B are observation photographs of the microstructures of samples B1 to B4, respectively. Similar to FIGS. 2A to 3B, the microstructure was observed using a SEM (scanning electron microscope). As shown in FIGS. 4 (a) to 5 (b), the samples B1 to B4, like the samples A1 to B4, are a co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and TiC. Recognize.
 図6は、試料A1~A4の1400℃における応力-歪み曲線の測定結果を示す図である。比較のためMHC合金の応力-歪み曲線を示す。図6を参照し、いずれの試料もMHC合金に比べ降伏強度が2倍以上となった。特に、TiCの組成比が小さく、SiBの組成比が高い試料は降伏強度が高くなる。このように、試料A1~A4は、高温において高強度であることがわかる。 FIG. 6 is a diagram showing the measurement results of the stress-strain curve at 1400 ° C. for samples A1 to A4. For comparison, a stress-strain curve of an MHC alloy is shown. Referring to FIG. 6, the yield strength of each sample was more than twice that of the MHC alloy. In particular, a sample having a small composition ratio of TiC and a high composition ratio of SiB 2 has a high yield strength. Thus, it can be seen that Samples A1 to A4 have high strength at high temperatures.
 図7は、試料B1~B4の1400℃における応力-歪み曲線の測定結果を示す図である。比較のためMHC合金の応力-歪み曲線を示す。図7を参照し、いずれの試料もMHC合金に比べ降伏強度が大きくなった。特に、TiCの組成比が小さく、SiBの組成比が高い試料は降伏強度が高くなる。このように、試料B1~B4は、試料A1~A4と同様に、高温において高強度であることがわかる。 FIG. 7 is a diagram showing measurement results of stress-strain curves at 1400 ° C. for samples B1 to B4. For comparison, a stress-strain curve of an MHC alloy is shown. Referring to FIG. 7, the yield strength of each sample was higher than that of the MHC alloy. In particular, a sample having a small composition ratio of TiC and a high composition ratio of SiB 2 has a high yield strength. Thus, it can be seen that the samples B1 to B4 are high in strength at high temperatures, similar to the samples A1 to A4.
 図8は、試料A3およびB3の温度に対するピーク応力の測定結果を示す図である。ピーク応力σは、応力-歪み曲線における応力σのピーク値を示している。比較のため、MHC(モリブデン・ハフニウムカーバイド)合金、TZM(チタン・ジルコニウム・モリブデン)合金、Mo0.6-Si7.9-Bのピーク応力を示す。白丸がB3、白四角がA3、黒丸がMHC合金、および黒四角がTZM合金の測定点である。斜め白四角がMo-6.1Si-7.9Bの文献に記載された値である。曲線は近似曲線である。 FIG. 8 is a diagram showing the measurement results of peak stress with respect to the temperature of samples A3 and B3. The peak stress σ indicates the peak value of the stress σ in the stress-strain curve. For comparison, the peak stresses of MHC (molybdenum / hafnium carbide) alloy, TZM (titanium / zirconium / molybdenum) alloy, and Mo0.6-Si7.9-B are shown. The white circle is B3, the white square is A3, the black circle is the MHC alloy, and the black square is the measurement point of the TZM alloy. The slanted white square is the value described in the literature of Mo-6.1Si-7.9B. The curve is an approximate curve.
 試料B3は、Mo-6.1Si-7.9B、耐熱合金として知られているMHC合金およびTZM合金と比較し、いずれの温度においてもピーク応力が大きい。1000℃において、ピーク応力は1800MPaとMHC合金、TZM合金、Mo-6.1Si-7.9B合金に比べ非常に大きい。また、1600℃において、約400MPaのピーク応力を有する。試料A3は、1400℃において試料B3と同程度のピーク応力を有する。試料A3は、他の温度においても試料B3と同程度のピーク応力を有すると考えられる。また、他の試料においても試料B3と同様に高温でのピーク応力が大きいと考えられる。このように、Moと、Siと、Bと、Tiと、ZrおよびHfの少なくとも1つの元素と、CおよびNの少なくとも1つの元素と、を主成分とする合金は、1000℃以上の高温において高強度性に優れている。 Sample B3 has a higher peak stress at any temperature than Mo-6.1Si-7.9B, MHC alloy and TZM alloy known as heat-resistant alloys. At 1000 ° C., the peak stress is 1800 MPa, which is very large compared to MHC alloy, TZM alloy, and Mo-6.1Si-7.9B alloy. Moreover, at 1600 degreeC, it has a peak stress of about 400 MPa. Sample A3 has a peak stress comparable to that of sample B3 at 1400 ° C. The sample A3 is considered to have a peak stress comparable to that of the sample B3 at other temperatures. In addition, it is considered that the peak stress at a high temperature is large in the other samples as well as the sample B3. As described above, an alloy containing Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N as a main component is at a high temperature of 1000 ° C. or more. Excellent high strength.
 図9は、試料A3およびB3の温度に対するヤング率の測定結果を示す図である。比較のためW(タングステン)、Mo、Mo-2Si合金およびMo-3Si合金のヤング率を示す。図9を参照し、いずれの試料もMoおよびMo-Si合金に比べ室温から1000℃までにおいてヤング率が大きい。このように、試料A3およびB3は、高温において剛性が高いことがわかる。 FIG. 9 is a diagram showing the measurement results of Young's modulus with respect to the temperatures of samples A3 and B3. For comparison, the Young's modulus of W (tungsten), Mo, Mo-2Si alloy and Mo-3Si alloy is shown. Referring to FIG. 9, each sample has a higher Young's modulus from room temperature to 1000 ° C. than Mo and Mo—Si alloy. Thus, it can be seen that Samples A3 and B3 have high rigidity at high temperatures.
 図10は、試料A1~A4およびB1~B4の密度を示す図である。比較のため純Ni(ニッケル)、Rene´N5合金、TMS-138合金、MoSiBおよび純Moの密度を示す。図6を参照し、試料A1~A4およびB1~B4の密度は8.7g/cmから9.01g/cmである。試料A1~A4およびB1~B4は、純Moより密度が小さく、Ni合金であるRene´N5合金およびTMS-138合金並びにMoSiBと同程度の密度である。 FIG. 10 is a diagram showing the densities of samples A1 to A4 and B1 to B4. For comparison, the densities of pure Ni (nickel), Rene′N5 alloy, TMS-138 alloy, Mo 5 SiB 2 and pure Mo are shown. Referring to FIG. 6, the density of samples A1 to A4 and B1 to B4 is 8.7 g / cm 3 to 9.01 g / cm 3 . Samples A1 to A4 and B1 to B4 have a density lower than that of pure Mo, and the same density as that of Ni 'alloys Rene′N5 alloy, TMS-138 alloy, and Mo 5 SiB 2 .
 純Ni、ReneN5合金およびTMS-138合金は、密度が小さく軽量であるが融点が1400℃程度であり、1500℃程度で用いられる高耐熱合金として用いることができない。MoSiBは軽量であり高耐熱であるが、融点が2200℃程度であり、鋳造法による製造が難しい。 Pure Ni, ReneN5 alloy and TMS-138 alloy are small in density and lightweight, but have a melting point of about 1400 ° C. and cannot be used as a high heat-resistant alloy used at about 1500 ° C. Mo 5 SiB 2 is lightweight and highly heat resistant, but has a melting point of about 2200 ° C. and is difficult to manufacture by a casting method.
 実施例に係る合金は、Mo、Si、B、TiおよびCを主成分とする。これにより、表3に示すように、2000℃程度で溶解可能であり、鋳造法を用い合金を製造が可能である。図6から図9に示すように、1000℃以上の高温において高強度かつ高剛性である。さらに、図10に示すように、軽量である。 The alloys according to the examples are mainly composed of Mo, Si, B, Ti and C. Thereby, as shown in Table 3, it can melt | dissolve at about 2000 degreeC and can manufacture an alloy using a casting method. As shown in FIGS. 6 to 9, it has high strength and high rigidity at a high temperature of 1000 ° C. or higher. Furthermore, as shown in FIG.
 Moの組成比は52原子%以上かつ80原子%以下であり、Siの組成比は1.5原子%以上かつ25原子%以下であり、Bの組成比は3原子%以上かつ25原子%以下であり、Tiの組成比は0.1原子%以上かつ15原子%以下であり、Cの組成比は、0.1原子%以上かつ15原子%以下であることが好ましい。これにより、低温での溶解が可能となる。 The composition ratio of Mo is 52 atomic% or more and 80 atomic% or less, the composition ratio of Si is 1.5 atomic% or more and 25 atomic% or less, and the composition ratio of B is 3 atomic% or more and 25 atomic% or less. The composition ratio of Ti is preferably 0.1 atomic% or more and 15 atomic% or less, and the composition ratio of C is preferably 0.1 atomic% or more and 15 atomic% or less. Thereby, dissolution at a low temperature becomes possible.
 Mo-Si-B三元系の融点の知見から、低融点化のため、Moの組成比は80原子%以下が好ましい。高強度化のため、Moの組成比は52原子%以上が好ましい。Mo-Si-B三元系をベースとするため、Siの組成比は1.5原子%以上かつ25原子%以下であり、Bの組成比は3原子%以上かつ25原子%以下であることが好ましい。TiおよびCは、低融点化のため、0.1原子%以上が好ましい。 From the knowledge of the melting point of the Mo—Si—B ternary system, the Mo composition ratio is preferably 80 atomic% or less in order to lower the melting point. In order to increase the strength, the Mo composition ratio is preferably 52 atomic% or more. Since it is based on the Mo—Si—B ternary system, the composition ratio of Si is 1.5 atomic% or more and 25 atomic% or less, and the composition ratio of B is 3 atomic% or more and 25 atomic% or less. Is preferred. Ti and C are preferably 0.1 atomic percent or more for lowering the melting point.
 図2(a)から図5(b)に示すように、これらの合金は、Mo固溶体相、MoC、MoSiBおよびTiCの共相であることにより、融点が低く、高強度かつ軽量化を実現できる。 As shown in FIG. 2 (a) to FIG. 5 (b), these alloys have a low melting point, high strength and high strength due to the co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and TiC. Light weight can be realized.
 表3のように、Mo、SiおよびBを主成分とする比較例においては、溶解温度を2100℃以下とするため、Moの組成比が65原子%以上であり、かつBの組成比が20原子%以下であることが好ましい。また、Moの組成比は、75原子%以下が好ましい。Bの組成比は10原子%以上が好ましい。溶解温度を2000℃以下とするため、Moの組成比が67原子%以上であり、かつBの組成比が15原子%以下であることが好ましい。Moの組成比は、73原子%以下が好ましい。Bの組成比は10原子%以上が好ましい。しかしながら、比較例においては、密度が9.1g/cm以上となってしまう。よって、合金の軽量化が難しい。Moの組成比を62.5原子%、Bの組成比を25原子%およびSiの組成比を12.5原子%とすると、合金の密度を約8.8g/cmとすることができる。しかしながら、溶解温度が高くなる。実施例では、密度をほぼ9.0g/cm以下とすることができ、かつ溶解温度を低くすることができる。よって、比較的低温において溶解可能であり、かつ合金の軽量化が容易である。 As shown in Table 3, in the comparative example mainly composed of Mo, Si and B, the melting temperature is set to 2100 ° C. or lower, so that the Mo composition ratio is 65 atomic% or more and the B composition ratio is 20 It is preferably at most atomic%. Further, the Mo composition ratio is preferably 75 atomic% or less. The composition ratio of B is preferably 10 atomic% or more. In order to set the melting temperature to 2000 ° C. or less, it is preferable that the Mo composition ratio is 67 atomic% or more and the B composition ratio is 15 atomic% or less. The composition ratio of Mo is preferably 73 atomic percent or less. The composition ratio of B is preferably 10 atomic% or more. However, in the comparative example, the density is 9.1 g / cm 3 or more. Therefore, it is difficult to reduce the weight of the alloy. When the Mo composition ratio is 62.5 atomic%, the B composition ratio is 25 atomic%, and the Si composition ratio is 12.5 atomic%, the density of the alloy can be about 8.8 g / cm 3 . However, the melting temperature increases. In the examples, the density can be reduced to about 9.0 g / cm 3 or less, and the melting temperature can be lowered. Therefore, it can be melted at a relatively low temperature and the alloy can be easily reduced in weight.
 ZrおよびHfは、周期律表においてTiと同じ周期であり、性質がTiと似ている。例えば、CまたはNとの親和力が大きい。よって、Tiの代わりにZrおよびHfを用いることができる。軽量化のためには、Tiが好ましい。また、合金化した際にNはCと同様な挙動を示すため、Cの代わりにNを用いることもできる。よって、合金は、Moと、Siと、Bと、Tiと、ZrおよびHfの少なくとも1つの元素と、CおよびNの少なくとも1つの元素と、を主成分とすればよい。 Zr and Hf have the same period as Ti in the periodic table, and the properties are similar to Ti. For example, the affinity with C or N is large. Therefore, Zr and Hf can be used instead of Ti. Ti is preferable for weight reduction. Moreover, since N shows the same behavior as C when alloyed, N can be used instead of C. Therefore, the alloy may be composed mainly of Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N.
 例えば、Mo:Si:B:Ti:C:Zr=52:8:10:10:10(原子比)の試料を作製した。この試料の密度は約8.1g/cmであり、2000℃において溶解した。 For example, a sample of Mo: Si: B: Ti: C: Zr = 52: 8: 10: 10: 10 (atomic ratio) was prepared. The density of this sample was about 8.1 g / cm 3 and dissolved at 2000 ° C.
 合金は、Mo、Si、B、ZrおよびCを主成分とすることができる。また、合金は、Mo、Si、B、Ti、ZrおよびCを主成分とすることができる。この場合、合金は、Mo固溶体相、MoC、MoSiBおよびZrCの共相であることにより、融点が低く、高強度かつ軽量化を実現できる。 The alloy can be mainly composed of Mo, Si, B, Zr and C. Further, the alloy can contain Mo, Si, B, Ti, Zr and C as main components. In this case, since the alloy is a co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and ZrC, the melting point is low, and high strength and light weight can be realized.
 図1のステップS10における材料としては、Mo、Si、B、TiC、TiN、TiおよびZr等を適宜用いることができる。ステップS12における材料の溶解方法としては、アーク溶解法以外にもプラズマ溶解法等を用いることができる。 As the material in step S10 in FIG. 1, Mo, Si, B, TiC, TiN, Ti, Zr, or the like can be used as appropriate. As a material melting method in step S12, a plasma melting method or the like can be used in addition to the arc melting method.
 Moと、Siと、Bと、Tiと、ZrおよびHfの少なくとも1つの元素と、CおよびNの少なくとも1つの元素と、を主成分とする合金は、2000℃程度の温度で溶解するため、安価な設備を用い製造することができる。また、複雑な形状の製品および/または大型な製品を簡単に製造することができる。また、1000℃以上の温度において強度を高くでき、軽量化が可能である。このため、この合金は、耐熱合金として、ジェットエンジンやガスタービンの高圧タービンブレードに適用可能となる。また、WC(炭化タングステン)に代わり各種加工ツールや特殊金型にも応用することができる。さらに、高温高圧容器に使用することもできる。 An alloy mainly composed of Mo, Si, B, Ti, at least one element of Zr and Hf, and at least one element of C and N is dissolved at a temperature of about 2000 ° C. It can be manufactured using inexpensive equipment. Further, a product having a complicated shape and / or a large product can be easily manufactured. Further, the strength can be increased at a temperature of 1000 ° C. or higher, and the weight can be reduced. For this reason, this alloy can be applied to a high-pressure turbine blade of a jet engine or a gas turbine as a heat-resistant alloy. Moreover, it can be applied to various processing tools and special molds in place of WC (tungsten carbide). Furthermore, it can be used for a high-temperature and high-pressure vessel.
 以上、発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (12)

  1.  Moと、Siと、Bと、Ti、ZrおよびHfの少なくとも1つの元素と、CおよびNの少なくとも1つの元素と、を主成分とすることを特徴とする合金。 An alloy comprising Mo, Si, B, at least one element of Ti, Zr and Hf, and at least one element of C and N as main components.
  2.  鋳造されたことを特徴とする請求項1記載の合金。 The alloy according to claim 1, wherein the alloy is cast.
  3.  前記Ti、ZrおよびHfの少なくとも1つの元素はTiであり、前記CおよびNの少なくとも1つの元素はCであることを特徴とする請求項1または2記載の合金。 3. The alloy according to claim 1 or 2, wherein at least one element of Ti, Zr and Hf is Ti, and at least one element of C and N is C.
  4.  Mo固溶体相、MoC、MoSiBおよびTiCの共相であることを特徴とする請求項3記載の合金。 The alloy according to claim 3, wherein the alloy is a co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and TiC.
  5.  Moの組成比は52原子%以上かつ80原子%以下であり、Siの組成比は1.5原子%以上かつ25原子%以下であり、Bの組成比は3原子%以上かつ25原子%以下であり、Tiの組成比は0.1原子%以上かつ15原子%以下であり、Cの組成比は、0.1原子%以上かつ15原子%以下であることを特徴とする請求項3記載の合金。 The composition ratio of Mo is 52 atomic% or more and 80 atomic% or less, the composition ratio of Si is 1.5 atomic% or more and 25 atomic% or less, and the composition ratio of B is 3 atomic% or more and 25 atomic% or less. The composition ratio of Ti is 0.1 atomic% or more and 15 atomic% or less, and the composition ratio of C is 0.1 atomic% or more and 15 atomic% or less. Alloy.
  6.  Moの組成比は60原子%以上かつ75原子%以下であり、Siの組成比は1.7原子%以上かつ6.7原子%以下であり、Bの組成比は3.3原子%以上かつ13.3原子%以下であり、Tiの組成比は5.0原子%以上かつ15.0原子%以下であり、Cの組成比は、5.0原子%以上かつ15.0原子%以下であることを特徴とする請求項3記載の合金。 The composition ratio of Mo is 60 atomic% or more and 75 atomic% or less, the composition ratio of Si is 1.7 atomic% or more and 6.7 atomic% or less, and the composition ratio of B is 3.3 atomic% or more and The composition ratio of Ti is 5.0 atomic% or more and 15.0 atomic% or less, and the composition ratio of C is 5.0 atomic% or more and 15.0 atomic% or less. 4. An alloy according to claim 3, characterized in that it is present.
  7.  Tiの組成比は10原子%以上であり、かつCの組成比は10原子%以下であることを特徴とする請求項6記載の合金。 The composition ratio of Ti is 10 atomic% or more, and the composition ratio of C is 10 atomic% or less.
  8.  前記Ti、ZrおよびHfの少なくとも1つの元素はZrであり、前記CおよびNの少なくとも1つの元素はCであることを特徴とする請求項1または2記載の合金。 3. The alloy according to claim 1, wherein at least one element of Ti, Zr and Hf is Zr, and at least one element of C and N is C.
  9.  Mo固溶体相、MoC、MoSiBおよびZrCの共相であることを特徴とする請求項8記載の合金。 The alloy according to claim 8, which is a co-phase of Mo solid solution phase, Mo 2 C, Mo 5 SiB 2 and ZrC.
  10.  Moと、Siと、Bと、Ti、ZrおよびHfの少なくとも1つの元素と、CおよびNの少なくとも1つの元素と、を主成分とする合金を鋳造法を用い製造することを特徴とする合金の製造方法。 An alloy characterized by producing an alloy containing Mo, Si, B, at least one element of Ti, Zr, and Hf and at least one element of C and N using a casting method. Manufacturing method.
  11.  前記Ti、ZrおよびHfの少なくとも1つの元素はTiであり、前記CおよびNの少なくとも1つの元素はCであることを特徴とする請求項10記載の合金の製造方法。 The method for producing an alloy according to claim 10, wherein at least one element of Ti, Zr, and Hf is Ti, and at least one element of C and N is C.
  12.  前記Ti、ZrおよびHfの少なくとも1つの元素はZrであり、前記CおよびNの少なくとも1つの元素はCであることを特徴とする請求項10記載の合金の製造方法。
     
    The method for producing an alloy according to claim 10, wherein at least one element of Ti, Zr, and Hf is Zr, and at least one element of C and N is C.
PCT/JP2013/073399 2013-01-16 2013-08-30 Alloy and method for producing same WO2014112151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014557315A JP5876943B2 (en) 2013-01-16 2013-08-30 Alloy and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-005292 2013-01-16
JP2013005292 2013-01-16

Publications (1)

Publication Number Publication Date
WO2014112151A1 true WO2014112151A1 (en) 2014-07-24

Family

ID=51209265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073399 WO2014112151A1 (en) 2013-01-16 2013-08-30 Alloy and method for producing same

Country Status (2)

Country Link
JP (1) JP5876943B2 (en)
WO (1) WO2014112151A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034404A (en) * 2017-04-18 2017-08-11 中南大学 A kind of MoHfTiBC systems molybdenum alloy
WO2018042733A1 (en) * 2016-09-05 2018-03-08 国立大学法人東北大学 Mo-Si-B ALLOY, METHOD FOR MANUFACTURING Mo-Si-B ALLOY, AND TOOL FOR FRICTION STIR WELDING
JP2018523010A (en) * 2015-05-26 2018-08-16 シーメンス アクティエンゲゼルシャフト Molybdenum-silicon-boron alloy, method for producing the same, and component
JP2020535310A (en) * 2017-09-26 2020-12-03 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Powder made of alloy containing molybdenum, silicon and boron, use of this powder and additional manufacturing method of this powder workpiece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501714A (en) * 1984-02-29 1986-08-14 メタルウエルク プランゼ− ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Heat resistant molybdenum alloy
JPH07331377A (en) * 1994-06-03 1995-12-19 Sumitomo Metal Ind Ltd Heating furnace tube excellent in heat resistance and toughness and its production
JPH08277435A (en) * 1995-04-04 1996-10-22 Sumitomo Metal Ind Ltd Mo-si alloy excellent in heat resistance
JPH10512329A (en) * 1995-01-17 1998-11-24 ユナイテッド テクノロジーズ コーポレイション Oxidation resistant molybdenum alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501714A (en) * 1984-02-29 1986-08-14 メタルウエルク プランゼ− ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Heat resistant molybdenum alloy
JPH07331377A (en) * 1994-06-03 1995-12-19 Sumitomo Metal Ind Ltd Heating furnace tube excellent in heat resistance and toughness and its production
JPH10512329A (en) * 1995-01-17 1998-11-24 ユナイテッド テクノロジーズ コーポレイション Oxidation resistant molybdenum alloy
JPH08277435A (en) * 1995-04-04 1996-10-22 Sumitomo Metal Ind Ltd Mo-si alloy excellent in heat resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523010A (en) * 2015-05-26 2018-08-16 シーメンス アクティエンゲゼルシャフト Molybdenum-silicon-boron alloy, method for producing the same, and component
JP2020059922A (en) * 2015-05-26 2020-04-16 シーメンス アクティエンゲゼルシャフト Molybdenum-silicon-boron alloy, manufacturing method thereof, and component
US10865467B2 (en) 2015-05-26 2020-12-15 Siemens Aktiengesellschaft Molybdenum-silicon-boron alloy and method for producing same, and component
WO2018042733A1 (en) * 2016-09-05 2018-03-08 国立大学法人東北大学 Mo-Si-B ALLOY, METHOD FOR MANUFACTURING Mo-Si-B ALLOY, AND TOOL FOR FRICTION STIR WELDING
JPWO2018042733A1 (en) * 2016-09-05 2019-06-24 国立大学法人東北大学 Method of manufacturing Mo-Si-B alloy, Mo-Si-B alloy and tool for friction stir welding
CN107034404A (en) * 2017-04-18 2017-08-11 中南大学 A kind of MoHfTiBC systems molybdenum alloy
JP2020535310A (en) * 2017-09-26 2020-12-03 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Powder made of alloy containing molybdenum, silicon and boron, use of this powder and additional manufacturing method of this powder workpiece
JP7110334B2 (en) 2017-09-26 2022-08-01 シーメンス アクチエンゲゼルシヤフト Powder of alloy containing molybdenum, silicon and boron, use of this powder and additive manufacturing of workpieces made of this powder

Also Published As

Publication number Publication date
JP5876943B2 (en) 2016-03-02
JPWO2014112151A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6690789B2 (en) Alloy material, product using the alloy material, and fluid machine having the product
Reddy et al. Silicon carbide reinforced aluminium metal matrix nano composites-a review
US10570491B2 (en) High entropy alloy having composite microstructure
KR102185626B1 (en) High-entropy based composite and its manufacturing method
JP5876943B2 (en) Alloy and production method thereof
EP4083244A1 (en) Heat-resistant powdered aluminium material
KR102197604B1 (en) Titanium-aluminium base alloy for 3d printing having excellent high temperature property and method of manufacturing the same
JP4994843B2 (en) Nickel-containing alloy, method for producing the same, and article obtained therefrom
WO2015079558A1 (en) Niobium silicide-based composite material, and high-temperature part and high-temperature heat engine each manufactured using same
JP6552137B2 (en) Oxide particle dispersion strengthened Ni base super alloy
US7632455B2 (en) High temperature niobium alloy
JP5645054B2 (en) Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
WO2020059846A1 (en) Ni-based alloy for hot die, and hot forging die obtained using same
JP5854497B2 (en) Nb-Si heat resistant alloy
WO2011118798A1 (en) Ni-BASE DUAL TWO-PHASE INTERMETALLIC COMPOUND ALLOY CONTAINING Nb AND C, AND MANUFACTURING METHOD FOR SAME
US20180105901A1 (en) Method of making a molybdenum alloy having a high titanium content
TWI540211B (en) Equiaxed grain nickel-base casting alloy for high stress application
JP5733728B2 (en) Ni-based double-duplex intermetallic alloy containing Ti and C and method for producing the same
JP6861363B2 (en) Ni-based intermetallic compound alloy and its manufacturing method
JP6824045B2 (en) Niobium-silicon alloy product, manufacturing method of the product, and heat engine using the product
JP6189855B2 (en) Niobium silicide-based composite material, turbine blade for gas turbine using the same, turbine stationary blade and high-temperature component for gas turbine, and gas turbine, jet engine and high-temperature heat engine using the high-temperature component
JP2000129389A (en) Molybdenum sintered compact and its manufacture
US20240110261A1 (en) TiAl ALLOY, TiAl ALLOY POWDER, TiAl ALLOY COMPONENT, AND PRODUCTION METHOD OF THE SAME
JP4035617B2 (en) Iridium-based alloy and manufacturing method thereof
JP6841441B2 (en) Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871901

Country of ref document: EP

Kind code of ref document: A1