JPH08274104A - Semiconductor substrate and its manufacture - Google Patents

Semiconductor substrate and its manufacture

Info

Publication number
JPH08274104A
JPH08274104A JP7361595A JP7361595A JPH08274104A JP H08274104 A JPH08274104 A JP H08274104A JP 7361595 A JP7361595 A JP 7361595A JP 7361595 A JP7361595 A JP 7361595A JP H08274104 A JPH08274104 A JP H08274104A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
minutes
oxygen
density
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7361595A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ueno
芳弘 上野
Tsutomu Amai
勉 天井
Masakuni Numano
正訓 沼野
Yoshihiko Saito
芳彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7361595A priority Critical patent/JPH08274104A/en
Publication of JPH08274104A publication Critical patent/JPH08274104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To reduce deterioration of mechanical strength and failed devices by decreasing oxygen deposit. CONSTITUTION: In a method for manufacturing a semiconductor substrate where an area near the surface of the semiconductor is made flawless, a process for introducing the semiconductor substrate into a reducing atmosphere, inert gas, or mixed gas, a process for increasing the temperature of the reducing atmosphere, inert gas, or the mixed gas from 700 to 900 deg.C within 60 minutes, and a process for performing heat treatment at least at a temperature of 1,100 deg.C for 30 minutes are provided, thus reducing the occurrence of dislocation in the semiconductor substrate due to distortion and the stress caused by high- temperature heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板及びその製
造方法に関し、特に、半導体基板に形成される酸素析出
物を制御することで、素子不良等を低減し、製造歩留り
を向上することができる半導体基板及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate and a method for manufacturing the same, and more particularly, by controlling oxygen precipitates formed on the semiconductor substrate, it is possible to reduce device defects and improve the manufacturing yield. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】半導体基板を製造する場合には品質を向
上させるため、高純度、かつ無欠陥なものが必要とされ
る。しかし、半導体素子の製造工程等において鉄や銅な
どの金属不純物が半導体基板中に混入されてしまう場合
がある。この混入により素子不良が発生し、製造歩留ま
りが低下してしまうため、金属不純物を取り除く必要が
ある。この金属不純物を半導体基板の表面付近から取り
除く方法として、内部ゲッタリング法(Intrinsic Gette
ring:以下、IG法と記す) が知られている。このIG
法はシリコン半導体基板中に存在する格子間酸素の析出
などの酸素析出物(Bulk Micro Defect:以下、BMDと
記す) を利用し、このBMDにより半導体基板表面付近
に存在する金属不純物を引き寄せることにより、表面付
近の金属不純物を取り除く方法である。
2. Description of the Related Art When manufacturing a semiconductor substrate, in order to improve the quality, a high purity and defect-free material is required. However, metal impurities such as iron and copper may be mixed into the semiconductor substrate during the manufacturing process of the semiconductor device. Due to this mixture, a device defect occurs and the manufacturing yield decreases, so it is necessary to remove metal impurities. As a method for removing the metal impurities from the vicinity of the surface of the semiconductor substrate, an internal gettering method (Intrinsic Gette
ring: hereinafter referred to as IG method) is known. This IG
The method uses oxygen precipitates (Bulk Micro Defect: BMD) such as precipitation of interstitial oxygen existing in the silicon semiconductor substrate, and attracts metal impurities existing near the surface of the semiconductor substrate by this BMD. , A method of removing metal impurities near the surface.

【0003】ここで、通常、上述のIG処理を行った半
導体基板(以下、IG基板と記す)をMOS素子等に適
用するためには、表面付近を無欠陥化処理(Denuded Zon
e 処理:以下、DZ処理と記す) が施されたものが使用
される。このDZ処理は、酸化性雰囲気の中での高温処
理による酸素の外方拡散により表面付近の酸素を取り除
くものである。
Generally, in order to apply a semiconductor substrate that has been subjected to the above-mentioned IG processing (hereinafter referred to as an IG substrate) to a MOS device or the like, the vicinity of the surface is subjected to a defect-free treatment (Denuded Zon).
e treatment: hereinafter referred to as DZ treatment) is used. This DZ treatment removes oxygen in the vicinity of the surface by outward diffusion of oxygen by high temperature treatment in an oxidizing atmosphere.

【0004】しかしながら、このDZ処理は酸化性雰囲
気で、かつ、高温( 1200℃程度)で行われるため、表面
付近の酸素濃度を4×1017 [atoms/cm3 ] 程度以下に
することができない。従って、表面付近に酸素が残って
しまい、完全な無欠陥化の実現は困難である。
However, since this DZ treatment is performed in an oxidizing atmosphere and at a high temperature (about 1200 ° C.), the oxygen concentration near the surface cannot be reduced to about 4 × 10 17 [atoms / cm 3 ] or less. . Therefore, oxygen remains near the surface, and it is difficult to achieve perfect defect-free.

【0005】そこで、水素などの還元性雰囲気、若しく
はArなどの不活性ガス雰囲気での高温熱処理を行うこ
とによりDZ処理を行う方法が知られている。この方法
では、非酸化性雰囲気のため、基板表面付近の酸素濃度
が低い(表面での酸素濃度は約1×1017 [atoms/c
m3 ]以下)。このため、酸化膜を形成することなく高
温熱処理により、基板表層を酸化性雰囲気でのDZ処理
よりも良好な無欠陥化の処理を行うことができる。
Therefore, a method is known in which a DZ process is performed by performing a high temperature heat treatment in a reducing atmosphere such as hydrogen or an inert gas atmosphere such as Ar. In this method, the oxygen concentration near the substrate surface is low due to the non-oxidizing atmosphere (the oxygen concentration on the surface is about 1 × 10 17 [atoms / c]
m 3 ] or less). Therefore, it is possible to perform the defect-free treatment of the surface layer of the substrate, which is better than the DZ treatment in the oxidizing atmosphere, by the high temperature heat treatment without forming the oxide film.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
還元性雰囲気及び不活性ガスによるDZ処理によって高
温熱処理を行うと、 Si + 2O −> SiO2 の反応によって酸素析出物が生じる。この生じた酸素析
出物は反応前に比べて約2倍に体積膨脹をする。このた
め、結晶内のある領域である密度の酸素析出物が生じた
場合に、この酸化析出物の体積膨脹により、この領域全
体も膨脹する。この膨脹は、酸素析出物が含まれる量に
より異なる。すなわち、図6に示す如く、半導体基板1
の表層から10 [μm]までの領域の体積膨脹量と、表層
10 [μm]から60 [μm]までの領域の酸素析出物3の
含有量により体積膨脹量が相違する。この体積膨脹量の
相違により半導体基板に歪みが生じ、高温熱処理のスト
レスにより転位が発生するため、素子不良発生による歩
留まりが低下してしまう。
However, when high-temperature heat treatment is performed by the conventional DZ treatment with a reducing atmosphere and an inert gas, oxygen precipitates are generated by the reaction of Si + 2O −> SiO 2 . The generated oxygen precipitate expands in volume about twice as much as before the reaction. Therefore, when an oxygen precipitate having a certain density in the crystal is generated, the volume expansion of the oxide precipitate causes the entire area to expand. This expansion depends on the amount of oxygen precipitates contained. That is, as shown in FIG.
The volume expansion amount is different depending on the volume expansion amount in the region from the surface layer to 10 [μm] and the content of the oxygen precipitate 3 in the region from the surface layer 10 [μm] to 60 [μm]. Due to the difference in the volume expansion amount, the semiconductor substrate is distorted, and the stress of the high temperature heat treatment causes dislocations, resulting in a decrease in the yield due to the occurrence of device defects.

【0007】また、デバイス活性領域下端(表層2μm
から10μm までの深さ)にわずかに残存する酸素析出
物が接合リーク不良等のデバイス不良発生の要因にもな
り得る。
Further, the lower end of the device active area (surface layer 2 μm
To a depth of 10 μm), a small amount of residual oxygen precipitates may be a cause of device failure such as junction leak failure.

【0008】本発明は上記事情に鑑みて成されたもので
あり、その目的とするところは、酸素析出物を減少させ
ることにより、機械的強度の劣化を低減し、デバイス不
良を低減する半導体基板及びその製造方法を提供するこ
とにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to reduce oxygen precipitates to reduce deterioration of mechanical strength and to reduce device defects. And to provide a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、第1の発明の特徴は、半導体基板の表面付近を無
欠陥化する半導体基板の製造方法において、還元性雰囲
気、不活性ガス、若しくはこれらの混合ガス中で110
0℃以上の温度で30分以上の熱処理を行う際に、70
0℃から900℃への昇温過程の通過時間を60分以内
にすることを特徴とする。
In order to achieve the above-mentioned object, a feature of the first invention is that in a method for manufacturing a semiconductor substrate in which the vicinity of the surface of the semiconductor substrate is made defect-free, a reducing atmosphere, an inert gas and , Or 110 in a mixed gas of these
When performing heat treatment for 30 minutes or longer at a temperature of 0 ° C. or higher, 70
It is characterized in that the passage time of the temperature rising process from 0 ° C. to 900 ° C. is within 60 minutes.

【0010】ここで、好ましくは700℃から900℃
への昇温過程の通過時間を40分以内にすることにより
更に酸素析出物の発生を低減することができる。
Here, preferably 700 to 900 ° C.
Generation of oxygen precipitates can be further reduced by setting the passage time of the temperature rising process to 40 minutes or less.

【0011】また、第2の発明の特徴は、半導体基板の
表面付近を無欠陥化する半導体基板の製造方法におい
て、還元性雰囲気、不活性ガス、若しくはこれらの混合
ガス中に、前記半導体基板を導入するガス内導入工程
と、前記還元性雰囲気、不活性ガス、若しくはこれらの
混合ガスを700℃から900℃への通過時間を60分
以内で昇温する昇温工程と、1100℃以上の温度で3
0分以上の熱処理を行う熱処理工程とを行うことであ
る。
A second aspect of the present invention is a method of manufacturing a semiconductor substrate, which makes the vicinity of the surface of the semiconductor substrate defect-free, wherein the semiconductor substrate is placed in a reducing atmosphere, an inert gas, or a mixed gas thereof. Introducing step in gas to be introduced, temperature raising step of raising the reducing atmosphere, inert gas, or a mixed gas of these gases within a period of 60 minutes from 700 ° C to 900 ° C, and a temperature of 1100 ° C or higher. In 3
And a heat treatment step of performing heat treatment for 0 minutes or more.

【0012】ここで、前記還元性雰囲気に水素を用いる
ことは、酸素析出物の発生を低減し、半導体基板の歪み
を抑えることができるという点で好ましい。
Here, it is preferable to use hydrogen for the reducing atmosphere because the generation of oxygen precipitates can be reduced and the distortion of the semiconductor substrate can be suppressed.

【0013】また、前記不活性ガスにアルゴンを用いる
ことは酸素析出物の発生を低減し、半導体基板の歪みを
抑えることができるという点で好ましい。また、前記半
導体基板の酸素濃度は12×1017 [atoms/cm3 ] から
18×1017 [atoms/cm3 ]であることは、酸素析出物
の発生を低減し、半導体基板の歪みを抑えることができ
るという点で好ましい。
Further, the use of argon as the inert gas is preferable in that the generation of oxygen precipitates can be reduced and the distortion of the semiconductor substrate can be suppressed. Further, the oxygen concentration of the semiconductor substrate is 12 × 10 17 [atoms / cm 3 ] to 18 × 10 17 [atoms / cm 3 ], which reduces the generation of oxygen precipitates and suppresses the distortion of the semiconductor substrate. It is preferable in that it can be obtained.

【0014】さらに、第3の発明の特徴は、表層10
[μm]から60 [μm]での酸素析出物密度が5×106
[cm-3] 以上5×109 [cm-3] 以下である半導体基板
を用いることである。
The third aspect of the present invention is that the surface layer 10
The density of oxygen precipitates from [μm] to 60 [μm] is 5 × 10 6.
A semiconductor substrate having a size of [cm −3 ] or more and 5 × 10 9 [cm −3 ] or less is used.

【0015】[0015]

【作用】第1及び第2の発明によれば、700℃から9
00℃への昇温過程の通過時間を60分以内にする11
00℃以上の熱処理を行うことにより、酸素析出物の成
長しやすい温度領域の時間を短くすることで、酸素析出
物密度を低減することができる。
According to the first and second aspects of the present invention, the temperature range from 700 ° C. to 9 °
Make the passage time of the temperature rising process to 00 ° C within 60 minutes 11
By performing the heat treatment at 00 ° C. or higher, the time in the temperature region where the oxygen precipitates are likely to grow is shortened, whereby the density of the oxygen precipitates can be reduced.

【0016】また、第3の発明によれば、表層10 [μ
m]から60 [μm]までの深さの酸素析出物の密度が5×
106 [cm-3] 以上5×109 [cm-3] 以下とする。こ
れにより、ゲッタリング能力を損なうことなく、表層1
0 [μm]までのDZ層と、表層10 [μm]から60 [μ
m]までの層の酸素析出物の密度の差によって発生する各
層の膨脹量の差による歪量をある限度以下に抑え、その
後の高温熱処理にストレスによる転位の発生を防ぐこと
ができるのである。
According to the third invention, the surface layer 10 [μ
The density of oxygen precipitates in the depth from m] to 60 [μm] is 5 ×
It is not less than 10 6 [cm −3 ] and not more than 5 × 10 9 [cm −3 ]. As a result, the surface layer 1 can be obtained without impairing the gettering ability.
DZ layer up to 0 [μm] and surface layer 10 [μm] to 60 [μm]
It is possible to suppress the amount of strain due to the difference in the expansion amount of each layer due to the difference in the density of oxygen precipitates of the layers up to [m] below a certain limit, and to prevent the occurrence of dislocation due to stress during the subsequent high temperature heat treatment.

【0017】[0017]

【実施例】本発明に係る半導体基板及びその製造方法の
実施例について、図面を参照しながら説明することにす
る。
Embodiments of a semiconductor substrate and a method of manufacturing the same according to the present invention will be described with reference to the drawings.

【0018】実施例1 本実施例では、半導体基板としてCZウエハ(N型(10
0)、酸素密度 [Oi]=16×1017 [atoms/cm3 ], 150mmφ ,
比抵抗 1〜60 Ωcm)を用いることにする。このCZウ
エハをボートのトップ部に置き、N2 雰囲気中(Ar,
Ne,Kr,Xeでもよい)700℃(650℃から9
00℃でもよい)にて炉に導入した。その時、ボードの
炉への導入が終了するまで10分かかった。その後、水
素置換するのに15分かかった。
Example 1 In this example, a CZ wafer (N type (10
0), oxygen density [Oi] = 16 × 10 17 [atoms / cm 3 ], 150mmφ,
The specific resistance is 1 to 60 Ωcm). This CZ wafer was placed on the top of the boat and placed in an N 2 atmosphere (Ar,
Ne, Kr, Xe may be used) 700 ° C (650 ° C to 9
It was introduced into the furnace at 00 ° C). At that time, it took 10 minutes until the introduction of the board into the furnace was completed. After that, it took 15 minutes to replace with hydrogen.

【0019】次に、700℃から900℃までの昇温時
間をパラメータとし、その値としては10分、15分、
20分、30分、35分、40分とした。その後、同一
条件で1200℃(1100℃から1400℃でもよ
い)まで昇温し、1時間の熱処理を行った。このような
条件下における表層10 [μm]での酸素析出物及び表層
10 [μm]から60 [μm]での酸素析出物密度を赤外散
乱トモグラフ(IRトモグラフ)にて評価を行った。こ
の評価結果を図2に示す。図2は横軸に700℃から9
00℃のトータル時間(水素置換時間15分+昇温時
間)、横軸にBMD密度を示してある。
Next, the temperature rising time from 700 ° C. to 900 ° C. is used as a parameter, and its value is 10 minutes, 15 minutes,
It was set to 20 minutes, 30 minutes, 35 minutes, and 40 minutes. Then, the temperature was raised to 1200 ° C. (1100 ° C. to 1400 ° C. may be used) under the same conditions, and heat treatment was performed for 1 hour. Under such conditions, the oxygen precipitates in the surface layer 10 [μm] and the oxygen precipitate density in the surface layer 10 [μm] to 60 [μm] were evaluated by an infrared scattering tomograph (IR tomograph). The evaluation result is shown in FIG. Figure 2 shows the horizontal axis from 700 ° C to 9
The total time at 00 ° C. (hydrogen replacement time 15 minutes + temperature rising time) and the horizontal axis show the BMD density.

【0020】図に示す通り、表層10 [μm]から60
[μm]では700℃から900℃のトータル時間が60
分以下であれば、5×109 [cm-3] 以内であることが
分かる。ここで、下限値を5×106 [cm-3] 以下にす
るとゲッタリング能力が減少するため、5×106 [cm
-3] 以上にする必要がある。また、表層10 [μm]での
酸素析出物密度では、700℃から900℃のトータル
時間60分で1.8×106 [cm-3] であった。
As shown in the figure, from the surface layer 10 [μm] to 60
At [μm], the total time from 700 ℃ to 900 ℃ is 60
It can be seen that if it is less than or equal to minutes, it is within 5 × 10 9 [cm −3 ]. Here, if the lower limit value is set to 5 × 10 6 [cm −3 ] or less, the gettering ability is reduced, so 5 × 10 6 [cm
-3 ] Need to be above. The density of oxygen precipitates in the surface layer 10 [μm] was 1.8 × 10 6 [cm −3 ] at a total time of 60 minutes from 700 ° C. to 900 ° C.

【0021】以上のように、本実施例では700℃から
900℃のトータル時間により、表層10 [μm]での酸
素析出物及び表層10 [μm]から60 [μm]での酸素析
出物密度が変化し、トータル時間が長いほど酸素析出物
密度が大きくなることが分かった。従って、700℃か
ら900℃のトータル時間が60分以下であれば(更に
好ましくは40分以下)、表層10 [μm]での酸素析出
物密度を2×106 [cm-3] 以下にすることができた。
As described above, in this embodiment, the oxygen precipitate density in the surface layer 10 [μm] and the oxygen precipitate density in the surface layer 10 [μm] to 60 [μm] were changed by the total time from 700 ° C. to 900 ° C. It was found that the oxygen precipitate density increased as the total time changed. Therefore, if the total time from 700 ° C. to 900 ° C. is 60 minutes or less (more preferably 40 minutes or less), the density of oxygen precipitates in the surface layer 10 [μm] is set to 2 × 10 6 [cm −3 ] or less. I was able to.

【0022】このように本実施例では、酸素析出物が最
も成長しやすい700℃から900℃のトータル時間を
短くすることにより、酸素析出物の成長を抑制し、これ
により、表層から10 [μm]までの領域の体積膨脹量
と、表層10 [μm]から60 [μm]までの領域の体積膨
脹量の相違を低減することができる。
As described above, in this embodiment, the growth of the oxygen precipitates is suppressed by shortening the total time from 700 ° C. to 900 ° C. at which the oxygen precipitates are most likely to grow. ] It is possible to reduce the difference between the volume expansion amount in the region up to [] and the volume expansion amount in the region from the surface layer 10 [μm] to 60 [μm].

【0023】実施例2 次に、本実施例では、実施例1と同様に半導体基板とし
てCZウエハを用い、このCZウエハをボートのトップ
部に置き、N2 雰囲気中(Ar,Ne,Kr,Xeでも
よい)700℃(650℃から900℃でもよい)にて
炉に導入した。その時、ボードの炉への導入が終了する
まで10分かかった。
Embodiment 2 Next, in this embodiment, a CZ wafer is used as a semiconductor substrate similarly to the embodiment 1, and the CZ wafer is placed on the top of the boat and placed in an N 2 atmosphere (Ar, Ne, Kr, The furnace was introduced at 700 ° C. (650 ° C. to 900 ° C.). At that time, it took 10 minutes until the introduction of the board into the furnace was completed.

【0024】次に、水素置換を行う際に要する時間をパ
ラメータとし、その値として5分、10分、20分、3
0分、40分、60分とした。その後、700℃から9
00℃までの昇温時間を20分で行い、1200℃まで
同条件で昇温し、1時間の熱処理を行い、表層10 [μ
m]、及び表層10 [μm]から60 [μm]での酸素析出物
密度をIRトモグラフにて評価を行った。この評価結果
を図3に示す。図3は横軸に700℃から900℃のト
ータル時間、横軸にBMD密度を示してある。
Next, the time required for hydrogen substitution is used as a parameter, and its value is 5 minutes, 10 minutes, 20 minutes, 3
It was set to 0 minutes, 40 minutes, and 60 minutes. After that, 700 ℃ to 9
The temperature is raised to 00 ° C in 20 minutes, the temperature is raised to 1200 ° C under the same conditions, and the heat treatment is performed for 1 hour.
m] and the oxygen precipitate density in the surface layer 10 [μm] to 60 [μm] were evaluated by IR tomography. The evaluation result is shown in FIG. In FIG. 3, the horizontal axis shows the total time from 700 ° C. to 900 ° C., and the horizontal axis shows the BMD density.

【0025】700℃から900℃のトータル時間が6
0分(水素置換時間40分+昇温時間20分)以下であ
れば、表層10 [μm]から60 [μm]での酸素析出物密
度は5×106 [cm-3] から5×109 [cm-3] 以内で
あった。また、表層10 [μm]でも60分以下であれば
2×106 [cm-3] 以下であった。
Total time from 700 ° C to 900 ° C is 6
If it is 0 minutes (hydrogen replacement time 40 minutes + temperature rising time 20 minutes) or less, the density of oxygen precipitates in the surface layer 10 [μm] to 60 [μm] is 5 × 10 6 [cm −3 ] to 5 × 10 5. It was within 9 [cm -3 ]. Further, the surface layer 10 [μm] was 2 × 10 6 [cm −3 ] or less if it was 60 minutes or less.

【0026】実施例3 次に、実施例2で評価したものと同一のウエハを用い
て、トレンチ構造の半導体素子を作製した。その後、光
学顕微鏡及びSEMにてエッチングにより評価を行っ
た。この結果を図4に示す。図4より表層10 [μm]か
ら60 [μm]の酸素析出物密度が5×109 [cm-3] 以
下であれば、欠陥の発生はほとんど見られなかった。こ
こで、酸素析出物密度が5×109 [cm-3] 以上で欠陥
が発生した原因としては、個々の酸素析出物の発生に伴
う歪みが析出物密度が高い程大きくなり、さらに内部の
酸素析出密度が高い場合、高温熱処理による熱ストレス
が加わって欠陥(転位)が発生したものと考えられる。
Example 3 Next, using the same wafer as that evaluated in Example 2, a semiconductor device having a trench structure was manufactured. Then, evaluation was performed by etching with an optical microscope and SEM. The result is shown in FIG. As shown in FIG. 4, when the density of oxygen precipitates in the surface layer 10 [μm] to 60 [μm] was 5 × 10 9 [cm −3 ] or less, almost no defects were observed. Here, the reason why defects are generated when the oxygen precipitate density is 5 × 10 9 [cm −3 ] or more is that the strain accompanying the generation of individual oxygen precipitates increases as the precipitate density increases, and When the oxygen precipitation density is high, it is considered that defects (dislocations) were generated due to the thermal stress applied by the high temperature heat treatment.

【0027】一方、表層10 [μm]から60 [μm]での
酸素析出物密度が5×106 [cm-3] 以下になるとゲッ
タリング能力が低下してしまうため、十分にゲッタリン
グ能力を発揮させるためには酸素析出密度が5×106
[cm-3] 以上であることが必要である。
On the other hand, when the density of oxygen precipitates in the surface layer of 10 [μm] to 60 [μm] is 5 × 10 6 [cm −3 ] or less, the gettering ability is lowered, so that the gettering ability is sufficiently increased. Oxygen precipitation density is 5 × 10 6
It must be at least [cm -3 ].

【0028】このように本実施例では、酸素析出物密度
を5×109 [cm-3] 以下にすれば、欠陥発生率を低減
することができる。また、十分にゲッタリング能力を発
揮させるためには酸素析出密度が5×106 [cm-3] 以
上であることが必要である。以上より、半導体基板にお
ける表層10 [μm]から60 [μm]での酸素析出物密度
が5×106 [cm-3] 以上5×109 [cm-3] 以下にす
ることにより半導体基板に歪、及び、高温熱処理のスト
レスによる転位のが発生を低減することができるため、
歩留まりを向上することができる。
As described above, in this embodiment, if the density of oxygen precipitates is set to 5 × 10 9 [cm −3 ] or less, the defect generation rate can be reduced. Further, in order to fully exert the gettering ability, it is necessary that the oxygen precipitation density is 5 × 10 6 [cm −3 ] or more. From the above, by setting the oxygen precipitate density in the surface layer 10 [μm] to 60 [μm] of the semiconductor substrate to 5 × 10 6 [cm −3 ] or more and 5 × 10 9 [cm −3 ] or less, the semiconductor substrate can be obtained. Since strain and generation of dislocations due to stress of high temperature heat treatment can be reduced,
The yield can be improved.

【0029】実施例4 次に、本実施例では、半導体基板に含まれる酸素濃度の
パラメータとして、11,12,13,15,16.
5,18×1017 [atoms/cm3 ] を用い、実施例1と同
様な方法で熱処理を行い、700℃から900℃の通過
時間が40分と65分の表層60 [μm]の酸素析出物密
度をIRトモグラフにて評価を行った。この評価結果を
図5に示す。図5より、700℃から900℃の通過時
間が65分の場合には、酸素濃度12×1017 [atoms/
cm3 ] から酸素濃度13×1017 [atoms/cm3 ] にかけ
て急激に酸素析出物密度が増加しており、酸素濃度16
×1017 [atoms/cm3 ] で、5×109 [cm-3] 以上の
酸素析出物密度を示した。次に、700℃から900℃
の通過時間が40分では、酸素濃度12〜18×1017
[atoms/cm3 ] で、酸素析出物密度が5×106 [c
m-3] 〜5×109 [cm-3] 以内を示している。
Embodiment 4 Next, in the present embodiment, as parameters of oxygen concentration contained in the semiconductor substrate, 11, 12, 13, 15, 16.
Using 5,18 × 10 17 [atoms / cm 3 ], heat treatment was performed in the same manner as in Example 1, and oxygen precipitation in the surface layer 60 [μm] of 700 ° C. to 900 ° C. transit time of 40 minutes and 65 minutes was performed. The material density was evaluated by an IR tomograph. The evaluation result is shown in FIG. From FIG. 5, when the passage time from 700 ° C. to 900 ° C. is 65 minutes, the oxygen concentration is 12 × 10 17 [atoms /
cm 3 ], and oxygen concentration 13 × 10 17 [atoms / cm 3 ], the oxygen precipitate density increased rapidly, and the oxygen concentration 16
The density of oxygen precipitates was 5 × 10 9 [cm −3 ] or more at × 10 17 [atoms / cm 3 ]. Next, 700 ° C to 900 ° C
When the passage time is 40 minutes, the oxygen concentration is 12-18 × 10 17
[atoms / cm 3 ], the density of oxygen precipitates is 5 × 10 6 [c
It is within m −3 ] to 5 × 10 9 [cm −3 ].

【0030】一方、酸素濃度が11×1017 [atoms/cm
3 ] では、通過時間に拘らず酸素析出密度は5×106
[cm-3] 以下になっている。酸素析出密度が5×106
[cm-3] 以下の場合には、ゲッタリング能力が低下して
しまうため、十分にゲッタリング能力を発揮させるため
には酸素濃度12×1017 [atoms/cm3 ] 以上であるこ
とが必要である。
On the other hand, the oxygen concentration is 11 × 10 17 [atoms / cm
3 ], the oxygen precipitation density was 5 × 10 6 regardless of the passage time.
[cm -3 ] or less. Oxygen precipitation density is 5 × 10 6
In the case of [cm -3 ] or less, the gettering ability will be deteriorated. Therefore, in order to fully exert the gettering ability, it is necessary that the oxygen concentration is 12 × 10 17 [atoms / cm 3 ] or more. Is.

【0031】このように本実施例では、一般に酸素濃度
が高いほど酸素析出物密度が増加し、700℃から90
0℃の通過時間が40分の場合には、酸素濃度が12〜
18×1017 [atoms/cm3 ] の場合に酸素析出物密度が
5×106 [cm-3] 〜5×109 [cm-3] 以内を示すこ
とが分かった。従って、酸素濃度は12〜18×1017
[atoms/cm3 ] の範囲内にすることにより、酸素析出物
密度を低減することができるため、半導体基板に歪、及
び、高温熱処理のストレスによる転位のが発生を低減す
ることができるため、歩留まりを向上することができ
る。
As described above, in this embodiment, generally, the higher the oxygen concentration, the higher the density of oxygen precipitates.
When the passage time at 0 ° C is 40 minutes, the oxygen concentration is 12 to
It was found that the oxygen precipitate density was within 5 × 10 6 [cm −3 ] to 5 × 10 9 [cm −3 ] in the case of 18 × 10 17 [atoms / cm 3 ]. Therefore, the oxygen concentration is 12 to 18 × 10 17.
By setting it within the range of [atoms / cm 3 ], the density of oxygen precipitates can be reduced, so that strain in the semiconductor substrate, and generation of dislocation due to stress of high temperature heat treatment can be reduced, The yield can be improved.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、半
導体デバイスに用いられる半導体基板の表面付近に、従
来の酸素雰囲気中でのIG処理による以上に完全に近い
無欠陥層の形成を実現することができる。
As described above, according to the present invention, near-perfect defect-free layers can be formed near the surface of a semiconductor substrate used for a semiconductor device by IG treatment in a conventional oxygen atmosphere. can do.

【0033】また、ガス中で1100℃以上の温度で3
0分以上の熱処理を行う際に、昇温時に700℃から9
00℃の通過時間を60分以内にすることにより、酸素
析出物の成長を抑制し、これにより、表層から10 [μ
m]までの領域の体積膨脹量と、表層10 [μm]から60
[μm]までの領域の体積膨脹量の相違を低減することが
できるため、その後の高温熱処理にストレスによる転位
の発生を防ぐことができる。
Further, at a temperature of 1100 ° C. or higher in gas, 3
When performing heat treatment for 0 minutes or more, the temperature rises from 700 ° C to 9 ° C.
By keeping the passage time at 00 ° C within 60 minutes, the growth of oxygen precipitates is suppressed, and as a result, 10 [μ
The volume expansion of the area up to m] and the surface layer 10 [μm] to 60
Since the difference in the volume expansion amount in the region up to [μm] can be reduced, it is possible to prevent the occurrence of dislocation due to stress in the subsequent high temperature heat treatment.

【0034】さらに、半導体基板の表層10 [μm]から
60 [μm]までの領域の酸素析出物密度が5×106
[cm-3] 以上5×109 [cm-3] 以下とすることによ
り、表層から10 [μm]までの領域の体積膨脹量と、表
層10 [μm]から60 [μm]までの領域の体積膨脹量の
相違を低減することができるため、その後の高温熱処理
にストレスによる転位の発生を防ぐことができる。
Furthermore, the density of oxygen precipitates in the region from the surface layer 10 [μm] to 60 [μm] of the semiconductor substrate is 5 × 10 6.
The volume expansion amount in the region from the surface layer to 10 [μm] and the volume expansion amount in the region from the surface layer 10 [μm] to 60 [μm] can be controlled by setting [cm −3 ] to 5 × 10 9 [cm −3 ] or less. Since the difference in the volume expansion amount can be reduced, it is possible to prevent the occurrence of dislocation due to stress in the subsequent high temperature heat treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体基板の製造方法の工程を示
したフローチャートである。
FIG. 1 is a flowchart showing steps of a method for manufacturing a semiconductor substrate according to the present invention.

【図2】700℃から900℃までの昇温時間をパラメ
ータとして表層10 [μm]での酸素析出物及び表層10
[μm]から60 [μm]での酸素析出物密度をIRトモグ
ラフにて評価を行った結果を示した図表である。
FIG. 2 shows oxygen precipitates in the surface layer 10 [μm] and the surface layer 10 with the temperature rising time from 700 ° C. to 900 ° C. as a parameter.
It is a chart showing the result of having evaluated the oxygen precipitate density from [μm] to 60 [μm] by an IR tomograph.

【図3】水素置換を行う際に要する時間をパラメータと
して表層10 [μm]での酸素析出物及び表層10 [μm]
から60 [μm]での酸素析出物密度をIRトモグラフに
て評価を行った結果を示した図表である。
FIG. 3 shows oxygen precipitates in the surface layer 10 [μm] and the surface layer 10 [μm] with the time required for hydrogen substitution as a parameter.
2 is a chart showing the results of evaluation by oxygen tomography of the density of oxygen precipitates from 1 to 60 [μm].

【図4】表層10 [μm]から60 [μm]の酸素析出物密
度により半導体素子の欠陥発生率を示した図表である。
FIG. 4 is a table showing the defect occurrence rate of semiconductor devices according to the density of oxygen precipitates in the surface layer 10 [μm] to 60 [μm].

【図5】半導体基板に含まれる酸素濃度のパラメータと
して、通過時間が40分と65分の表層60 [μm]の酸
素析出物密度をIRトモグラフにて評価を行った結果を
示した図表である。
FIG. 5 is a chart showing the results of evaluating the oxygen precipitate density of the surface layer 60 [μm] of the passage time of 40 minutes and 65 minutes by an IR tomograph as a parameter of the oxygen concentration contained in the semiconductor substrate. .

【図6】半導体基板の断面を示した図である。FIG. 6 is a view showing a cross section of a semiconductor substrate.

【符号の説明】[Explanation of symbols]

1 半導体基板 3 酸素析出物 1 Semiconductor substrate 3 Oxygen precipitate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 芳彦 神奈川県川崎市幸区堀川町72番地 株式会 社東芝堀川町工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiko Saito 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Stock Company Toshiba Horikawa-cho Factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面付近を無欠陥化する半
導体基板の製造方法において、 還元性雰囲気、不活性ガス、若しくはこれらの混合ガス
中で1100℃以上の温度で30分以上の熱処理を行う
際に、700℃から900℃への昇温過程の通過時間を
60分以内にすることを特徴とする半導体基板の製造方
法。
1. A method for manufacturing a semiconductor substrate in which the vicinity of the surface of the semiconductor substrate is made defect-free, and heat treatment is performed at a temperature of 1100 ° C. or more for 30 minutes or more in a reducing atmosphere, an inert gas, or a mixed gas thereof. At this time, the manufacturing time of the semiconductor substrate is characterized in that the passage time of the temperature rising process from 700 ° C. to 900 ° C. is within 60 minutes.
【請求項2】 半導体基板の表面付近を無欠陥化する半
導体基板の製造方法において、 還元性雰囲気、不活性ガス、若しくはこれらの混合ガス
中に、前記半導体基板を導入するガス内導入工程と、 前記還元性雰囲気、不活性ガス、若しくはこれらの混合
ガスを700℃から900℃への通過時間を60分以内
で昇温する昇温工程と、 1100℃以上の温度で30分以上の熱処理を行う熱処
理工程と、 を行うことを特徴とする半導体素子の製造方法。
2. A method of manufacturing a semiconductor substrate, in which the vicinity of the surface of the semiconductor substrate is made defect-free, and a gas introducing step of introducing the semiconductor substrate into a reducing atmosphere, an inert gas, or a mixed gas thereof, A temperature raising step of raising the passing time from 700 ° C. to 900 ° C. within 60 minutes for the reducing atmosphere, the inert gas or a mixed gas thereof, and a heat treatment for 30 minutes or more at a temperature of 1100 ° C. or more A method of manufacturing a semiconductor device, comprising: performing a heat treatment step.
【請求項3】 前記還元性雰囲気には、水素を用いるこ
とを特徴とする請求項1又は2に記載の半導体基板の製
造方法。
3. The method of manufacturing a semiconductor substrate according to claim 1, wherein hydrogen is used in the reducing atmosphere.
【請求項4】 前記不活性ガスにはアルゴンを用いるこ
とを特徴とする請求項1又は2に記載の半導体基板の製
造方法。
4. The method of manufacturing a semiconductor substrate according to claim 1, wherein argon is used as the inert gas.
【請求項5】 前記半導体基板の酸素濃度は12×10
17 [atoms/cm3 ] から18×1017 [atoms/cm3 ] であ
ることを特徴とする請求項1又は2に記載の半導体基板
の製造方法。
5. The oxygen concentration of the semiconductor substrate is 12 × 10.
The method for producing a semiconductor substrate according to claim 1 or 2, wherein the amount is from 17 [atoms / cm 3 ] to 18 × 10 17 [atoms / cm 3 ].
【請求項6】 表層10 [μm]から60 [μm]での酸素
析出物密度が5×106 [cm-3] 以上5×109 [c
m-3] 以下であることを特徴とする半導体基板。
6. The oxygen precipitate density in the surface layer 10 [μm] to 60 [μm] is 5 × 10 6 [cm −3 ] or more and 5 × 10 9 [c].
m -3 ] or less, The semiconductor substrate characterized by the above-mentioned.
JP7361595A 1995-03-30 1995-03-30 Semiconductor substrate and its manufacture Pending JPH08274104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7361595A JPH08274104A (en) 1995-03-30 1995-03-30 Semiconductor substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7361595A JPH08274104A (en) 1995-03-30 1995-03-30 Semiconductor substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH08274104A true JPH08274104A (en) 1996-10-18

Family

ID=13523424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7361595A Pending JPH08274104A (en) 1995-03-30 1995-03-30 Semiconductor substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH08274104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325848B1 (en) 1997-11-11 2001-12-04 Nec Corporation Method of making a silicon substrate with controlled impurity concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325848B1 (en) 1997-11-11 2001-12-04 Nec Corporation Method of making a silicon substrate with controlled impurity concentration

Similar Documents

Publication Publication Date Title
JPS6124240A (en) Semiconductor substrate
JP3458342B2 (en) Silicon wafer manufacturing method and silicon wafer
JP2003282577A (en) Silicon semiconductor wafer and manufacturing method therefor
US6436846B1 (en) Combined preanneal/oxidation step using rapid thermal processing
JP3022044B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPH10150048A (en) Semiconductor substrate
WO2010131412A1 (en) Silicon wafer and method for producing the same
WO2002049091A1 (en) Anneal wafer manufacturing method and anneal wafer
JP2001253795A (en) Silicon epitaxial water and method of producing the same
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JPH08274104A (en) Semiconductor substrate and its manufacture
JP3294723B2 (en) Silicon wafer manufacturing method and silicon wafer
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JP2008227060A (en) Method of manufacturing annealed wafer
JPH06310517A (en) Semiconductor substrate and its manufacture
JP2002151519A (en) Annealed wafer and manufacturing method thereof
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPH08162461A (en) Method of heat treating semiconductor substrate
JP3171308B2 (en) Silicon wafer and method for manufacturing the same
JPH09223699A (en) Silicon wafer and its manufacturing method
JP3995286B2 (en) SIMOX substrate manufacturing method
JP2652346B2 (en) Manufacturing method of silicon wafer
JPH0969526A (en) Production of semiconductor device
JPH10144696A (en) Silicon wafer and its manufacture