JP5854497B2 - Nb-Si heat resistant alloy - Google Patents
Nb-Si heat resistant alloy Download PDFInfo
- Publication number
- JP5854497B2 JP5854497B2 JP2011164866A JP2011164866A JP5854497B2 JP 5854497 B2 JP5854497 B2 JP 5854497B2 JP 2011164866 A JP2011164866 A JP 2011164866A JP 2011164866 A JP2011164866 A JP 2011164866A JP 5854497 B2 JP5854497 B2 JP 5854497B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- niobium
- heat
- phase
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Silicon Compounds (AREA)
Description
本発明は、高温強度と靭性に優れた、高温耐熱材料として用いられるNb-Si系耐熱合金に関する。 The present invention relates to an Nb—Si heat-resistant alloy that is excellent in high-temperature strength and toughness and used as a high-temperature heat-resistant material.
エネルギー、航空宇宙、鉄鋼業、化学工業等の分野では、高温の厳しい環境下で長時間使用可能な機器部材用構成材料、つまり耐熱材料の開発が期待されている。特に、火力発電では、地球環境保全や化石燃料資源保護の観点から、熱効率の向上が求められている。したがって、ガスタービンの運転温度を一層高温化させること、ひいては、ガスタービンの構成材料の耐熱性及び耐久性等の特性を更に向上させることが急務の課題である。 In the fields of energy, aerospace, steel industry, chemical industry, etc., development of component materials for equipment members that can be used for a long time in a severe environment of high temperatures, that is, heat-resistant materials is expected. In particular, thermal power generation is required to improve thermal efficiency from the viewpoint of global environmental conservation and fossil fuel resource protection. Therefore, it is an urgent task to further increase the operating temperature of the gas turbine, and to further improve the characteristics such as heat resistance and durability of the constituent materials of the gas turbine.
現在、耐熱材料として広く用いられているのはニッケル(Ni)基合金である。しかし、Ni基合金の使用可能温度の上限は1100℃程度であり、その耐熱性の向上はほぼ限界に達している。そのため、Ni基合金に替わる新たな耐熱材料が必要となっている。 Currently, nickel (Ni) based alloys are widely used as heat resistant materials. However, the upper limit of the usable temperature of the Ni-based alloy is about 1100 ° C., and the improvement of the heat resistance has almost reached the limit. Therefore, a new heat-resistant material that replaces the Ni-based alloy is required.
新たな耐熱材料としては、Niよりも融点の高いことが必須の条件であり、これを満たすものとして、いわゆる高融点金属が考えられる。その中でも特にニオブ(Nb)は、Niより融点が1000℃以上も高く、しかも軽量であることから、耐熱材料として有望視されている。しかしながら、ニオブ単体を耐熱材料として実用化するには、高温強度及び常温靭性を強化する必要がある。 As a new heat-resistant material, a higher melting point than Ni is an essential condition, and so-called refractory metals can be considered to satisfy this condition. Among these, niobium (Nb) is particularly promising as a heat-resistant material because it has a melting point higher than that of Ni by 1000 ° C. and is lightweight. However, in order to put niobium as a heat-resistant material into practical use, it is necessary to enhance the high temperature strength and the room temperature toughness.
現在、耐熱材料であるNi基超合金の代替材料候補の一つとしてNb-Si系合金が期待されている。特許文献1には、Nbに2〜10at%のMoと18.7〜26at%のSiを含有し、Nb固溶相中にニオブシリサイドが分散した耐熱構造材料用二相合金が記載されている。本発明者らは、先に、Nb、Si、及び適切な添加物(例えば、Mg)を溶融、凝固させた後、熱処理することによって、新たな組織構成を有するNb基複合体を得る方法に関する発明を特許出願した(特許文献2)。 At present, Nb-Si alloys are expected as one of alternative materials for Ni-base superalloys that are heat-resistant materials. Patent Document 1 describes a two-phase alloy for a heat-resistant structural material containing 2 to 10 at% Mo and 18.7 to 26 at% Si in Nb, in which niobium silicide is dispersed in the Nb solid solution phase. . The inventors of the present invention relate to a method for obtaining an Nb-based composite having a new structure by first melting and solidifying Nb, Si, and an appropriate additive (for example, Mg) and then heat-treating. Patent application for the invention (Patent Document 2).
また、特許文献3には、金属Nb基相と少なくとも1つの金属ケイ化物相とを含み、約9原子%〜約25原子%のSi、約5原子%〜約25原子%のTi、約1原子%〜約30原子%のRe、約1原子%〜約25原子%のCr、約1原子%〜約20原子%のAl、最大約20原子%までのHf、最大約30原子%までのRu、最大約30原子%までのW、Ta及びMoから選択された少なくとも1つの金属、並びに残部のNb、を含む高融点金属の金属間化合物複合材が記載されている。 Patent Document 3 includes a metal Nb base phase and at least one metal silicide phase, and includes about 9 atomic% to about 25 atomic% Si, about 5 atomic% to about 25 atomic% Ti, about 1 Atomic percent to about 30 atomic percent Re, about 1 atomic percent to about 25 atomic percent Cr, about 1 atomic percent to about 20 atomic percent Al, up to about 20 atomic percent Hf, up to about 30 atomic percent A refractory metal intermetallic composite comprising Ru, at least one metal selected from up to about 30 atomic% W, Ta and Mo, and the balance Nb is described.
非特許文献1には、NbにSiを添加し、ニオブシリサイド(Nb5Si3)を析出(共晶)させることによって、Nb固溶体中(母材相)にNb5Si3が分散した複合体組織(Nb‐Nb5Si3)、すなわちニオブ基複合体を形成することが記載されている。また、非特許文献2には、さらにMo及びWを添加することによってNb固溶体を強化し、高温強度を向上させること(固溶体強化)が記載されている。本発明者らは、Nb-18.1at%Si-1.5at%Zr-100ppmMg合金における微細組織の制御についての報告(非特許文献3、4)及びNb-Si-Mo合金へのTa添加によりNb3Siが安定化されるという報告をしている(非特許文献5)。 Non-Patent Document 1 discloses a composite in which Nb 5 Si 3 is dispersed in an Nb solid solution (base material phase) by adding Si to Nb and precipitating (eutectic) niobium silicide (Nb 5 Si 3 ). It is described that a tissue (Nb—Nb 5 Si 3 ), that is, a niobium group complex is formed. Non-Patent Document 2 describes that Nb solid solution is further strengthened by adding Mo and W to improve high-temperature strength (solid solution strengthening). The present inventors have reported on the control of the microstructure in the Nb-18.1at% Si-1.5at% Zr-100ppmMg alloy (Non-Patent Documents 3 and 4) and Nb 3 by adding Ta to the Nb-Si-Mo alloy. It has been reported that Si is stabilized (Non-patent Document 5).
従来、Ni基合金の製造方法は、より強度のあるNi基耐熱合金の製造を目指して、普通鋳造(CC:Conventionally Cast)合金から、一方向凝固(DS:Directionally Solidified)合金、単結晶(SC:Single Crystal)合金、そして酸化物分散強化型(ODS:oxide dispersion strengthening)合金へとその手法が開発されてきた。 Conventionally, Ni-based alloy manufacturing methods aim to manufacture stronger Ni-based heat-resistant alloys, from ordinary cast (CC) alloys, unidirectionally solidified (DS) alloys, single crystals (SC). : Single Crystal) alloys, and oxide dispersion strengthening (ODS) alloys have been developed.
現在、最も過酷な条件下で用いられている耐熱材料であるNi基合金では、より高性能な合金を目指して、SC合金の開発が盛んである。すなわち、粗大なNi結晶粒中に化合物を分散させることによって高い強度を実現している。 Currently, in the Ni-based alloys that are heat-resistant materials used under the harshest conditions, SC alloys are actively developed with the aim of achieving higher performance alloys. That is, high strength is realized by dispersing the compound in coarse Ni crystal grains.
現在、Nb基合金の製造方法として可能なのはDSである。Ni基合金と同じく、さらにSCへと改良を進めることが望まれるが、Nbを用いた場合、高温で複数の相変態が起きるため、既存の方法である精密鋳造・一方向凝固は適用できない。従って、現在の金属工学で用いられる手法、すなわち溶融状態からの凝固による直接形成では、Nb基合金をSCに進めることは不可能であると考えられている。Siの量を一桁減らせば、SCを製造することは可能であるが、このように化合物の量を減らすと、現在使用されているNi基合金と比較して、強度が著しく小さくなり、実用に耐えうる材料は製造できない。 Currently, DS is a possible method for producing Nb-based alloys. As with the Ni-based alloy, it is desired to further improve the SC. However, when Nb is used, a plurality of phase transformations occur at a high temperature, so that the existing methods of precision casting and unidirectional solidification cannot be applied. Therefore, it is considered that the Nb-based alloy cannot be advanced to SC by the technique used in the current metal engineering, that is, direct formation by solidification from a molten state. If the amount of Si is reduced by an order of magnitude, it is possible to produce SC. However, if the amount of the compound is reduced in this way, the strength becomes significantly smaller than that of the currently used Ni-based alloys, and it is practical. Can not be manufactured.
耐熱材料としては、従来は、融点が1300℃程度のNiを主成分とする合金材料を用いており、ジエットエンジンや発電用ガスタービンの動翼材料として用いた場合、これ以上の燃焼効率向上の余地に乏しい。また、耐熱性を上げるために内部に冷却用の空気を流す等するために、製作に複雑な工程を必要としており、コストが高い。 As a heat-resistant material, conventionally, an alloy material mainly composed of Ni having a melting point of about 1300 ° C. is used. When used as a moving blade material for a jet engine or a gas turbine for power generation, the combustion efficiency can be further improved. There is little room. In addition, in order to increase the heat resistance, for example, cooling air is allowed to flow inside, so that a complicated process is required for manufacturing, and the cost is high.
そこで、融点が1900℃以上のNb基合金を用いることにより、耐熱性を確保してエネルギーを効率的に利用し、CO2ガス排出削減、石油等の炭素系資源の有効利用を図ることができると考えられる。 Therefore, by using an Nb-based alloy having a melting point of 1900 ° C. or higher, it is possible to ensure heat resistance, efficiently use energy, reduce CO 2 gas emission, and effectively use carbon-based resources such as petroleum. it is conceivable that.
Nb-Si二元系合金は、図8に示す状態図のとおり共晶合金であり、状態図に現れる金属間化合物Nb5Si3は酸化抵抗やクリープ抵抗の改善に有効とされ注目されており、延性に富むNbと優れた高温強度を持つシリサイドとの複合化による高靭性化が期待されているが、Si濃度が10〜15at%程度で室温靭性が大幅に低下する問題がある。Nb-Si系合金の課題の一つとして高温強度を有するとともに室温靭性の改善が挙げられる。また、既存の方法である精密鋳造・一方向凝固が適用できる材料や熱間加工が容易な材料が求められている。 The Nb-Si binary alloy is a eutectic alloy as shown in the phase diagram shown in FIG. 8, and the intermetallic compound Nb 5 Si 3 appearing in the phase diagram has been attracting attention as being effective in improving oxidation resistance and creep resistance. Although high ductility is expected by combining Nb rich in ductility and silicide having excellent high-temperature strength, there is a problem that room temperature toughness is significantly lowered when the Si concentration is about 10 to 15 at%. One of the problems with Nb-Si alloys is that they have high-temperature strength and room temperature toughness. There is also a need for materials that can be applied to existing methods such as precision casting and unidirectional solidification, and materials that are easy to hot work.
本発明者らは、Nb-Si二元合金は大きな塑性変形を示さないが、Au,Pdから選ばれる1又は2種の元素、又はRh元素を添加し通常の溶融凝固法で製造したNb-Si合金では高温での熱処理により延性Nb中でNb5Si3が球状化して分散した組織とすることができ、強度を犠牲にすることなく優れた塑性変形能を示すNb基合金が得られることを見出した。 Although the Nb—Si binary alloy does not show large plastic deformation, the present inventors added one or two elements selected from Au and Pd, or Rh element, and produced Nb— The Si alloy can be made into a structure in which Nb 5 Si 3 is spheroidized and dispersed in ductile Nb by heat treatment at high temperature, and an Nb-based alloy exhibiting excellent plastic deformability can be obtained without sacrificing strength. I found.
すなわち、本発明は、Siを9.0〜17.5原子%、Au又はPdから選ばれる1又は2種の元素を1原子%以上固溶限度以下含有し残部が不可避不純物及びニオブからなり、Nb母材相中に球状化したNb5Si3粒子を分散したNb/Nb5Si3共晶組織を有することを特徴とするニオブ基耐熱合金、である。この合金は、1200℃における高温三点曲げ試験による変位量が1500μm以上であることを特徴とする。 That is, the present invention contains 9.0 to 17.5 atomic% of Si, 1 or 2 elements selected from Au or Pd , 1 atomic% or more and less than the solid solution limit, and the balance consists of inevitable impurities and niobium, A niobium-based heat-resistant alloy characterized by having a Nb / Nb 5 Si 3 eutectic structure in which spheroidized Nb 5 Si 3 particles are dispersed in an Nb base material phase. This alloy is characterized in that a displacement amount by a high temperature three-point bending test at 1200 ° C. is 1500 μm or more.
また、本発明は、Siを9.0〜17.5原子%、Rh元素を1原子%以上固溶限度以下含有し残部が不可避不純物及びニオブからなり、Nb母材相中に球状化したNbIn addition, the present invention includes Nb in which Nb is spheroidized in an Nb base material phase, containing 9.0 to 17.5 atomic percent of Si, 1 atomic percent or more of Rh element, and the balance being inevitable impurities and niobium. 5Five SiSi 3Three 粒子を分散したNb/NbNb / Nb with dispersed particles 5Five SiSi 3Three 共晶組織を有することを特徴とするニオブ基耐熱合金、である。A niobium-based heat-resistant alloy characterized by having a eutectic structure.
これまでにも、Mo及び/又はW等の他の高融点金属元素を添加することによって、固溶体強化したニオブ基三元系合金が報告されている。しかし、本発明の製造方法は、Nb及びSiに、上述のように、Au,Pdから選ばれる1又は2種の元素、又はRh元素を添加することで、従来の単なる固溶体強化等の特性改善方法では得られなかった特性を有するニオブ基耐熱合金を提供するものである。 In the past, niobium-based ternary alloys that have been solid-solution strengthened by adding other refractory metal elements such as Mo and / or W have been reported. However, the manufacturing method of the present invention improves the characteristics such as conventional solid solution strengthening by adding one or two elements selected from Au and Pd or Rh element to Nb and Si as described above. The present invention provides a niobium-based heat-resistant alloy having characteristics not obtained by the method.
本発明の耐熱合金は、ニオブ母体結晶相中に微細な球状のニオブシリサイドが分散した組織形態となっている。このため、耐熱性の他に常温靭性及び延性が特に優れている。したがって、本発明のニオブ基耐熱合金は熱間鍛造等の加工にも適し、耐熱材料として、非常に有用である。 The heat-resistant alloy of the present invention has a microstructure in which fine spherical niobium silicide is dispersed in a niobium base crystal phase. For this reason, in addition to heat resistance, room temperature toughness and ductility are particularly excellent. Therefore, the niobium-based heat-resistant alloy of the present invention is suitable for processing such as hot forging and is very useful as a heat-resistant material.
<本発明に係るニオブ基耐熱合金の組成と組織>Nb−Si系の二元系合金は、一般に、Nbが17.5at%以下の亜共晶域では、マトリックス(連続相)が延性大なNb相であるのに対して、Nbが17.5at%以上の過共晶域では、延性の低いシリサイドがマトリックスになるため、硬くて脆い材料になり、靭性の確保が難しくなる。 <Composition and Structure of Niobium-Based Heat-Resistant Alloy According to the Present Invention> In general, Nb—Si binary alloys have a matrix (continuous phase) having a large ductility in a hypoeutectic region where Nb is 17.5 at% or less. In the hypereutectic region where Nb is 17.5 at% or more in contrast to the Nb phase, silicide with low ductility becomes a matrix, so that it becomes a hard and brittle material and it is difficult to ensure toughness.
本発明に係るニオブ基耐熱合金中のケイ素の量は亜共晶域の約9原子%〜約17.5原子%の範囲、より好ましくは、10原子%〜約16原子%の範囲内である。ケイ素の量が約9原子%より少ないと、ニオブシリサイドの量が少なくなり耐熱強度が低下する。上限は共晶点が好ましい。球状の金属間化合物Nb5Si3
を形成するためには、Au,Pdから選ばれる1又は2種の元素、又はRh元素(以下「Au等の添加金属」という場合もある)を添加する必要がある。これらの元素の含有量は1原子%以上であれば球状化効果が発揮され、添加量はコストと効果の関係を考慮して選択できるが、固溶限度まで添加は可能である。これらの添加金属は、ニオブ母材相とニオブシリサイドに固溶するが、Nb母材相の固溶量は約2〜6at%である。
The amount of silicon in the niobium-based heat-resistant alloy according to the present invention is in the range of about 9 atomic% to about 17.5 atomic% of the hypoeutectic region, more preferably in the range of 10 atomic% to about 16 atomic%. . When the amount of silicon is less than about 9 atomic%, the amount of niobium silicide is reduced and the heat resistance is lowered. The upper limit is preferably the eutectic point. Spherical intermetallic compound Nb 5 Si 3
In order to form, it is necessary to add one or two elements selected from Au and Pd, or an Rh element (hereinafter also referred to as “addition metal such as Au”). If the content of these elements is 1 atomic% or more, the spheroidizing effect is exhibited, and the addition amount can be selected in consideration of the relationship between the cost and the effect, but it can be added up to the solid solution limit. These added metals are dissolved in the niobium base material phase and niobium silicide, but the solid solution amount of the Nb base material phase is about 2 to 6 at%.
このニオブ基耐熱合金は、Nb結晶を含む母材相と、ニオブシリサイドを含む化合物相とを有する複合体である。上記化合物相は、Nb母材相に分散した球状の金属間化合物Nb5Si3である。化合物相の大きさは、より小さいことが好ましい。これは、化合物相のサイズが大きいと、塑性変形抵抗として機能しにくいためである。また、負荷応力で破壊されたときにできる亀裂が化合物相のサイズと同じになることから、化合物相のサイズが大きいと、応力集中しやすくなって靭性が低下する。化合物相の大きさとしては特に限定されないが、直径が1μm又はそれ以下が好ましい。 This niobium-based heat-resistant alloy is a composite having a base material phase containing Nb crystals and a compound phase containing niobium silicide. The compound phase is a spherical intermetallic compound Nb 5 Si 3 dispersed in the Nb matrix phase. The size of the compound phase is preferably smaller. This is because if the size of the compound phase is large, it will be difficult to function as plastic deformation resistance. In addition, since the crack formed when fractured by load stress is the same as the size of the compound phase, if the size of the compound phase is large, stress is easily concentrated and the toughness is lowered. Although it does not specifically limit as a magnitude | size of a compound phase, A diameter is 1 micrometer or less.
図1は、本発明の合金の製造方法を従来のZrを添加元素とした場合と比較して示す概念図である。従来の例えばNb-15Si-1.5Zr系合金では、溶解鋳造した凝固体は、Nb3Siを主成分とするニオブシリサイド中に微細なニオブ固溶体が析出したミクロ組織となる。このNb3Siは脆いために合金作成時に亀裂などの欠陥が入る。一方本発明の合金では、溶解鋳造した凝固体は、溶けた状態から直接又はNb+Nb3Si共晶を経由して、ニオブとNb5Si3ラメラ(板状)構造となる。これは、添加金属がNb3Siを極めて不安定化し凝固過程においてNb/Nb5Si3共晶と考えられる組織形態が生じるためであると推察される。最終的にNb5Si3の球状化が進んでいれば靭性向上は達成される。 FIG. 1 is a conceptual diagram showing a method for producing an alloy of the present invention in comparison with a conventional case where Zr is used as an additive element. In a conventional Nb-15Si-1.5Zr-based alloy, for example, a melt-cast solidified body has a microstructure in which a fine niobium solid solution is precipitated in niobium silicide containing Nb 3 Si as a main component. Since this Nb 3 Si is brittle, defects such as cracks are introduced when the alloy is produced. On the other hand, in the alloy of the present invention, the melt-cast solidified body has a niobium and Nb 5 Si 3 lamella (plate-like) structure directly from the melted state or via the Nb + Nb 3 Si eutectic. This is presumably because the added metal extremely destabilizes Nb 3 Si, and a structure morphology considered to be Nb / Nb 5 Si 3 eutectic occurs in the solidification process. If Nb 5 Si 3 is finally spheroidized, the improvement in toughness is achieved.
ニオブシリサイドは高温強度に優れるものの、常温靭性に乏しい。従来のNb-ニオブシリサイド複合体では、そのニオブシリサイドが長く繋がっていたので、シリサイド中の亀裂はどんどん進展し、その結果破壊に至るという問題があった。 Niobium silicide is excellent in high-temperature strength, but has poor room temperature toughness. In the conventional Nb-niobium silicide composite, since the niobium silicide has been connected for a long time, there is a problem that cracks in the silicide progress more and more, resulting in destruction.
しかし、本発明のニオブ基耐熱合金は、上述のような組織構造を有するために、上述した破壊の進行を抑えることができ、高い強度と常温靭性とを有する。しかも、上述した破壊の進行を抑える機構は、低温、高温によらずに有効であるので、本発明のニオブ基耐熱合金は、幅広い温度環境で使用可能である。 However, since the niobium-based heat-resistant alloy of the present invention has the above-described structure, it can suppress the above-described progress of fracture, and has high strength and room temperature toughness. In addition, since the mechanism for suppressing the progress of destruction described above is effective regardless of the low temperature and high temperature, the niobium-based heat-resistant alloy of the present invention can be used in a wide temperature environment.
<本発明に係るニオブ基耐熱合金の製造方法>本発明のニオブ基耐熱合金の製造方法は、Nb、Si及び、Au等の添加金属の原料を溶融させる溶融工程と、上記溶融工程によって得られた溶融物を共晶凝固させる凝固工程と、上記凝固工程によって得られた凝固物を固体状態で熱処理する熱処理工程とを含んでいればよい。上記溶融工程や共晶凝固工程は、従来公知の合金製造方法において行われる溶融工程、凝固工程を好適に用いることができ、その具体的な手法、条件等については限定されるものではない。 <Method for Producing Niobium-Based Heat-Resistant Alloy According to the Present Invention> The method for producing a niobium-based heat-resistant alloy according to the present invention is obtained by a melting step for melting raw materials of additive metals such as Nb, Si and Au, and the above-described melting step. A solidification step for eutectic solidification of the melt and a heat treatment step for heat-treating the solidified product obtained in the solidification step in a solid state. The melting step and the eutectic solidification step can suitably use the melting step and solidification step performed in a conventionally known alloy production method, and the specific method, conditions, etc. thereof are not limited.
例えば、上記溶融工程における溶融方法としては、アーク溶解法、電子ビーム溶解法、高周波溶解法、光学的加熱法等の方法を適用することが可能である。特に、一方向凝固装置を用いることによって、ニオブ結晶の方位が揃った領域を大きくすることができる。 For example, as a melting method in the melting step, methods such as an arc melting method, an electron beam melting method, a high frequency melting method, and an optical heating method can be applied. In particular, by using a unidirectional solidification apparatus, a region where the orientations of niobium crystals are aligned can be enlarged.
また、材料を溶融させる前に、粉状の試料を一定の形状にするために、粉末焼結を行ってもよい。つまり、粉末焼結を行う場合は、粉末焼結では溶解状態にならないので、粉末焼結後、上述したような溶融方法で溶融させることになる。溶融工程は、アルゴン等の不活性雰囲気中、又は真空条件で行うことが好ましい。 Further, before the material is melted, powder sintering may be performed in order to make the powder sample into a certain shape. That is, when powder sintering is performed, the powder sintering does not result in a dissolved state, and therefore, after powder sintering, the powder is melted by the melting method described above. The melting step is preferably performed in an inert atmosphere such as argon or under vacuum conditions.
また、溶融工程で溶解される材料には、それぞれの構成元素(Nb、Si、Au等の添加金属)が単体の状態で含まれていてもよいし、化合物又は合金の状態で含まれていてもよい。また、材料の形態も特に限定されるものではなく、塊、フレーク、又は粉末等の状態にある材料を用いることができる。例えば、高純度のNb塊、Siフレーク、及びAu等の添加金属フレークを材料としてもよいし、Nb、Si、Au等の添加金属の純金属又は合金の粉末を用い、これらの粉末を粉末焼結法等によって処理することで材料を一定の形状にした後、上述した溶融法によって溶融させてもよい。 In addition, each constituent element (addition metal such as Nb, Si, Au, etc.) may be included in a single state, or in a compound or alloy state, in the material to be melted in the melting step. Also good. Further, the form of the material is not particularly limited, and a material in a state of a lump, flake, powder, or the like can be used. For example, high-purity Nb agglomerates, Si flakes, and additive metal flakes such as Au may be used as materials, and pure metal or alloy powders of additive metals such as Nb, Si, and Au are used, and these powders are powder-fired. The material may be melted by the above-described melting method after the material is made into a certain shape by processing by a sintering method or the like.
(熱処理工程)本発明に係る熱処理工程は、上記凝固工程を経た試料を固体状態のまま熱処理する工程である。また、熱処理工程は、真空中又は不活性雰囲気中で行うことが好ましい。 (Heat treatment step) The heat treatment step according to the present invention is a step of heat-treating the sample that has undergone the above solidification step in a solid state. The heat treatment step is preferably performed in a vacuum or in an inert atmosphere.
この熱処理工程を経て得られたニオブ基耐熱合金は、Nb結晶を主とする母材相と、ニオブシリサイドを主とする化合物相からなるニオブ基複合体であり、このニオブ基複合体のニオブシリサイドのほとんどはNb5Si3である。また、このニオブ基複合体の組織を観察すると、Nb相(母材相)に球状のNb5Si3相が分散した状態になっている。 The niobium-based heat-resistant alloy obtained through this heat treatment step is a niobium-based composite composed of a matrix phase mainly composed of Nb crystals and a compound phase mainly composed of niobium silicide, and the niobium silicide of this niobium-based composite Most of these are Nb 5 Si 3 . Further, when the structure of the niobium group composite is observed, a spherical Nb 5 Si 3 phase is dispersed in the Nb phase (base material phase).
以上に述べた溶融工程、凝固工程、及び熱処理工程によってこのような組織のニオブ基複合体が得られるのは、以下のような過程によると考えられる。上述の溶融工程及び凝固工程を経ることによって、材料中のNb及びSiから、Nbを主とするNb相と、薄片状ニオブシリサイド(Nb5Si3)を主とするラメラ構造を有する凝固物を得ることができる。この凝固物に上述の熱処理工程を施すと、上記凝固物中の薄片状Nb5Si3が、熱処理工程によって多数の粒子に分断され、球状化する。 It is considered that the niobium group composite having such a structure is obtained by the melting process, the solidification process, and the heat treatment process described above according to the following process. By passing through the melting step and the solidification step described above, a solidified product having a Nb phase mainly composed of Nb and a lamellar structure mainly composed of flaky niobium silicide (Nb 5 Si 3 ) is obtained from Nb and Si in the material. Can be obtained. When the above heat treatment step is performed on the solidified product, the flaky Nb 5 Si 3 in the solidified product is divided into a large number of particles by the heat treatment step and spheroidized.
Au等の添加金属の添加なしでは、このような組織は得られない。これは、 Au等の添加金属を加えずに熱処理工程を行った場合には、Nb5Si3の界面エネルギーが等方的ではないことから、球状化過程が進まないためであると考えられる。添加元素がMoやWの場合は、熱処理によっても球状化せず、ラメラのままである。 Such a structure cannot be obtained without the addition of an additive metal such as Au. This is considered to be because when the heat treatment step is performed without adding an additive metal such as Au, the interface energy of Nb 5 Si 3 is not isotropic, so that the spheronization process does not proceed. When the additive element is Mo or W, it is not spheroidized even by heat treatment and remains a lamella.
また、熱処理工程における温度、及び時間は、ラメラ構造のNb5Si3が球状化するように設定されればよく、加熱温度は、1100〜1700℃程度、好ましくは1300〜1700℃程度、さらに好ましくは1500〜1650℃である。 The temperature and time in the heat treatment step may be set so that the lamellar structure Nb 5 Si 3 is spheroidized, and the heating temperature is about 1100 to 1700 ° C, preferably about 1300 to 1700 ° C, and more preferably Is 1500-1650 ° C.
この合金製品は、様々な方法によって所望の物品に加工及び成形することができる。例えば、溶融させた合金製品は、適当な装置内で鋳造することができる。様々なその他の方法(単独又は組合せの)もまた、合金製品を加工処理するために使用することができる。非限定的な実施例には、押出し(例えば、熱間押出し)、鍛造、熱間等静圧圧縮成形及び圧延が含まれる。当業者は、これらの合金の適当な加工熱処理に関する詳細に精通している。 This alloy product can be processed and formed into the desired article by various methods. For example, a molten alloy product can be cast in a suitable apparatus. Various other methods (alone or in combination) can also be used to process the alloy product. Non-limiting examples include extrusion (eg, hot extrusion), forging, hot isostatic pressing and rolling. The person skilled in the art is familiar with details regarding the appropriate thermomechanical treatment of these alloys.
<実施例及び比較例>合金組成をNb-15at%Si-3at%Xとし、添加金属Xは遷移金属であるFe、Co、Ni、Cu、Ru、Rh、Pd、又はAuとした。なお、Cuに関してはNbへの固溶限度量が1.2at%であるので1at%添加とした。純度99.9%程度の塊状Nb、純度99.999%程度のSiフレーク、及び純度99%程度の添加金属のフレークを原料とし、アーク溶解し、鋳造して約20gのインゴットを作製した。溶解にはアルゴンアーク溶解炉を用いた。 <Examples and Comparative Examples> The alloy composition was Nb-15at% Si-3at% X, and the additive metal X was a transition metal such as Fe, Co, Ni, Cu, Ru, Rh, Pd, or Au. Regarding Cu, the solid solution limit amount in Nb is 1.2 at%, so 1 at% was added. Bulk ingot Nb having a purity of about 99.9%, Si flakes having a purity of about 99.999%, and flakes of added metals having a purity of about 99% were arc-melted and cast to produce about 20 g of ingot. An argon arc melting furnace was used for melting.
溶湯を凝固して得られたインゴットを切断し、#180〜#2000まで湿式研磨、アルミナ粉末(粒径0.1μm)で鏡面仕上げし観察試料とした。組織観察にはSEM(JXA-8900(JEOL))を用い、各合金構成相の同定および添加元素の固溶量を測定するために波長分散X線分光分析を行った。また、Nb-15Si-3AuにはさらにTa又はTiを5at%添加した試料も作製し、同様の観察、測定を行った。 An ingot obtained by solidifying the molten metal was cut, wet-polished from # 180 to # 2000, and mirror-finished with alumina powder (particle diameter: 0.1 μm) to obtain an observation sample. For structural observation, SEM (JXA-8900 (JEOL)) was used, and wavelength dispersion X-ray spectroscopic analysis was performed in order to identify each alloy constituent phase and measure the solid solution amount of the additive element. Further, a sample in which Ta or Ti was further added to Nb-15Si-3Au at 5 at% was also prepared, and the same observation and measurement were performed.
図2に、各試料の熱処理後のSEM観察結果を示す。Nb-15Si-3Au合金は、球状化したNb 5 Si 3 粒子を分散したNb母相のNb/Nb5Si3 二相組織を示している。Nb-15Si-3(Cu,Ru,Rh,Pd)合金は、as-cast材中のNb3Siに共析分解が起きていることから分解促進による球状化効果があると結論された。Nb-15Si-3Co合金は、Nb5Si3母相のNb/Nb5Si3二相組織を示している。Co、NiではNb5Si3の代わりに三元化合物相と思われる相が観察された。Nb3Si相への固溶量はどの添加元素も1at%以下と小さいが、Nb5Si3相へは2〜6at%とより大きな固溶量を示した。また、いずれの添加元素も化合物相よりNb相にさらに大きく固溶する。Nbデンドライト初晶への添加元素の固溶量は、添加元素の原子半径がNb原子半径に近づくにつれて大きくなるという傾向が見られた。Nb-Si-Mo合金へのTa添加によりNb3Siが安定化されるという先行研究[非特許文献5]と同様に、Nb-Si-AuにおいてもTa添加によりNb3Siが安定化される一方、Ti添加はNb3Siの安定化に寄与しないという結果が得られた。 In FIG. 2, the SEM observation result after heat processing of each sample is shown. The Nb-15Si-3Au alloy has a Nb / Nb 5 Si 3 two-phase structure of the Nb matrix in which spheroidized Nb 5 Si 3 particles are dispersed . It was concluded that the Nb-15Si-3 (Cu, Ru, Rh, Pd) alloy has a spheroidizing effect due to accelerated decomposition because of the eutectoid decomposition of Nb 3 Si in the as-cast material. The Nb-15Si-3Co alloy shows a Nb / Nb 5 Si 3 two-phase structure of the Nb 5 Si 3 matrix. In Co and Ni, a phase considered to be a ternary compound phase was observed instead of Nb 5 Si 3 . The amount of solid solution in the Nb 3 Si phase was as small as 1 at% or less for all the added elements, but the amount of solid solution was 2 to 6 at% in the Nb 5 Si 3 phase. In addition, any additive element is more solidly dissolved in the Nb phase than the compound phase. There was a tendency that the solid solution amount of the additive element in the Nb dendrite primary crystal increased as the atomic radius of the additive element approached the Nb atomic radius. Similar to previous studies [Non-Patent Document 5] that Nb 3 Si by Ta addition to Nb-Si-Mo alloy is stabilized, Nb 3 Si is stabilized by Ta addition even in Nb-Si-Au On the other hand, the result that Ti addition did not contribute to the stabilization of Nb 3 Si was obtained.
次で、各試料を1650℃で100時間、縦型超高温炉を用い、高純度アルゴンガスを流しながら熱処理した。Nb-15Si-3Au合金については、1300℃×100Hr、1500℃×100Hr、1650℃×100Hrでそれぞれ熱処理し、組織を観察した。図3に、Nb-15Si-3Au合金の鋳造のままの組織と熱処理後の組織を示す。 Next, each sample was heat-treated at 1650 ° C. for 100 hours using a vertical ultra-high temperature furnace while flowing high-purity argon gas. The Nb-15Si-3Au alloy was heat-treated at 1300 ° C. × 100 Hr, 1500 ° C. × 100 Hr, 1650 ° C. × 100 Hr, and the structure was observed. FIG. 3 shows the as-cast structure and the heat-treated structure of the Nb-15Si-3Au alloy.
さらに、図4に、常温三点曲げ試験結果を、図5に、1200℃における高温三点曲げ試験結果を示す。また、図6に高温三点曲げ試験後の試験片(Nb-15Si-3Pd及びNb-15Si-3Au)の光学写真を示す。なお三点曲げ試験は、図7に示すように、断面1mmx2mm、長さ10mmの棒状試験片を用い、アルミナピン間の距離を8mmとした。R熱電対で温度を制御した赤外線イメージ炉で加熱し、ピエゾ素子を用いて1ミクロン/秒の速度で中央のピンを押し込み、その移動量を計測した。 Furthermore, FIG. 4 shows a normal temperature three-point bending test result, and FIG. 5 shows a high-temperature three-point bending test result at 1200 ° C. FIG. 6 shows an optical photograph of the test pieces (Nb-15Si-3Pd and Nb-15Si-3Au) after the high-temperature three-point bending test. In the three-point bending test, as shown in FIG. 7, a rod-shaped test piece having a cross section of 1 mm × 2 mm and a length of 10 mm was used, and the distance between alumina pins was 8 mm. The sample was heated in an infrared image furnace whose temperature was controlled by an R thermocouple, and a central pin was pushed in at a speed of 1 micron / second using a piezoelectric element, and the amount of movement was measured.
図4、図5では、横軸が三点曲げ試験のピンの移動距離、縦軸が荷重である。二元合金では大きな塑性変形が観察されないが、Au、Pdを添加した合金試験片は試験終了まで割れず大きな塑性変形を示した。Ruは途中で破断しているが、その他の添加元素材はほぼ同様の塑性変形能を持っている。 4 and 5, the horizontal axis represents the pin travel distance of the three-point bending test, and the vertical axis represents the load. Large plastic deformation was not observed in the binary alloy, but the alloy specimens to which Au and Pd were added showed large plastic deformation without cracking until the end of the test. Ru is broken in the middle, but other additive materials have almost the same plastic deformability.
Nb-15Si-1Cu合金は常温曲げ試験結果は優れているが、高温曲げ試験結果は良くない。Au、Pdを添加したNb-Si合金では常温曲げ試験で優れた結果が得られ、高温曲げ試験では変位量が1500μmを超えても破壊しないことが分かる。 Nb-15Si-1Cu alloy is excellent in the normal temperature bending test result, but the high temperature bending test result is not good. The Nb-Si alloy with Au and Pd added shows excellent results in the normal temperature bending test, and the high temperature bending test shows that it does not break even when the displacement exceeds 1500 μm.
本発明の合金は、耐熱材料として非常に適した性質を備えているので、エネルギー、航空宇宙、鉄鋼業、化学工業等において、高温の厳しい環境下で長時間使用可能な機器部材用構成材料として用いることができる。例えば、ジエットエンジンや発電用ガスタービン等の動翼材料として用いることで、ガス燃焼温度を向上させ、熱効率を向上させることができる。 Since the alloy of the present invention has very suitable properties as a heat resistant material, it can be used as a component material for equipment members that can be used for a long time in severe environments of high temperatures in the energy, aerospace, steel industry, chemical industry, etc. Can be used. For example, by using it as a moving blade material for a jet engine or a power generation gas turbine, the gas combustion temperature can be improved and the thermal efficiency can be improved.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011164866A JP5854497B2 (en) | 2011-07-27 | 2011-07-27 | Nb-Si heat resistant alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011164866A JP5854497B2 (en) | 2011-07-27 | 2011-07-27 | Nb-Si heat resistant alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013028834A JP2013028834A (en) | 2013-02-07 |
JP5854497B2 true JP5854497B2 (en) | 2016-02-09 |
Family
ID=47786129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011164866A Expired - Fee Related JP5854497B2 (en) | 2011-07-27 | 2011-07-27 | Nb-Si heat resistant alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5854497B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5737682B1 (en) * | 2014-04-28 | 2015-06-17 | 国立研究開発法人宇宙航空研究開発機構 | Heat-resistant metal member, method for producing heat-resistant metal member, alloy film, method for producing alloy film, rocket engine, artificial satellite, and gas turbine for power generation |
JP6824045B2 (en) * | 2017-01-11 | 2021-02-03 | 三菱パワー株式会社 | Niobium-silicon alloy product, manufacturing method of the product, and heat engine using the product |
CN108624959B (en) * | 2018-04-17 | 2021-01-05 | 西北工业大学 | Method for preparing single crystal superalloy using solution treated seed crystal |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002027067A1 (en) * | 2000-09-28 | 2002-04-04 | Japan Ultra-High Temperature Materials Research Institute | Heat-resistant material of niobium base alloy |
US20060147335A1 (en) * | 2004-12-31 | 2006-07-06 | Bewlay Bernard P | Niobium-silicide based compositions, and related articles |
JP2006241484A (en) * | 2005-02-28 | 2006-09-14 | Hokkaido Univ | New niobium based composite and its use |
US7704335B2 (en) * | 2005-07-26 | 2010-04-27 | General Electric Company | Refractory metal intermetallic composites based on niobium-silicides, and related articles |
CN100523245C (en) * | 2007-12-05 | 2009-08-05 | 北京航空航天大学 | Metal element alloyed sheet layer niobium-molybdenum-silicon-base in situ composite material and preparation method thereof |
CN102021458B (en) * | 2010-10-15 | 2012-05-30 | 北京航空航天大学 | Nb-Ti-Si-Zn alloy material and preparation method thereof |
CN101974712A (en) * | 2010-10-15 | 2011-02-16 | 北京航空航天大学 | Nb-Ti-Si-Sr alloy material and preparation method thereof |
-
2011
- 2011-07-27 JP JP2011164866A patent/JP5854497B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013028834A (en) | 2013-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lapin | TiAl-based alloys: Present status and future perspectives | |
KR20180040513A (en) | Ni-based superalloy powder for lamination molding | |
Kakehi et al. | Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting | |
CN112981208B (en) | Light refractory high-temperature-resistant eutectic high-entropy alloy and preparation method thereof | |
JP7500726B2 (en) | Heat-resistant aluminum powder material | |
JP2013528699A (en) | Aluminum die casting alloy | |
JP2008520826A (en) | Alloy based on titanium aluminum | |
CN110512116A (en) | A kind of high Nb-TiAl intermetallic compound of multicomponent high-alloying | |
JP2011042861A (en) | Aluminum alloy, heat resistant aluminum alloy material, and method for producing the same | |
JP2007119802A (en) | Method for improving oxidation resistance of heat resistant metallic material and method for producing heat resistant metallic member | |
TW201817892A (en) | Aluminum alloy powder and manufacturing method of aluminum alloy object | |
Maziasz et al. | High strength, ductility, and impact toughness at room temperature in hot-extruded FeAl alloys | |
Sonar et al. | An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications | |
JP2002003977A (en) | TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD | |
JP5854497B2 (en) | Nb-Si heat resistant alloy | |
WO2015079558A1 (en) | Niobium silicide-based composite material, and high-temperature part and high-temperature heat engine each manufactured using same | |
JP2011052239A (en) | Heat resistant orthorhombic titanium alloy and method for producing the same | |
JP5911072B2 (en) | High temperature shape memory alloy and manufacturing method thereof | |
JP5747410B2 (en) | Heat resistant titanium alloy | |
JP5876943B2 (en) | Alloy and production method thereof | |
JP6284232B2 (en) | TiAl-based cast alloy and method for producing the same | |
JP2006241484A (en) | New niobium based composite and its use | |
JP6189855B2 (en) | Niobium silicide-based composite material, turbine blade for gas turbine using the same, turbine stationary blade and high-temperature component for gas turbine, and gas turbine, jet engine and high-temperature heat engine using the high-temperature component | |
TWI657147B (en) | A HIGH STRENGH Ni-BASE ALLOY | |
JP6824045B2 (en) | Niobium-silicon alloy product, manufacturing method of the product, and heat engine using the product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150515 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5854497 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |