JP6841441B2 - Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool - Google Patents

Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool Download PDF

Info

Publication number
JP6841441B2
JP6841441B2 JP2018536924A JP2018536924A JP6841441B2 JP 6841441 B2 JP6841441 B2 JP 6841441B2 JP 2018536924 A JP2018536924 A JP 2018536924A JP 2018536924 A JP2018536924 A JP 2018536924A JP 6841441 B2 JP6841441 B2 JP 6841441B2
Authority
JP
Japan
Prior art keywords
atomic
alloy
tic
zrc
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018536924A
Other languages
Japanese (ja)
Other versions
JPWO2018042733A1 (en
Inventor
吉見 享祐
享祐 吉見
俊一 中山
俊一 中山
佐藤 裕
佐藤  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Publication of JPWO2018042733A1 publication Critical patent/JPWO2018042733A1/en
Application granted granted Critical
Publication of JP6841441B2 publication Critical patent/JP6841441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum

Description

本発明は、Mo−Si−B系合金、Mo−Si−B系合金の製造方法および摩擦撹拌接合用ツールに関する。 The present invention relates to a Mo-Si-B alloy, a method for producing a Mo-Si-B alloy, and a friction stir welding tool.

ジェットエンジンやガスタービンなどの熱機関を高効率で運転させるために、無冷却で使用可能な超高温材料が求められている。そのような材料として、従来から、高い融点および優れた高温強度を有するMo−Si−B合金が注目されているが、高密度であり、室温破壊靭性に劣るという問題があった。そこで、本発明者等は、Mo−Si−B合金にTiCを添加した合金を開発し、この合金が、Mo−Si−B合金の優れた高温強度を維持したまま、Mo−Si−B合金より低密度で、室温破壊靭性が高いことを確認している(例えば、特許文献1、2、非特許文献1乃至3参照)。 In order to operate heat engines such as jet engines and gas turbines with high efficiency, ultra-high temperature materials that can be used without cooling are required. As such a material, a Mo—Si—B alloy having a high melting point and excellent high temperature strength has been attracting attention, but there is a problem that it has a high density and is inferior in room temperature fracture toughness. Therefore, the present inventors have developed an alloy in which TiC is added to the Mo-Si-B alloy, and this alloy maintains the excellent high-temperature strength of the Mo-Si-B alloy while maintaining the Mo-Si-B alloy. It has been confirmed that the density is lower and the toughness at room temperature is high (see, for example, Patent Documents 1 and 2 and Non-Patent Documents 1 to 3).

また、本発明者等は、TiCと同様にMoと共晶反応することが知られているZrCを、Mo−Si−B合金に添加した合金も開発し、この合金も、TiCを添加した合金と同様に、Mo−Si−B合金の優れた高温強度を維持したまま、Mo−Si−B合金より低密度で、室温破壊靭性が高いことを確認している(例えば、非特許文献4参照)。 In addition, the present inventors have also developed an alloy in which ZrC, which is known to eutectic react with Mo like TiC, is added to a Mo—Si—B alloy, and this alloy is also an alloy to which TiC is added. Similarly, it has been confirmed that the Mo-Si-B alloy has a lower density and higher room temperature fracture toughness than the Mo-Si-B alloy while maintaining the excellent high-temperature strength (see, for example, Non-Patent Document 4). ).

なお、モリブデン合金ではないが、セラミックスである(Ti,Zr)Cが、TiCよりも著しく強度が高いことが、既に知られている(例えば、非特許文献5参照)。 It is already known that ceramics (Ti, Zr) C, which is not a molybdenum alloy, has significantly higher strength than TiC (see, for example, Non-Patent Document 5).

一方、従来の摩擦撹拌接合用のツールとして、SKD61などの工具鋼やPCBNツール、WC−Coなどの超硬合金、W−Re合金およびIr合金を用いたツール等が開発され、既に実用化されている。 On the other hand, as conventional tools for friction stir welding, tool steels such as SKD61, PCBN tools, cemented carbides such as WC-Co, tools using W-Re alloys and Ir alloys, etc. have been developed and have already been put into practical use. ing.

国際公開WO2014/112151号International release WO2014 / 112151 特許第5876943号公報Japanese Patent No. 5876943

山本詩歩、吉見享祐、金正旭、横山健太郎、「TiC添加したMo-Si-B合金の高温強度に及ぼすミクロ組織の影響」、日本金属学会誌、2016年、第80巻、第1号、p.51-59Shiho Yamamoto, Kousuke Yoshimi, Jung-Wook Kim, Kentaro Yokoyama, "Effect of Microstructure on High Temperature Strength of Mo-Si-B Alloy with TiC", Journal of the Japan Institute of Metals, 2016, Vol. 80, No. 1, p.51-59 Kyosuke Yoshimi, Junya Nakamura, Daiki Kanekon, Shiho Yamamoto, Kouichi Maruyama, Hirokazu Katsui, Takashi Goto, “High-Temperature Compressive Properties of TiC-Added Mo-Si-B Alloys”, JOM, 2014, 66(9), p.1930-1938Kyosuke Yoshimi, Junya Nakamura, Daiki Kanekon, Shiho Yamamoto, Kouichi Maruyama, Hirokazu Katsui, Takashi Goto, “High-Temperature Compressive Properties of TiC-Added Mo-Si-B Alloys”, JOM, 2014, 66 (9), p. 1930-1938 Shimpei Miyamoto, Kyosuke Yoshimi, Seong-Ho Ha, Takahiro Kaneko, Junya Nakamura, Tetsuya Sato, Kouichi Maruyama, Rong Tu, Takashi Goto, “Phase Equilibria, Microstructure, and High Temperature Strength of TiC-Added Mo-Si-B Alloys”, Metallurgical and Materials Transactions A, 2014, 45A, p.1112-1123Shimpei Miyamoto, Kyosuke Yoshimi, Seong-Ho Ha, Takahiro Kaneko, Junya Nakamura, Tetsuya Sato, Kouichi Maruyama, Rong Tu, Takashi Goto, “Phase Equilibria, Microstructure, and High Temperature Strength of TiC-Added Mo-Si-B Alloys” , Metallurgical and Materials Transactions A, 2014, 45A, p.1112-1123 中山俊一、吉見享祐、「鋳造法によって作製されたZrC添加Mo-Si-B合金のミクロ組織と機械的性質」、日本金属学会誌、2016年、第80巻、第1号、p.92-101Shunichi Nakayama, Kousuke Yoshimi, "Microstructure and Mechanical Properties of ZrC-Added Mo-Si-B Alloy Produced by Casting", Journal of the Japan Institute of Metals, 2016, Vol. 80, No. 1, p.92 -101 連川貞弘他、「NbおよびZrによるTiCの高温における固溶硬化」、日本金属学会誌、1991年、第55巻、第4号、p.390-397Sadahiro Renkawa et al., "Solid solution curing of TiC at high temperature by Nb and Zr", Journal of the Japan Institute of Metals, 1991, Vol. 55, No. 4, p.390-397.

特許文献1等に記載のTiCを添加したMo−Si−B系合金や、非特許文献4に記載のZrCを添加したMo−Si−B系合金は、優れた高温強度を有しているが、さらに優れた高温強度特性を有する材料の開発が求められている。なお、非特許文献5には、TiCとZrCとを含むセラミックスが記載されているが、TiCとZrCとを含むモリブデン合金やMo−Si−B系合金については、記載も示唆もされていない。 Although the TiC-added Mo-Si-B alloy described in Patent Document 1 and the like and the ZrC-added Mo-Si-B alloy described in Non-Patent Document 4 have excellent high-temperature strength. Further, the development of a material having excellent high temperature strength characteristics is required. In Non-Patent Document 5, ceramics containing TiC and ZrC are described, but neither molybdenum alloys containing TiC and ZrC nor Mo—Si—B based alloys are described or suggested.

一方、インコネル(INCONEL;登録商標)などのNi基超合金やTi合金は、高強度で高耐熱性を有していることから、それらを摩擦撹拌接合するのは困難であり、そのためのツールも限られている。特に、Ni基超合金については、PCBNツール以外には適用例がない。このため、Ni基超合金やTi合金用の摩擦撹拌接合用ツールの材料として、耐熱性、耐摩耗性、高靭性の新たな材料が求められている。 On the other hand, Ni-based superalloys such as INCONEL (registered trademark) and Ti alloys have high strength and high heat resistance, so it is difficult to perform friction stir welding between them, and tools for that purpose are also available. limited. In particular, there is no application example for Ni-based superalloys other than PCBN tools. Therefore, new materials with heat resistance, wear resistance, and high toughness are required as materials for friction stir welding tools for Ni-based superalloys and Ti alloys.

本発明は、このような課題に着目してなされたもので、より優れた高温強度特性を有するMo−Si−B系合金およびMo−Si−B系合金の製造方法、ならびに、Ni基超合金およびTi合金に適用可能な摩擦撹拌接合用ツールを提供することを目的とする。 The present invention has been made by paying attention to such a problem, and a method for producing a Mo-Si-B-based alloy and a Mo-Si-B-based alloy having more excellent high-temperature strength characteristics, and a Ni-based superalloy. And to provide a friction stir welding tool applicable to Ti alloys.

本発明者等は、Mo−Si−B合金に対して、TiCとZrCとを同時に添加することにより、それぞれを単独で添加したものよりも劇的に高温強度が向上することを見出し、本発明に至った。 The present inventors have found that by adding TiC and ZrC to the Mo—Si—B alloy at the same time, the high temperature strength is dramatically improved as compared with the case where each of them is added alone. It came to.

すなわち、本発明に係るMo−Si−B系合金は、60原子%以上75原子%以下のMoと、1.7原子%以上6.7原子%以下のSiと、3.3原子%以上13.3原子%以下のBと、1.0原子%以上14.0原子%以下のTiと、1.0原子%以上14.0原子%以下のZrと、5.0原子%以上15.0原子%以下のCとを有し、残部が不可避不純物から成り、TiCとZrCとの含有比が、9:1乃至1:9(原子比)であることを特徴とする。
That is, the Mo-Si-B based alloy according to the present invention includes Mo of 60 atomic% or more and 75 atomic% or less, Si of 1.7 atomic% or more and 6.7 atomic% or less, and 3.3 atomic% or more and 13 .B of 3 atomic% or less, Ti of 1.0 atomic% or more and 14.0 atomic% or less, Zr of 1.0 atomic% or more and 14.0 atomic% or less, 5.0 atomic% or more and 15.0 possess the atomic percent and C, the balance being unavoidable impurities, the content ratio of TiC and ZrC is 9: 1 to 1: characterized in that it is a 9 (atomic ratio).

本発明に係るMo−Si−B系合金は、Mo−Si−B合金にTiCまたはZrCをそれぞれ単独で添加したものと比べて、優れた高温強度特性を有している。また、Mo−Si−B合金と比べて、低密度で、室温破壊靭性が高い。 The Mo-Si-B alloy according to the present invention has excellent high-temperature strength characteristics as compared with the Mo-Si-B alloy to which TiC or ZrC is added alone. In addition, it has a lower density and higher room temperature fracture toughness than the Mo-Si-B alloy.

本発明に係るMo−Si−B系合金は、前記Tiと前記Zrとを合わせた組成比が、5原子%以上15.0原子%以下であることが好ましい。また、Mo固溶体相、MoSiB、(Ti,Zr,Mo)C、(Mo,Ti,Zr)Cの4相から成ることが好ましい。これらの場合、特に優れた高温強度特性を有している。
The Mo—Si—B alloy according to the present invention preferably has a composition ratio of Ti and Zr in combination of 5 atomic% or more and 15.0 atomic% or less . Also, Mo solid solution phase, Mo 5 SiB 2, (Ti , Zr, Mo) C, (Mo, Ti, Zr) is preferably comprised of 4 phases 2 C. In these cases, they have particularly excellent high-temperature strength characteristics.

本発明に係るMo−Si−B系合金の製造方法は、60原子%以上75原子%以下のMoと、1.7原子%以上6.7原子%以下のSiと、3.3原子%以上13.3原子%以下のBと、1.0原子%以上14.0原子%以下のTiと、1.0原子%以上14.0原子%以下のZrと、5.0原子%以上15.0原子%以下のCとを有し、残部が不可避不純物から成る原料を溶解して鋳造した後、1500℃〜1900℃で1時間〜100時間の均質化熱処理を行うことにより、本発明に係るMo−Si−B系合金を製造することを特徴とする。
The method for producing a Mo—Si—B based alloy according to the present invention includes Mo of 60 atomic% or more and 75 atomic% or less, Si of 1.7 atomic% or more and 6.7 atomic% or less, and 3.3 atomic% or more. 13. B of 13.3 atomic% or less, Ti of 1.0 atomic% or more and 14.0 atomic% or less, Zr of 1.0 atomic% or more and 14.0 atomic% or less, and 5.0 atomic% or more 15. 0 possess the atomic percent and C, after the balance has been cast by dissolving formed Ru raw material from unavoidable impurities, by performing homogenization heat treatment for 1 to 100 hours at 1500 ° C. to 1900 ° C., the present invention It is characterized by producing such a Mo—Si—B based alloy.

本発明に係るMo−Si−B系合金の製造方法は、本発明に係るMo−Si−B系合金を製造することができる。本発明に係るMo−Si−B系合金の製造方法は、いわゆる鋳造法を利用するため、製造されるMo−Si−B系合金を大型化することができる。なお、TiとZrとを合わせた組成比が、5原子%以上15.0原子%以下であることが好ましい。均質化熱処理は、1750℃〜1850℃で24時間〜30時間行うことが特に好ましい。
The method for producing a Mo—Si—B alloy according to the present invention can produce a Mo—Si—B alloy according to the present invention. Since the method for producing a Mo—Si—B alloy according to the present invention utilizes a so-called casting method, the size of the produced Mo—Si—B alloy can be increased. The combined composition ratio of Ti and Zr is preferably 5 atomic% or more and 15.0 atomic% or less . Homogenization heat treatment is particularly preferably carried out 24 to 30 hours at 1750 ℃ ~1850 ℃.

本発明に係る摩擦撹拌接合用ツールは、本発明に係るMo−Si−B系合金から成ることを特徴とする。 The friction stir welding tool according to the present invention is characterized by being made of a Mo—Si—B based alloy according to the present invention.

本発明に係る摩擦撹拌接合用ツールは、高温強度特性に優れ、優れた耐熱性および耐摩耗性を有している。また、靭性も高いため、Ni基超合金およびTi合金に適用することができる。本発明に係る摩擦撹拌接合用ツールは、粉末焼結体ではなく、鋳造法を利用して製造できるため、大型化が可能であり、巨大プラントでの利用も可能になる。また、本発明に係る摩擦撹拌接合用ツールは、WC−Co超硬合金やPCBNツール等よりも安価に製造できるとともに、大量生産も可能である。 The friction stir welding tool according to the present invention has excellent high-temperature strength characteristics, and has excellent heat resistance and wear resistance. In addition, since it has high toughness, it can be applied to Ni-based superalloys and Ti alloys. Since the friction stir welding tool according to the present invention can be manufactured by using a casting method instead of a powder sintered body, it can be increased in size and can be used in a huge plant. Further, the friction stir welding tool according to the present invention can be manufactured at a lower cost than the WC-Co cemented carbide, the PCBN tool, and the like, and can also be mass-produced.

本発明に係る摩擦撹拌接合用ツールは、材料となる本発明に係るMo−Si−B系合金の切削加工が困難であるため、例えば、放電加工と切削加工と研削加工とを組み合わせることにより、所望の形状に加工することが好ましい。 Since it is difficult for the friction stir welding tool according to the present invention to cut the Mo—Si—B alloy according to the present invention as a material, for example, by combining electric discharge machining, cutting machining, and grinding machining, It is preferable to process it into a desired shape.

本発明に係るMo−Si−B系合金は、摩擦撹拌接合用ツールだけでなく、切削加工用工具や、Ni基超合金等の高耐熱性材料に対する熱間鍛造用の金型などにも使用することができる。また、SiC/SiC複合材料の代替材料として、次世代エンジンや火力発電用タービンの動・静翼にも使用することができる。 The Mo-Si-B alloy according to the present invention is used not only for friction stir welding tools, but also for cutting tools and dies for hot forging of highly heat-resistant materials such as Ni-based superalloys. can do. It can also be used as a substitute material for SiC / SiC composite materials for the dynamic and stationary blades of next-generation engines and turbines for thermal power generation.

本発明によれば、より優れた高温強度特性を有するMo−Si−B系合金およびMo−Si−B系合金の製造方法、ならびに、Ni基超合金およびTi合金に適用可能な摩擦撹拌接合用ツールを提供することができる。 According to the present invention, a method for producing Mo-Si-B alloys and Mo-Si-B alloys having better high temperature strength characteristics, and for friction stir welding applicable to Ni-based superalloys and Ti alloys. Tools can be provided.

本発明の実施の形態のMo−Si−B系合金の、(a)TiC:ZrC=9:1のときの鋳造後のインゴット上部の走査型電子顕微鏡写真、(b)インゴット下部の走査型電子顕微鏡写真、(c)TiC:ZrC=8:2のときの鋳造後のインゴット上部の走査型電子顕微鏡写真、(d)その一部を拡大した写真、(e)TiC:ZrC=8:2のときの鋳造後のインゴット下部の走査型電子顕微鏡写真、(f)その一部を拡大した写真である。(A) Scanning electron micrograph of the upper part of the ingot after casting when TiC: ZrC = 9: 1 of the Mo—Si—B based alloy of the embodiment of the present invention, (b) Scanning electron micrograph of the lower part of the ingot. Micrograph, (c) scanning electron micrograph of the upper part of the ingot after casting when TiC: ZrC = 8: 2, (d) a partially enlarged photograph, (e) TiC: ZrC = 8: 2. It is a scanning electron micrograph of the lower part of the ingot after casting, and (f) an enlarged photograph of a part thereof. 本発明の実施の形態のMo−Si−B系合金の、(a)TiC:ZrC=5:5のときの鋳造後の走査型電子顕微鏡写真、(b)その一部を拡大した写真、(c)TiC:ZrC=3:7のときの鋳造後の走査型電子顕微鏡写真、(d)その一部を拡大した写真、(e)TiC:ZrC=2:8のときの鋳造後の走査型電子顕微鏡写真、(f)その一部を拡大した写真である。A scanning electron micrograph after casting of the Mo—Si—B alloy according to the embodiment of the present invention at (a) TiC: ZrC = 5: 5, (b) an enlarged photograph thereof, ( c) Scanning electron micrograph after casting when TiC: ZrC = 3: 7, (d) enlarged photograph of a part thereof, (e) scanning electron microscope after casting when TiC: ZrC = 2: 8. It is an electron micrograph, (f) an enlarged photograph of a part thereof. 本発明の実施の形態のMo−Si−B系合金の、(a)TiC:ZrC=9:1のときインゴット上部、(b)インゴット下部、(c)TiC:ZrC=8:2のときのインゴット上部、(d)インゴット下部、均質化熱処理後の走査型電子顕微鏡写真である。When the Mo—Si—B alloy according to the embodiment of the present invention has (a) TiC: ZrC = 9: 1, the upper part of the ingot, (b) the lower part of the ingot, and (c) TiC: ZrC = 8: 2. It is a scanning electron micrograph of the upper part of the ingot, (d) the lower part of the ingot, and after homogenization heat treatment. 本発明の実施の形態のMo−Si−B系合金の、(a)TiC:ZrC=5:5のとき、(b)TiC:ZrC=3:7のとき、(c)TiC:ZrC=2:8のときの、均質化熱処理後の走査型電子顕微鏡写真である。When (a) TiC: ZrC = 5: 5, (b) TiC: ZrC = 3: 7, and (c) TiC: ZrC = 2 of the Mo—Si—B based alloy according to the embodiment of the present invention. : 8 is a scanning electron micrograph after homogenization heat treatment. 本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=9:1〜2:8のときの、鋳造後のX線回折パターンである。This is an X-ray diffraction pattern after casting of the Mo—Si—B alloy according to the embodiment of the present invention when TiC: ZrC = 9: 1 to 2: 8. 本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=9:1〜2:8のときの、均質化熱処理後のX線回折パターンである。This is an X-ray diffraction pattern of the Mo—Si—B alloy according to the embodiment of the present invention after homogenization heat treatment at TiC: ZrC = 9: 1 to 2: 8. 本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=9:1〜2:8のときの、(Mo,Ti,Zr)C相の共析分解結果を示す走査型顕微鏡写真である。Of Mo-Si-B alloy of the embodiment of the present invention, TiC: ZrC = 9: 1~2 : when the 8, (Mo, Ti, Zr ) scanning showing a eutectoid decomposition results for 2 C phase It is a micrograph. 本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=9:1〜2:8のときの、(a)Moss相の鋳造後、(b)Moss相の均質化熱処理後、(c)MoSiB相の鋳造後、(d)MoSiB相の均質化熱処理後の元素濃度を示すグラフである。Of Mo-Si-B alloy of the embodiment of the present invention, TiC: ZrC = 9: 1~2 : when the 8, (a) after casting of Mo ss phase, (b) homogenization of Mo ss phase It is a graph which shows the element concentration after the heat treatment, after the casting of (c) Mo 5 SiB 2 phase, and after the homogenization heat treatment of (d) Mo 5 SiB 2 phase. 本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=9:1〜2:8のときの、(a)(Ti,Zr,Mo)C相の鋳造後、(b)(Ti,Zr,Mo)C相の均質化熱処理後、(c)(Mo,Ti,Zr)C相の鋳造後、(d)(Mo,Ti,Zr)C相の均質化熱処理後の元素濃度を示すグラフである。After casting the (a) (Ti, Zr, Mo) C phase of the Mo—Si—B based alloy according to the embodiment of the present invention at TiC: ZrC = 9: 1 to 2: 8, (b) (Ti, Zr, Mo) after the homogenizing heat treatment of the C phase, (c) (Mo, Ti , Zr) after casting of 2 C phase, (d) (Mo, Ti , Zr) after homogenizing heat treatment of 2 C phase It is a graph which shows the element concentration of. 本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=10:0〜0:10のときの、均質化熱処理後の(a)Moss、(b)MoSiB、(c) (Mo,Ti,Zr)C、(d) (Ti,Zr,Mo)Cの各相の元素濃度を示すグラフである。Of Mo-SiB-based alloy according to the embodiment of this invention, TiC: ZrC = 10: 0~0 : when the 10, after homogenizing heat treatment (a) Mo ss, (b ) Mo 5 SiB 2, (c) (Mo, Ti, Zr) 2 C, a graph showing the (d) (Ti, Zr, Mo) phase of element concentration C. 本発明の実施の形態のMo−Si−B系合金の、65Mo−5Si−10B−5TiC−5ZrCの大型鋳塊の(a)鋳造後の高温圧縮試験結果、(b)均質化熱処理後の高温圧縮試験結果、(c) (b)の高温圧縮試験のピーク応力(Peak Stress)および0.2%耐力(0.2% Proof Stress)の温度依存性を示すグラフである。High-temperature compression test results after (a) casting of a large ingot of 65Mo-5Si-10B-5TiC-5ZrC of the Mo-Si-B alloy according to the embodiment of the present invention, (b) high temperature after homogenization heat treatment. 3 is a graph showing the temperature dependence of the compression test results, the peak stress (Peak Stress) and the 0.2% proof stress (0.2% Proof Stress) of the high temperature compression test of (c) and (b). 本発明の実施の形態のMo−Si−B系合金に対する比較例の、(a)65Mo−5Si−10B−10TiCの大型鋳塊の均質化熱処理後の高温圧縮試験結果、(b) (a)の高温圧縮試験のピーク応力(Peak Stress)および0.2%耐力(0.2% Proof Stress)の温度依存性、(c)65Mo−5Si−10B−10ZrCの大型鋳塊の均質化熱処理後の高温圧縮試験結果、(d) (c)の高温圧縮試験のピーク応力(Peak Stress)および0.2%耐力(0.2% Proof Stress)の温度依存性を示すグラフである。High-temperature compression test results after homogenization heat treatment of a large ingot of (a) 65Mo-5Si-10B-10TiC of a comparative example with respect to the Mo-Si-B based alloy of the embodiment of the present invention, (b) (a). Peak stress and 0.2% proof stress (0.2% Proof Stress) temperature dependence of high temperature compression test, (c) High temperature compression after homogenization heat treatment of large ingot of 65Mo-5Si-10B-10ZrC As a result of the test, it is a graph which shows the temperature dependence of the peak stress (Peak Stress) and 0.2% proof stress (0.2% Proof Stress) of the high temperature compression test of (d) (c). 図11および図12の高温圧縮試験結果による、均質化熱処理後のピーク応力の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the peak stress after the homogenization heat treatment by the high temperature compression test result of FIG. 11 and FIG. (a)本発明の実施の形態のMo−Si−B系合金の65Mo−5Si−10B−5TiC−5ZrC、ならびに、65Mo−5Si−10B−10TiCおよび65Mo−5Si−10B−10ZrCの大型鋳塊の均質化熱処理後の高温圧縮試験結果、(b)本発明の実施の形態のMo−Si−B系合金の65Mo−5Si−10B−5TiC−5ZrCの大型鋳塊の均質化熱処理後、ならびに、38Mo−17Si−25Ti−10ZrCおよび62.2Mo−6.7Si−13.3B−8.9ZrCの高温圧縮試験結果を示すグラフである。(A) Large ingots of 65Mo-5Si-10B-5TiC-5ZrC and 65Mo-5Si-10B-10TiC and 65Mo-5Si-10B-10ZrC of the Mo-Si-B alloy according to the embodiment of the present invention. High-temperature compression test results after homogenization heat treatment, (b) After homogenization heat treatment of a large ingot of 65Mo-5Si-10B-5TiC-5ZrC of the Mo-Si-B alloy according to the embodiment of the present invention, and 38Mo. It is a graph which shows the high temperature compression test result of -17Si-25Ti-10ZrC and 62.2Mo-6.7Si-13.3B-8.9ZrC. 図14(b)に示す高温圧縮試験後の、(a)本発明の実施の形態のMo−Si−B系合金の65Mo−5Si−10B−5TiC−5ZrC、(b)38Mo−17Si−25Ti−10ZrC、(c)62.2Mo−6.7Si−13.3B−8.9ZrCの各試料の観察結果を示す正面図である。After the high temperature compression test shown in FIG. 14 (b), (a) 65Mo-5Si-10B-5TiC-5ZrC of the Mo-Si-B alloy according to the embodiment of the present invention, (b) 38Mo-17Si-25Ti- It is a front view which shows the observation result of each sample of 10ZrC, (c) 62.2Mo-6.7Si-13.3B-8.9ZrC. (a)本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=10:0〜5:5の各試料の均質化熱処理後の高温圧縮試験結果(実線は小型鋳塊、破線は大型鋳塊の結果)、(b)本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=4:6〜0:10の各試料の均質化熱処理後の高温圧縮試験結果(実線は小型鋳塊、破線は大型鋳塊の結果)を示すグラフである。(A) High-temperature compression test results after homogenization heat treatment of each sample of TiC: ZrC = 10: 0 to 5: 5 of the Mo—Si—B alloy according to the embodiment of the present invention (solid line is a small ingot, The broken line is the result of a large ingot), (b) High-temperature compression of the Mo—Si—B alloy of the embodiment of the present invention after homogenization heat treatment of each sample of TiC: ZrC = 4: 6 to 0:10. It is a graph which shows the test result (the solid line is the result of a small ingot, and the broken line is the result of a large ingot). 図16に示す高温圧縮試験の(a)小型鋳塊の各試料のピーク応力(Peak Stress)および0.2%耐力(0.2% Proof Stress)の組成(TiC濃度およびZrC濃度)依存性、(b)大型鋳塊の各試料のピーク応力(Peak Stress)および0.2%耐力(0.2% Proof Stress)の組成(TiC濃度およびZrC濃度)依存性を示すグラフである。In the high temperature compression test shown in FIG. 16, (a) the composition (TiC concentration and ZrC concentration) dependence of the peak stress (Peak Stress) and 0.2% proof stress (0.2% Proof Stress) of each sample of the small ingot, (b). ) It is a graph which shows the composition (TiC concentration and ZrC concentration) dependence of the peak stress (Peak Stress) and 0.2% proof stress (0.2% Proof Stress) of each sample of a large ingot. 本発明の実施の形態のMo−Si−B系合金の、TiC:ZrC=10:0〜0:10の各試料の、(a)小型鋳塊、(b)大型鋳塊の鋳造後および均質化熱処理後の、室温で測定されたビッカース(Vickers)硬さの組成(TiC濃度およびZrC濃度)依存性を示すグラフである。After casting and homogeneous of (a) small ingots and (b) large ingots of each sample of TiC: ZrC = 10: 0 to 0:10 of the Mo—Si—B based alloy according to the embodiment of the present invention. It is a graph which shows the composition (TiC concentration and ZrC concentration) dependence of the Vickers hardness measured at room temperature after a chemical heat treatment. 本発明の実施の形態のMo−Si−B系合金の、(a)TiC:ZrC=5:5の鋳造後、(b)均質化熱処理後、(c)比較例の65Mo−5Si−10B−10ZrCの均質化熱処理後の、シェブロンノッチを導入した試験片の4点曲げ試験による荷重−変位曲線である。After casting (a) TiC: ZrC = 5: 5 and (b) homogenizing heat treatment of the Mo—Si—B based alloy according to the embodiment of the present invention, (c) 65Mo-5Si-10B- of Comparative Example. It is a load-displacement curve by a 4-point bending test of a test piece introduced with a chevron notch after a homogenization heat treatment of 10ZrC. 本発明の実施の形態のMo−Si−B系合金のTiC:ZrC=5:5の鋳造後および均質化熱処理後、ならびに、比較例の65Mo−5Si−10B−10TiCおよび65Mo−5Si−10B−10ZrCの室温破壊靭性値を示すグラフである。After casting and homogenizing heat treatment of TiC: ZrC = 5: 5 of the Mo-Si-B alloy according to the embodiment of the present invention, and 65Mo-5Si-10B-10TiC and 65Mo-5Si-10B- of Comparative Examples. It is a graph which shows the room temperature fracture toughness value of 10ZrC. 本発明の実施の形態のMo−Si−B系合金のTiC:ZrC=5:5の鋳造後および均質化熱処理後、ならびに、比較例の65Mo−5Si−10B−10TiCおよび65Mo−5Si−10B−10ZrCの密度を示すグラフである。After casting and homogenizing heat treatment of TiC: ZrC = 5: 5 of the Mo-Si-B alloy according to the embodiment of the present invention, and 65Mo-5Si-10B-10TiC and 65Mo-5Si-10B- of Comparative Examples. It is a graph which shows the density of 10ZrC. 本発明の実施の形態の摩擦撹拌接合用ツールを示す斜視図である。It is a perspective view which shows the friction stir welding tool of embodiment of this invention. 図22に示す摩擦撹拌接合用ツールを用いて摩擦撹拌を行った後の、(a)インコネル(登録商標)600、(b)64チタン合金、(c)SUS304の状態を示す平面図である。It is a top view which shows the state of (a) Inconel (registered trademark) 600, (b) 64 titanium alloy, and (c) SUS304 after friction stir welding using the friction stir welding tool shown in FIG.

以下、実施例等に基づいて、本発明の実施の形態について説明する。
本発明の実施の形態のMo−Si−B系合金は、60原子%以上75原子%以下のMoと、1.7原子%以上6.7原子%以下のSiと、3.3原子%以上13.3原子%以下のBと、1.0原子%以上14.0原子%以下のTiと、1.0原子%以上14.0原子%以下のZrと、5.0原子%以上15.0原子%以下のCとを有している。
Hereinafter, embodiments of the present invention will be described based on examples and the like.
The Mo-Si—B based alloy according to the embodiment of the present invention contains Mo of 60 atomic% or more and 75 atomic% or less, Si of 1.7 atomic% or more and 6.7 atomic% or less, and 3.3 atomic% or more. 13. B of 13.3 atomic% or less, Ti of 1.0 atomic% or more and 14.0 atomic% or less, Zr of 1.0 atomic% or more and 14.0 atomic% or less, and 5.0 atomic% or more 15. It has C of 0 atomic% or less.

本発明の実施の形態のMo−Si−B系合金は、本発明の実施の形態のMo−Si−B系合金の製造方法により好適に製造される。すなわち、本発明の実施の形態のMo−Si−B系合金の製造方法は、まず、60原子%以上75原子%以下のMoと、1.7原子%以上6.7原子%以下のSiと、3.3原子%以上13.3原子%以下のBと、1.0原子%以上14.0原子%以下のTiと、1.0原子%以上14.0原子%以下のZrと、5.0原子%以上15.0原子%以下のCとを有する原料を溶解して鋳造する。その後、1500℃〜1900℃で1時間〜100時間の均質化熱処理を行う。これにより、本発明の実施の形態のMo−Si−B系合金を製造することができる。 The Mo—Si—B based alloy according to the embodiment of the present invention is suitably produced by the method for producing a Mo—Si—B based alloy according to the embodiment of the present invention. That is, in the method for producing the Mo—Si—B based alloy according to the embodiment of the present invention, first, Mo of 60 atomic% or more and 75 atomic% or less and Si of 1.7 atomic% or more and 6.7 atomic% or less are used. 3.3 B of 3.3 atomic% or more and 13.3 atomic% or less, Ti of 1.0 atomic% or more and 14.0 atomic% or less, Zr of 1.0 atomic% or more and 14.0 atomic% or less, and 5 A raw material having C of 0.0 atomic% or more and 15.0 atomic% or less is melted and cast. Then, a homogenizing heat treatment is performed at 1500 ° C. to 1900 ° C. for 1 hour to 100 hours. Thereby, the Mo—Si—B based alloy according to the embodiment of the present invention can be produced.

本発明の実施の形態のMo−Si−B系合金は、Mo−Si−B合金にTiCまたはZrCをそれぞれ単独で添加したものと比べて、優れた高温強度特性を有しており、優れた耐熱性および耐摩耗性を有している。また、Mo−Si−B合金と比べて、低密度で、室温破壊靭性が高い。また、鋳造法を利用して製造されるため、大型化することができる。 The Mo-Si-B alloy according to the embodiment of the present invention has excellent high-temperature strength characteristics and is excellent as compared with the Mo-Si-B alloy to which TiC or ZrC is added alone. It has heat resistance and abrasion resistance. In addition, it has a lower density and higher room temperature fracture toughness than the Mo-Si-B alloy. Moreover, since it is manufactured by using a casting method, it can be increased in size.

本発明の実施の形態のMo−Si−B系合金の製造方法により、本発明の実施の形態のMo−Si−B系合金を製造した。まず、65原子%のMoと、5原子%のSiと、10原子%のBと、(10−x)原子%のTiと、x原子%のZrと、10原子%のCとを有する原料(ここで、x=0〜10)を、アルゴン雰囲気中で、アーク溶解により溶解して水冷銅鋳型に鋳造した。鋳塊の大きさは、φ15mm、12gのもの(以下、「小型鋳塊」と呼ぶ)およびφ50mm、90gのもの(以下、「大型鋳塊」と呼ぶ)の2種類とした。鋳造後、アルゴン雰囲気中で、1800℃で24時間の均質化熱処理を行った。 The Mo—Si—B alloy according to the embodiment of the present invention was produced by the method for producing a Mo—Si—B alloy according to the embodiment of the present invention. First, a raw material having 65 atomic% Mo, 5 atomic% Si, 10 atomic% B, (10-x) atomic% Ti, x atomic% Zr, and 10 atomic% C. (Here, x = 0 to 10) was melted by arc melting in an argon atmosphere and cast into a water-cooled copper mold. There were two types of ingots, one having a diameter of 15 mm and 12 g (hereinafter referred to as a “small ingot”) and the other having a diameter of 50 mm and 90 g (hereinafter referred to as a “large ingot”). After casting, homogenization heat treatment was performed at 1800 ° C. for 24 hours in an argon atmosphere.

ここでは、まず、65Mo−5Si−10B−(10−x)Ti−xZr−10CのMo−Si−B系合金(x=1,2,5,7または8)のインゴットを製造した。なお、製造されたMo−Si−B系合金は、TiとZrとを合わせた組成比がCの組成比と等しく、TiCとZrCとの含有比が、x=1のとき9:1、x=2のとき8:2、x=5のとき5:5、x=7のとき3:7、x=8のとき2:8となっている。 Here, first, an ingot of a Mo-Si-B alloy (x = 1,2,5,7 or 8) of 65Mo-5Si-10B- (10-x) Ti-xZr-10C was produced. In the produced Mo—Si—B alloy, the combined composition ratio of Ti and Zr is equal to the composition ratio of C, and the content ratio of TiC and ZrC is 9: 1, x when x = 1. When = 2, it is 8: 2, when x = 5, it is 5: 5, when x = 7, it is 3: 7, and when x = 8, it is 2: 8.

TiC:ZrC=9:1〜2:8(x=1,2,5,7,8)のときの、小型鋳塊の鋳造後の合金(As-cast alloys)の走査型電子顕微鏡(SEM)写真を図1および図2に、均質化熱処理後の合金(Heat-treated alloys)のSEM写真を図3および図4に示す。また、TiC:ZrC=9:1〜2:8(x=1,2,5,7,8)のときの、小型鋳塊の鋳造後のX線回折(XRD)パターンを図5に、均質化熱処理後のXRDパターンを図6に示す。 Scanning electron microscope (SEM) of as-cast alloys after casting of small ingots when TiC: ZrC = 9: 1 to 2: 8 (x = 1,2,5,7,8) The photographs are shown in FIGS. 1 and 2, and the SEM photographs of the heat-treated alloys after the homogenization heat treatment are shown in FIGS. 3 and 4. Further, the X-ray diffraction (XRD) pattern after casting of the small ingot when TiC: ZrC = 9: 1 to 2: 8 (x = 1,2,5,7,8) is homogeneous in FIG. The XRD pattern after the chemical heat treatment is shown in FIG.

鋳造後は、図1および図5に示すように、TiC:ZrC=9:1および8:2のとき、インゴットの上部で、Moss[Mo固溶体相]および(Ti,Zr,Mo)C[主にTiC]の2相の共晶、MoSiB[以下、「T」とも記載する]、(Mo,Ti,Zr)C[主にMoC]の4相が存在していることが確認された。また、インゴットの下部で、Moss、Tおよび(Ti,Zr,Mo)C[主にTiC]の3相の共晶、(Mo,Ti,Zr)C[主にMoC]の4相が存在していることが確認された。After casting, as shown in FIGS. 1 and 5, TiC: ZrC = 9: 1 and 8: When 2, at the top of the ingot, Mo ss [Mo solid solution phase] and (Ti, Zr, Mo) C [ There are four phases, mainly TiC] two-phase eutectic, Mo 5 SiB 2 [hereinafter also referred to as “T 2 ”], and (Mo, Ti, Zr) 2 C [mainly Mo 2 C]. It was confirmed that there was. Further, at the bottom of the ingot, Mo ss, T 2 and (Ti, Zr, Mo) C 3 phases of the eutectic of the mainly TiC], (Mo, Ti, Zr) 2 C [ mainly Mo 2 C] of It was confirmed that four phases existed.

また、図2および図5に示すように、TiC:ZrC=5:5〜2:8のとき、Moss[Mo固溶体相]および(Ti,Zr,Mo)C[主にZrC]の2相の共晶、MoSiB[以下、「T」とも記載する]、(Mo,Ti,Zr)C[主にMoC]の4相が存在していることが確認された。また、初晶が(Ti,Zr,Mo)C[主にZrC]であることも確認された。また、インゴットの上部と下部で、ミクロ組織に顕著な違いは観察されなかった。xが大きくなるに従って、(Ti,Zr,Mo)Cの体積率が増加することが確認された。Further, as shown in FIGS. 2 and 5, TiC: ZrC = 5: 5~2: 8 When, Mo ss [Mo solid solution phase] and (Ti, Zr, Mo) C 2 phase [mainly ZrC] It was confirmed that there are four phases of eutectic, Mo 5 SiB 2 [hereinafter, also referred to as “T 2 ”] and (Mo, Ti, Zr) 2 C [mainly Mo 2 C]. It was also confirmed that the primary crystal was (Ti, Zr, Mo) C [mainly ZrC]. In addition, no significant difference was observed in the microstructure between the upper part and the lower part of the ingot. It was confirmed that the volume fraction of (Ti, Zr, Mo) C increased as x increased.

均質化熱処理後は、図3および図6に示すように、TiC:ZrC=9:1および8:2のとき、Moss、MoSiB、(Ti,Zr,Mo)C[主にTiC]の3相から成ることが確認された。また、図4および図6に示すように、TiC:ZrC=5:5〜2:8のとき、Moss、MoSiB、(Ti,Zr,Mo)C[主にZrC]、(Mo,Ti,Zr)C[主にMoC]の4相から成ることが確認された。また、TiC/ZrCが大きくなるに従って、(Mo,Ti,Zr)Cの体積率が減少し、x≦2で、全く認められなくなった。After the homogenizing heat treatment, as shown in FIGS. 3 and 6, TiC: ZrC = 9: 1 and 8: When 2, Mo ss, Mo 5 SiB 2, (Ti, Zr, Mo) C [ mainly TiC ] Was confirmed to consist of three phases. Further, as shown in FIGS. 4 and 6, TiC: ZrC = 5: 5~2: 8 When, Mo ss, Mo 5 SiB 2 , (Ti, Zr, Mo) C [ mainly ZrC], (Mo , Ti, Zr) It was confirmed that it consisted of 4 phases of 2 C [mainly Mo 2 C]. Further, according TiC / ZrC increases, (Mo, Ti, Zr) 2 C volume ratio is reduced, with x ≦ 2, was not recognized at all.

均質化熱処理後のTiC:ZrC=9:1〜2:8(x=1,2,5,7,8)の小型鋳塊の各試料について、(Mo,Ti,Zr)C[以下、「MoC」とも記載する]の共析分解を観察した。その結果を図7に示す。図7に示すように、TiC:ZrC=5:5のときは、熱処理後に(Mo,Ti,Zr)Cの一部が分解しており、それよりもTiC/ZrCが大きいときは、熱処理後に(Mo,Ti,Zr)Cが消失し、TiC/ZrCが小さいときは、熱処理後も(Mo,Ti,Zr)Cが存在していることが確認された。For each sample of a small ingot of TiC: ZrC = 9: 1 to 2: 8 (x = 1,2,5,7,8) after homogenization heat treatment, (Mo, Ti, Zr) 2 C [hereinafter, The eutectoid decomposition of [also referred to as "Mo 2 C"] was observed. The result is shown in FIG. As shown in FIG. 7, TiC: ZrC = 5: when the 5, after the heat treatment (Mo, Ti, Zr) 2 is partially decomposed and C, when it TiC / ZrC is greater than the heat treatment after (Mo, Ti, Zr) 2 C disappeared, when TiC / ZrC is small even after heat treatment (Mo, Ti, Zr) be 2 C is present was confirmed.

鋳造後および均質化熱処理後のTiC:ZrC=9:1〜2:8(x=1,2,5,7,8)の小型鋳塊の各試料について、エネルギー分散型X線分光法(SEM−EDX)により、Moss、MoSiB、(Mo,Ti,Zr)C、初晶(primary)である(Ti,Zr,Mo)C、の各相の元素濃度を測定した。その測定結果を図8〜図10に示す。なお、比較のため、図10中には、TiC:ZrC=10:0(x=0)および0:10(x=10)のときの大型鋳塊の測定結果も示す。Energy dispersive X-ray spectroscopy (SEM) for each sample of small ingots of TiC: ZrC = 9: 1-2: 8 (x = 1,2,5,7,8) after casting and homogenization heat treatment. the -EDX), Mo ss, Mo 5 SiB 2, were measured (Mo, Ti, Zr) 2 C, a primary crystal (primary) (Ti, Zr, Mo) C, each phase of the element concentration. The measurement results are shown in FIGS. 8 to 10. For comparison, FIG. 10 also shows the measurement results of the large ingot when TiC: ZrC = 10: 0 (x = 0) and 0:10 (x = 10).

図8〜図10に示すように、鋳造後および均質化熱処理後の各試料とも、TiC/ZrCが小さくなるに従って、Moss、MoSiB、(Mo,Ti,Zr)C中のTiの濃度が低下することが確認された。また、初晶(primary)の(Ti,Zr,Mo)Cは、TiC/ZrCが大きいとき(x=0,1,2のとき)、TiおよびMoの濃度が高く、TiC/ZrCが小さいとき(x=5,7,8,10のとき)、Zrの濃度が高いことが確認された。As shown in FIGS. 8 to 10, in each sample after casting and after homogenization heat treatment, in accordance with TiC / ZrC is reduced, Mo ss, Mo 5 SiB 2 , (Mo, Ti, Zr) Ti in 2 C It was confirmed that the concentration of was reduced. Further, the primary (Ti, Zr, Mo) C has a high TiC / ZrC concentration (when x = 0, 1, 2), a high concentration of Ti and Mo, and a small TiC / ZrC. (When x = 5,7,8,10), it was confirmed that the concentration of Zr was high.

なお、小型鋳塊と大型鋳塊では、鋳造後および均質化熱処理後ともに、大型鋳塊の方がMossの結晶が大きくなっているのが確認されたが、各相の元素濃度やX線回折パターンには違いが認められなかった。Mossの結晶の大きさが異なる原因としては、冷却速度の違いが考えられ、冷却速度を制御することにより、同じ合金組成でも機械的性質を変えることができるものと考えられる。In the small ingot and a large ingot, both after casting and after homogenization heat treatment, but the direction of a large ingot is large crystals of Mo ss is confirmed, each phase of the element concentration and X ray No difference was observed in the diffraction pattern. The cause of different sizes of Mo ss crystals, the difference in cooling rate is believed, by controlling the cooling rate is believed to be able to alter the mechanical properties of the same alloy composition.

鋳造後および均質化熱処理後のTiC:ZrC=5:5(x=5)の大型鋳塊の各試料、65Mo−5Si−10B−5TiC−5ZrCについて、2mm×2mm×4mmの大きさに切り出し、それぞれ1300℃、1400℃、1500℃、1600℃の真空中(>10−3Pa)で、2.1×10−4−1の条件で、高温圧縮試験を行った。また、比較のため、Mo−Si−B合金に、TiCおよびZrCをそれぞれ単独で添加した2つの合金、65Mo−5Si−10B−10TiC(x=0)および65Mo−5Si−10B−10ZrC(x=10)の大型鋳塊についても、同じ条件で高温圧縮試験を行った。Each sample of TiC: ZrC = 5: 5 (x = 5) large ingot after casting and homogenization heat treatment, 65Mo-5Si-10B-5TiC-5ZrC, was cut into a size of 2 mm × 2 mm × 4 mm. A high temperature compression test was performed under the conditions of 2.1 × 10 -4 s -1 in vacuum (> 10 -3 Pa) at 1300 ° C., 1400 ° C., 1500 ° C., and 1600 ° C., respectively. Also, for comparison, two alloys, 65Mo-5Si-10B-10TiC (x = 0) and 65Mo-5Si-10B-10ZrC (x =), in which TiC and ZrC were added independently to the Mo-Si-B alloy, respectively. The large ingot of 10) was also subjected to a high temperature compression test under the same conditions.

各試料の試験結果を、図11〜図14に示す。また、図13中には、これまでに調べられている他の合金の結果も合わせて示す。また、図14には、温度条件が1400℃のときの結果を示し、図14(b)には、過去に本発明者等が開発した2つのモリブデン合金、38Mo−17Si−25Ti−10ZrCおよび62.2Mo−6.7Si−13.3B−8.9ZrCの試験結果も示す。また、図14(b)に示す3つの試料について、高温圧縮試験後の状態を図15(a)〜(c)に示す。 The test results of each sample are shown in FIGS. 11 to 14. In addition, the results of other alloys investigated so far are also shown in FIG. Further, FIG. 14 shows the results when the temperature condition is 1400 ° C., and FIG. 14 (b) shows two molybdenum alloys developed by the present inventors in the past, 38Mo-17Si-25Ti-10ZrC and 62. The test results of .2Mo-6.7Si-13.3B-8.9ZrC are also shown. Further, the states of the three samples shown in FIG. 14 (b) after the high temperature compression test are shown in FIGS. 15 (a) to 15 (c).

図11〜図13、図14(a)に示すように、鋳造後および均質化熱処理後の各試料とも、TiCとZrCとを共添加した本発明の実施の形態のMo−Si−B系合金は、TiCおよびZrCをそれぞれ単独で添加した合金と比べて、ピーク応力(Peak Stress)および0.2%耐力(0.2% Proof Stress)が大きく、高温強度が高い傾向があることが確認された。特に、温度条件が1400℃のときには、強度が1.3倍〜2倍程度になっており、顕著に上昇していることが確認された。また、図13に示すように、他の合金と比べても、高温強度が高くなっていることが確認された。 As shown in FIGS. 11 to 13 and 14 (a), the Mo—Si—B alloy according to the embodiment of the present invention in which TiC and ZrC are co-added in each sample after casting and homogenization heat treatment. It was confirmed that the peak stress (Peak Stress) and 0.2% proof stress (0.2% Proof Stress) tended to be higher and the high temperature strength tended to be higher than the alloys to which TiC and ZrC were added alone. In particular, when the temperature condition was 1400 ° C., the intensity was about 1.3 to 2 times, and it was confirmed that the intensity increased remarkably. Further, as shown in FIG. 13, it was confirmed that the high temperature strength was higher than that of other alloys.

また、図14(b)に示すように、本発明の実施の形態のMo−Si−B系合金は、他のモリブデン合金と比べても、高温強度が高いことが確認された。また、図14(a)および(b)に示すように、本発明の実施の形態のMo−Si−B系合金は、他の合金と比べて、弾性限度を超えた後の流動応力の低下が小さいことも確認された。また、図15に示すように、高温圧縮試験後、他のモリブデン合金の試料では、巨視的なき裂が明確に認められるのに対して、本発明の実施の形態のMo−Si−B系合金の試料ではき裂が認められず、良好な破壊靭性が確認された。 Further, as shown in FIG. 14B, it was confirmed that the Mo—Si—B based alloy according to the embodiment of the present invention has higher high temperature strength than other molybdenum alloys. Further, as shown in FIGS. 14 (a) and 14 (b), the Mo—Si—B based alloy according to the embodiment of the present invention has a lower flow stress after exceeding the elastic limit than other alloys. Was also confirmed to be small. Further, as shown in FIG. 15, after the high temperature compression test, macroscopic cracks are clearly observed in the samples of other molybdenum alloys, whereas the Mo—Si—B alloy according to the embodiment of the present invention is observed. No cracks were observed in the sample, and good fracture toughness was confirmed.

次に、均質化熱処理後のTiC:ZrC=9:1〜1:9(x=1,2,3,4,5,6,7,8,9)の小型鋳塊の各試料についても、同じ条件で高温圧縮試験を行った。また、比較のため、Mo−Si−B合金に、TiCおよびZrCをそれぞれ単独で添加した2つの合金、65Mo−5Si−10B−10TiC(x=0)および65Mo−5Si−10B−10ZrC(x=10)の小型鋳塊についても、同じ条件で高温圧縮試験を行った。ただし、試験温度は、1400℃のみとした。 Next, for each sample of TiC: ZrC = 9: 1 to 1: 9 (x = 1,2,3,4,5,6,7,8,9) after homogenization heat treatment, A high temperature compression test was performed under the same conditions. Also, for comparison, two alloys, 65Mo-5Si-10B-10TiC (x = 0) and 65Mo-5Si-10B-10ZrC (x =), in which TiC and ZrC were added independently to the Mo-Si-B alloy, respectively. The small ingot of 10) was also subjected to a high temperature compression test under the same conditions. However, the test temperature was only 1400 ° C.

各試料の試験結果を、同じ条件で実施した小型鋳塊の結果と合わせて、図16および図17に示す。図16および図17に示すように、TiC:ZrC=9:1〜1:9(x=1,2,3,4,5,6,7,8,9)のとき、ピーク応力(Peak Stress)は、TiC:ZrC=5:5(x=5)で最大となることが確認された。また、0.2%耐力(0.2% Proof Stress)は、TiC:ZrC=4:6(x=6)で最大となることが確認された。また、TiC:ZrC=5:5(x=5)のとき、ピーク応力は、小型鋳塊の方が大型鋳塊よりも大きく、0.2%耐力は、小型鋳塊も大型鋳塊もほぼ同じ値であることが確認された。小型鋳塊と大型鋳塊のピーク応力の違いは、冷却速度の違いによるものと考えられる。 The test results of each sample are shown in FIGS. 16 and 17 together with the results of the small ingots carried out under the same conditions. As shown in FIGS. 16 and 17, when TiC: ZrC = 9: 1 to 1: 9 (x = 1,2,3,4,5,6,7,8,9), peak stress (Peak Stress) ) Was confirmed to be maximum at TiC: ZrC = 5: 5 (x = 5). It was also confirmed that the 0.2% proof stress (0.2% Proof Stress) was maximized at TiC: ZrC = 4: 6 (x = 6). Further, when TiC: ZrC = 5: 5 (x = 5), the peak stress of the small ingot is larger than that of the large ingot, and the 0.2% proof stress is almost the same for both the small ingot and the large ingot. It was confirmed that the values were the same. The difference in peak stress between the small ingot and the large ingot is considered to be due to the difference in the cooling rate.

鋳造後および均質化熱処理後のTiC:ZrC=9:1〜1:9(x=1,2,3,4,5,6,7,8,9)の小型鋳塊の各試料、ならびに、鋳造後および均質化熱処理後のTiC:ZrC=5:5(x=5)の大型鋳塊の各試料について、室温でビッカース(Vickers)硬さの測定を行った。測定時の荷重は、1kgfとした。また、鋳造後および均質化熱処理後のTiC:ZrC=5:5(x=5)の大型鋳塊の各試料について、4点曲げ試験および密度測定を行った。4点曲げ試験は、各試料を1.5×2×25mmの大きさに成形し、シェブロンノッチ法で行った。また、クロスヘッドの移動速度は、0.3μm/sとした。 Samples of small ingots of TiC: ZrC = 9: 1 to 1: 9 (x = 1,2,3,4,5,6,7,8,9) after casting and homogenization heat treatment, and Vickers hardness was measured at room temperature for each sample of a large ingot with TiC: ZrC = 5: 5 (x = 5) after casting and after homogenization heat treatment. The load at the time of measurement was 1 kgf. In addition, a four-point bending test and density measurement were performed on each sample of a large ingot of TiC: ZrC = 5: 5 (x = 5) after casting and homogenization heat treatment. The 4-point bending test was performed by molding each sample into a size of 1.5 × 2 × 25 mm and using the chevron notch method. The moving speed of the crosshead was 0.3 μm / s.

室温におけるビッカース硬さの測定結果を、図18に示す。なお、比較のため、Mo−Si−B合金に、TiCおよびZrCをそれぞれ単独で添加した、均質化熱処理後の2つの合金、65Mo−5Si−10B−10TiC(x=0)および65Mo−5Si−10B−10ZrC(x=10)の小型鋳塊および大型鋳塊についての測定結果も示す。図18に示すように、熱処理により若干硬さが低下するものの、鋳造後ではHV850以上、均質化熱処理後でもHV800以上であり、非常に硬いことが確認された。また、鋳造後および均質化熱処理後ともに、小型鋳塊の方が大型鋳塊よりも硬いことが確認された。この硬さの違いは、冷却速度の違いによるものと考えられる。 The measurement result of Vickers hardness at room temperature is shown in FIG. For comparison, two alloys after homogenization heat treatment, 65Mo-5Si-10B-10TiC (x = 0) and 65Mo-5Si-, in which TiC and ZrC were added independently to the Mo-Si-B alloy, respectively. The measurement results for small ingots and large ingots of 10B-10ZrC (x = 10) are also shown. As shown in FIG. 18, although the hardness was slightly reduced by the heat treatment, it was HV850 or more after casting and HV800 or more even after the homogenization heat treatment, and it was confirmed that the hardness was very hard. It was also confirmed that the small ingot was harder than the large ingot both after casting and after homogenization heat treatment. This difference in hardness is considered to be due to the difference in cooling rate.

室温で得られた4点曲げ試験による荷重−変位曲線を図19に、電磁超音波共鳴法で求められたヤング率やポアソン比を表1に、これらのデータを使いIrwinの相似則に従って求められた室温破壊靭性値を図20に示す。また、密度の測定結果を、図21に示す。なお、比較のため、Mo−Si−B合金に、TiCおよびZrCをそれぞれ単独で添加した、均質化熱処理後の2つの合金、65Mo−5Si−10B−10TiC(10TiC;x=0)および65Mo−5Si−10B−10ZrC(10ZrC;x=10)についての測定結果も示す。密度測定の10TiCの試料のみ小型鋳塊であり、他の比較試料は大型鋳塊である。 The load-displacement curve obtained by the 4-point bending test obtained at room temperature is shown in FIG. 19, and the Young's modulus and Poisson's ratio obtained by the electromagnetic ultrasonic resonance method are shown in Table 1, and these data are used to obtain the load-displacement curve according to Irwin's similarity law. The room temperature breaking toughness value is shown in FIG. The density measurement result is shown in FIG. For comparison, two alloys after homogenization heat treatment, 65Mo-5Si-10B-10TiC (10TiC; x = 0) and 65Mo-, in which TiC and ZrC were added independently to the Mo-Si-B alloy, respectively. The measurement results for 5Si-10B-10ZrC (10ZrC; x = 10) are also shown. Only the 10TiC sample for density measurement is a small ingot, and the other comparative samples are large ingots.

図20に示すように、鋳造後および均質化熱処理後の各試料とも、TiCおよびZrCをそれぞれ単独で添加した合金と比べて、室温破壊靭性値がやや低下しているものの、十分に大きい室温破壊靭性値を有していることが確認された。また、図21に示すように、鋳造後および均質化熱処理後の各試料とも、TiCおよびZrCをそれぞれ単独で添加した合金とほぼ同じ密度であり、Mo−Si−B合金より低密度であることが確認された。 As shown in FIG. 20, the room temperature fracture toughness values of each of the samples after casting and after homogenization heat treatment are slightly lower than those of the alloy to which TiC and ZrC are added alone, but they are sufficiently large at room temperature fracture. It was confirmed that it had a toughness value. Further, as shown in FIG. 21, each sample after casting and after homogenization heat treatment has substantially the same density as the alloy to which TiC and ZrC are added alone, and has a lower density than the Mo-Si-B alloy. Was confirmed.

TiC:ZrC=5:5(x=5)の本発明の実施の形態のMo−Si−B系合金、65Mo−5Si−10B−5TiC−5ZrCに対し、放電加工と切削加工と研削加工とを組み合わせて加工し、図22に示す摩擦撹拌接合用ツールを作製した。図22に示すように、作製した摩擦撹拌接合用ツールは、ツール全体が本発明の実施の形態のMo−Si−B系合金で形成されている。図22に示す摩擦撹拌接合用ツールは、ピン部の先端の直径が約3.5mm、ピン部の円形台座の直径が約15mmである。 Electric discharge machining, cutting and grinding are performed on 65Mo-5Si-10B-5TiC-5ZrC, a Mo-Si-B alloy according to the embodiment of the present invention of TiC: ZrC = 5: 5 (x = 5). The tools were combined and machined to produce the friction stir welding tool shown in FIG. As shown in FIG. 22, in the produced friction stir welding tool, the entire tool is formed of the Mo—Si—B based alloy according to the embodiment of the present invention. In the friction stir welding tool shown in FIG. 22, the diameter of the tip of the pin portion is about 3.5 mm, and the diameter of the circular pedestal of the pin portion is about 15 mm.

図22に示す摩擦撹拌接合用ツールを用いて、インコネル(INCONEL;登録商標)600、64チタン合金(Ti−6Al−4V)およびSUS304の摩擦撹拌を行った。摩擦撹拌後の各被加工材の状態を、図23(a)〜(c)に示す。図23(a)〜(c)に示すように、各被加工材に対して問題なく摩擦撹拌できており、摩擦撹拌接合可能であることが確認された。
Friction stir welding of INCONEL (registered trademark) 600, 64 titanium alloy (Ti-6Al-4V) and SUS304 was performed using the friction stir welding tool shown in FIG. The states of each work material after friction stir welding are shown in FIGS. 23 (a) to 23 (c). As shown in FIGS. 23 (a) to 23 (c), it was confirmed that friction stir welding was possible for each work material without any problem, and that friction stir welding was possible.

Claims (5)

60原子%以上75原子%以下のMoと、1.7原子%以上6.7原子%以下のSiと、3.3原子%以上13.3原子%以下のBと、1.0原子%以上14.0原子%以下のTiと、1.0原子%以上14.0原子%以下のZrと、5.0原子%以上15.0原子%以下のCとを有し、残部が不可避不純物から成り、TiCとZrCとの含有比が、9:1乃至1:9(原子比)であることを特徴とするMo−Si−B系合金。 Mo of 60 atomic% or more and 75 atomic% or less, Si of 1.7 atomic% or more and 6.7 atomic% or less, B of 3.3 atomic% or more and 13.3 atomic% or less, and 1.0 atomic% or more. 14.0 atomic% or less of Ti, possess a 1.0 atomic% or more 14.0 atomic% or less of Zr, below 15.0 atomic% 5.0 atomic% or more and C, and the balance being unavoidable impurities A Mo—Si—B based alloy characterized in that the content ratio of TiC and ZrC is 9: 1 to 1: 9 (atomic ratio). 前記Tiと前記Zrとを合わせた組成比が、5原子%以上15.0原子%以下であることを特徴とする請求項1記載のMo−Si−B系合金。 The Mo—Si—B alloy according to claim 1, wherein the composition ratio of the Ti and the Zr combined is 5 atomic% or more and 15.0 atomic% or less. Mo固溶体相、MoSiB、(Ti,Zr,Mo)C、(Mo,Ti,Zr)Cの4相から成ることを特徴とする請求項1または2記載のMo−Si−B系合金。 The Mo-Si-B system according to claim 1 or 2, which comprises four phases of a Mo solid solution phase, Mo 5 SiB 2 , (Ti, Zr, Mo) C, and (Mo, Ti, Zr) 2 C. alloy. 60原子%以上75原子%以下のMoと、1.7原子%以上6.7原子%以下のSiと、3.3原子%以上13.3原子%以下のBと、1.0原子%以上14.0原子%以下のTiと、1.0原子%以上14.0原子%以下のZrと、5.0原子%以上15.0原子%以下のCとを有し、残部が不可避不純物から成る原料を溶解して鋳造した後、1500℃〜1900℃で1時間〜100時間の均質化熱処理を行うことにより、請求項1乃至3のいずれか1項に記載のMo−Si−B系合金を製造することを特徴とするMo−Si−B系合金の製造方法。 Mo of 60 atomic% or more and 75 atomic% or less, Si of 1.7 atomic% or more and 6.7 atomic% or less, B of 3.3 atomic% or more and 13.3 atomic% or less, and 1.0 atomic% or more. 14.0 atomic% or less of Ti, possess a 1.0 atomic% or more 14.0 atomic% or less of Zr, below 15.0 atomic% 5.0 atomic% or more and C, and the balance being unavoidable impurities after cast by dissolving formed Ru raw material, by performing a homogenizing heat treatment of 1 hour to 100 hours at 1500 ℃ ~1900 ℃, Mo-Si -B system according to any one of claims 1 to 3 A method for producing a Mo—Si—B-based alloy, which comprises producing an alloy. 請求項1乃至のいずれか1項に記載のMo−Si−B系合金から成ることを特徴とする摩擦撹拌接合用ツール。
A friction stir welding tool comprising the Mo—Si—B alloy according to any one of claims 1 to 3.
JP2018536924A 2016-09-05 2017-03-23 Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool Active JP6841441B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016172575 2016-09-05
JP2016172575 2016-09-05
PCT/JP2017/011659 WO2018042733A1 (en) 2016-09-05 2017-03-23 Mo-Si-B ALLOY, METHOD FOR MANUFACTURING Mo-Si-B ALLOY, AND TOOL FOR FRICTION STIR WELDING

Publications (2)

Publication Number Publication Date
JPWO2018042733A1 JPWO2018042733A1 (en) 2019-06-24
JP6841441B2 true JP6841441B2 (en) 2021-03-10

Family

ID=61300501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018536924A Active JP6841441B2 (en) 2016-09-05 2017-03-23 Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool

Country Status (2)

Country Link
JP (1) JP6841441B2 (en)
WO (1) WO2018042733A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325875B2 (en) * 2006-11-06 2009-09-02 株式会社日立製作所 Friction stir welding tool and friction stir welding apparatus
WO2013089176A1 (en) * 2011-12-16 2013-06-20 株式会社アライドマテリアル Heat-resistant alloy and manufacturing method therefor
JP5394582B1 (en) * 2012-06-07 2014-01-22 株式会社アライドマテリアル Molybdenum heat-resistant alloy
WO2014112151A1 (en) * 2013-01-16 2014-07-24 国立大学法人東北大学 Alloy and method for producing same

Also Published As

Publication number Publication date
JPWO2018042733A1 (en) 2019-06-24
WO2018042733A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6690789B2 (en) Alloy material, product using the alloy material, and fluid machine having the product
US11566313B2 (en) Method for manufacturing Ni-based alloy member
Fang et al. High-temperature oxidation resistance, mechanical and wear resistance properties of Ti (C, N)-based cermets with Al0. 3CoCrFeNi high-entropy alloy as a metal binder
JP5512964B2 (en) Titanium aluminide alloy, titanium aluminide alloy manufacturing method, and structural component using the titanium aluminide alloy
Raji et al. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review
EP2653578B1 (en) Aluminum die casting alloy
Wei et al. Interactive effects of cyclic oxidation and structural evolution for Ti-6Al-4V/(TiC+ TiB) alloy composites at elevated temperatures
Ma et al. Microstructures and mechanical properties of Ti6Al4V-Ti48Al2Cr2Nb alloys fabricated by laser melting deposition of powder mixtures
JPH06256872A (en) Titanium based composite and production thereof
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JP2011012340A (en) Titanium-containing article and method for making
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
Sun et al. The microstructure and tensile properties of the Ti2AlC reinforced TiAl composites fabricated by powder metallurgy
Vidyasagar et al. Improvement of mechanical properties of 2024 AA by reinforcing yttrium and processing through spark plasma sintering
JP2003293070A (en) Mo-ALLOY WORK MATERIAL WITH HIGH STRENGTH AND HIGH TOUGHNESS, AND ITS MANUFACTURING METHOD
Mkhwanazi et al. Densification, microstructure, and mechanical properties of sintered TiAl-NbN composites
JP6841441B2 (en) Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool
WO2015182454A1 (en) TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME
JP5854497B2 (en) Nb-Si heat resistant alloy
Chen et al. Oxidation behavior of three different zones of linear friction welded Ti2AlNb alloy
JP2006241484A (en) New niobium based composite and its use
JP7166594B2 (en) Mo-Si-Ti-C-based alloy and method for producing Mo-Si-Ti-C-based alloy
Siemers et al. Developments in titanium research and applications in Germany
JP4276853B2 (en) Niobium-based composite material
JP4035617B2 (en) Iridium-based alloy and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6841441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250