JPH08271790A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH08271790A
JPH08271790A JP10563996A JP10563996A JPH08271790A JP H08271790 A JPH08271790 A JP H08271790A JP 10563996 A JP10563996 A JP 10563996A JP 10563996 A JP10563996 A JP 10563996A JP H08271790 A JPH08271790 A JP H08271790A
Authority
JP
Japan
Prior art keywords
lens group
lens
aspherical
positive
aspherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10563996A
Other languages
Japanese (ja)
Inventor
Kazuo Igari
和夫 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10563996A priority Critical patent/JPH08271790A/en
Publication of JPH08271790A publication Critical patent/JPH08271790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To obtain a high-performance compact zoom lens constituted of 1st to 4th lens groups, each aberration of which is satisfactorily compensated by providing the 4th lens group with an aspherical surface which satisfies a specified condition and effectively using the aspherical surface. CONSTITUTION: The zoom lens is constituted of the positive 1st lens group, the negative 2nd lens group, the positive 3rd lens group, a diaphragm, the positive 4th lens group in this order from an object side, and at zooming from a wide angle side to a telephoto side, a distance between the 1st lens group and the 2nd lens group is increased, a distance between the 2nd lens group and the 3rd lens group is decreased, a distance between the 3rd lens group and the 4th lens group is decreased. Then, the 4th lens group is provided with at least one aspherical surface and which satisfies the following condituon; 0.1×10<-4> <|C4 |<0.1×10<-3> . Provided that (x) denotes the coordinate in an optical axis direction from the area of the aspherical surface, (y) denotes the coordinate in the normal direction to the (x) axis, R denotes the paraxial radius of curvature, each of (a2 ), (a4 ) and (a6 ) denotes an aspherical coefficient and (c4 ) denotes the (a4 ) of the aspherical coefficient in the case the expression of the aspherical surface is x=cy<2> (1+1-C<2> y<2> )<1/2> )<-1> +a2 Y<2> +a4 Y<4> +a6 Y<6> +..., c=1/R.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はズームレンズに関す
るもので、特に画角63°の広角を含み3群以上のレンズ
群で構成されるコンパクトなズームレンズに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a compact zoom lens including a wide angle of view of 63 ° and composed of three or more lens groups.

【0002】[0002]

【従来の技術】従来この種のレンズとしては、物体側よ
り順に正の第1群、負の第2群、正の第3群、正の第4
群より成り、このうち第1群、第3群、第4群を移動す
ることによりズーミングを行い、特に第2群のパワーを
強くすることでコンパクト化を行ったものが特開昭59-5
7213号公報、特開昭59-57214号公報等で知られている。
2. Description of the Related Art Conventionally, as this type of lens, a positive first lens group, a negative second lens group, a positive third lens group, and a positive fourth lens group are arranged in this order from the object side.
Japanese Patent Laid-Open No. 59-5 is a group consisting of a group of which the first, third, and fourth groups are moved to perform zooming, and in particular, the second group is made stronger to increase the power.
It is known from 7213, JP-A-59-57214, and the like.

【0003】また、非球面を用いたものとしては、正の
第1群、負の第2群、正の第3群、そして第4群の4群
から成り、コンパクト化のために第3群のパワーを強
め、その時発生する球面収差及び非点収差を非球面によ
り補正したものが特開昭60−178421号公報に示されてい
る。
The aspherical surface is composed of a positive first lens group, a negative second lens group, a positive third lens group, and a fourth lens group, that is, a third lens group for compactness. Japanese Patent Application Laid-Open No. 60-178421 discloses that the spherical aberration and astigmatism generated at that time are corrected by an aspherical surface.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者の
ものでは、広角端の望遠比が 3.6程度であり、既に第2
群のパワーを特に強くしているため、更にコンパクト化
するべくパワーを強めると諸収差が劣化してしまう。ま
た、後者のものでは、球面収差、非点収差等の、諸収差
をひとつの非球面で同時に補正する構成になっている。
ところが、非球面が配置されている第3レンズ群では、
非球面に入射する軸外光線の光線高が高くないため、非
球面が本来持っている補正能力を十分発揮させることが
できない。
However, in the former case, the telephoto ratio at the wide-angle end is about 3.6, which is already the second.
Since the power of the group is particularly strong, if the power is increased to make it more compact, various aberrations will deteriorate. Further, the latter one has a configuration in which various aberrations such as spherical aberration and astigmatism are simultaneously corrected by one aspherical surface.
However, in the third lens group in which the aspherical surface is arranged,
Since the height of the off-axis rays incident on the aspherical surface is not high, the correction ability originally possessed by the aspherical surface cannot be fully exerted.

【0005】このため、非点収差等の軸外収差について
十分な補正をすることができないという問題や、さらに
コンパクト化するために各群のパワーを強くする場合で
は、諸収差を補正しきれなくなってしまうという問題が
生じる。本発明はこのような問題点に着目してなされた
ものであり、非球面を有効に用いることで、各収差の良
好に補正された高性能でかつコンパクト化が十分に達成
されたズームレンズを提供することを目的とする。
For this reason, the problem that off-axis aberrations such as astigmatism cannot be corrected sufficiently, and when the power of each group is increased in order to make it more compact, it becomes impossible to correct various aberrations. There is a problem that it will end up. The present invention has been made in view of these problems, and by effectively using an aspherical surface, it is possible to obtain a high-performance zoom lens in which aberrations are well corrected and sufficiently compact. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に基づくズームレンズでは、物体側より順に
正の第1レンズ群と負の第2レンズ群と正の第3レンズ
群と絞りと正の第4レンズ群とから成り、広角側から望
遠側へズーミングする際に前記第1レンズ群と前記第2
レンズ群の間隔が増加し前記第2レンズ群と前記第3レ
ンズ群の間隔が減少し前記第3レンズ群と前記第4レン
ズ群の間隔が減少するズームレンズで、前記第4レンズ
群が少なくとも1面の非球面を有し、以下の条件を満足
することを特徴としている。
In order to achieve the above object, in a zoom lens according to the present invention, a positive first lens group, a negative second lens group, and a positive third lens group are arranged in order from the object side. It consists of an aperture stop and a positive fourth lens group, and when zooming from the wide-angle side to the telephoto side, the first lens group and the second lens group are used.
A zoom lens in which the distance between the lens groups increases, the distance between the second lens group and the third lens group decreases, and the distance between the third lens group and the fourth lens group decreases, at least the fourth lens group It is characterized by having one aspherical surface and satisfying the following conditions.

【0007】 0.1 ×10-4<|C4 |<0.1 ×10-3 ………(1) 但し、非球面の式を、 x=cy2 ( 1+(1−c 2 y 2 ) 1/2 ) -1+a 2 y 2
a 4 y 4 +a 6 y 6 +……… c=1/R とおくと、 x ;非球面の面頂からの光軸方向の座標 y ;光軸の法線方向の座標 R ;近軸曲率半径 a 2 ,a 4 ,a 6 ………;非球面係数 C4 ;非球面係数a 4 また、本発明による別のズームレンズは、ズームレンズ
を3群構成にした場合には、物体側より順に正の第1レ
ンズ群と負の第2レンズ群と少なくとも1枚の両凹単レ
ンズ及び最も像面側に配置された物体側に凸の正メニス
カスレンズを有する結像レンズ群との3群から成り、前
記正メニスカスレンズの少なくとも1面が非球面であ
り、該非球面の形状が光軸から離れるに従って正の作用
が弱まる形状であり、以下の条件を満足することを特徴
としている。
0.1 × 10 −4 <| C 4 | <0.1 × 10 −3 (1) However, the aspherical expression is expressed as x = cy 2 (1+ (1-c 2 y 2 ) 1/2 ) -1 + a 2 y 2
a 4 y 4 + a 6 y 6 + ………… If c = 1 / R, then x is the coordinate in the direction of the optical axis from the apex of the aspheric surface y is the coordinate in the direction of the optical axis R is the paraxial curvature Radius a 2 , a 4 , a 6 ... Aspherical coefficient C 4 ; Aspherical coefficient a 4 Further , in another zoom lens according to the present invention, when the zoom lens is composed of three groups, Three groups, in order, a positive first lens group, a negative second lens group, at least one biconcave single lens, and an imaging lens group having a positive meniscus lens convex on the object side, which is arranged closest to the image plane side. At least one surface of the positive meniscus lens is an aspherical surface, and the shape of the aspherical surface is such that the positive action weakens as the distance from the optical axis increases, and the following conditions are satisfied.

【0008】 0.1 ×10-4<|D4 |<0.1 ×10-3 ………(2) 但し、非球面の式を、 x=cy2 ( 1+(1−c 2 y 2 ) 1/2 ) -1+a 2 y 2
a 4 y 4 +a 6 y 6 +……… c=1/R とおくと、 x ;非球面の面頂からの光軸方向の座標 y ;光軸の法線方向の座標 R ;近軸曲率半径 a 2 ,a 4 ,a 6 ………;非球面係数 D4 ;非球面係数a 4 以下に本発明において上記構成をとる理由と作用、また
更に好ましい構成について説明する。
0.1 × 10 −4 <| D 4 | <0.1 × 10 −3 (2) However, the aspherical expression is x = cy 2 (1+ (1-c 2 y 2 ) 1/2 ) -1 + a 2 y 2
a 4 y 4 + a 6 y 6 + ………… If c = 1 / R, then x is the coordinate in the direction of the optical axis from the apex of the aspheric surface y is the coordinate in the direction of the optical axis R is the paraxial curvature radius a 2, a 4, a 6 .........; aspherical coefficients D 4; action reason for adopting the above-described arrangements in the present invention in the following aspheric coefficients a 4, also for the more preferred construction will be described.

【0009】ズームレンズにおいてレンズ全長を短くコ
ンパクトにするには、各レンズ群のパワーを強くするこ
とが必要であるが、各収差の良好な補正を維持するため
には適切なパワー配分を行うことが重要である。このた
め、本発明に基づくズームレンズにおいて特にコンパク
トなレンズ系を得るためには、以下の条件を満足するこ
とが好ましい。
In the zoom lens, in order to shorten the overall lens length and make it compact, it is necessary to increase the power of each lens group, but in order to maintain good correction of each aberration, appropriate power distribution should be performed. is important. Therefore, in order to obtain a particularly compact lens system in the zoom lens according to the present invention, it is preferable to satisfy the following conditions.

【0010】0.4 <fRW/fW <0.8 ………(3) 0.15<e2T/fW <0.75 ………(4) 但、fW は全系の広角端の焦点距離、fRWは結像レンズ
群(4群ズームレンズの場合は第3群と第4群の合成群
が、3群ズームレンズの場合は第3群が対応)の広角端
焦点距離、e2Tは望遠端での第2群の後側主点と結像レ
ンズ群の前側主点との距離である。
0.4 <f RW / f W <0.8 (3) 0.15 <e 2T / f W <0.75 (4) where f W is the focal length at the wide angle end of the entire system and f RW is The focal length at the wide-angle end of the imaging lens group (the composite group of the third group and the fourth group in the case of the 4-group zoom lens corresponds to the third group in the case of the 3-group zoom lens), e 2T is at the telephoto end. It is the distance between the rear principal point of the second group and the front principal point of the imaging lens group.

【0011】また、第1群を物体側に凸面を向けた負メ
ニスカスレンズ及び両凸レンズ或いはそれらの接合レン
ズと、物体側に凸の正メニスカスレンズとから構成し、
第1レンズ群でフォーカシングを行う場合、第1レンズ
群の最像側面の曲率半径をRとおくと、以下の条件を満
足することが好ましい。 1.5 <R/fW <3.5 ………(5) 更に、第2群の最物体側面を物体側に凸とし、最像側面
も物体側に凸とすることにより、軸外光線の第2群への
入射角及び射出角を小さくしてズーミングによる軸外収
差の変動を小さくすることができる。このとき、4群構
成のものにおいては、この第2レンズ群を物体側より順
に物体側に凸の負メニスカスレンズ、両凹レンズ、接合
正レンズより構成するか、又は正レンズを2枚含むよう
に構成するとより好ましい。
Further, the first group is composed of a negative meniscus lens having a convex surface on the object side and a biconvex lens or a cemented lens thereof, and a positive meniscus lens having a convex surface on the object side,
When focusing is performed with the first lens group, it is preferable that the following condition is satisfied, where R is the radius of curvature of the most image-side surface of the first lens group. 1.5 <R / f W <3.5 (5) Further, by making the most object side surface of the second group convex toward the object side and the most image side surface also convex toward the object side, the second group of off-axis rays can be obtained. It is possible to reduce the variation of off-axis aberrations due to zooming by reducing the angle of incidence and the angle of emergence on. At this time, in the case of a four-group structure, this second lens group is composed of a negative meniscus lens, a biconcave lens, and a cemented positive lens, which are convex toward the object side in order from the object side, or two positive lenses are included. It is more preferable to configure.

【0012】また、各レンズ群に正レンズと負レンズと
の両方を含めることにより色収差を良好に補正すること
ができる。この時、第2群は負のパワーが強いため、複
数の負レンズを用いることが好ましい。そして、レンズ
鏡筒構成上、パワーの強い第2群をズーミング中固定に
すると、性能を安定して出し易い。また、第1群と第4
群を一体にしてズーミングするようにすれば、鏡筒構造
が簡単になる。
Further, by including both a positive lens and a negative lens in each lens group, it is possible to excellently correct chromatic aberration. At this time, since the second group has a strong negative power, it is preferable to use a plurality of negative lenses. Further, due to the lens barrel structure, if the second group having a strong power is fixed during zooming, stable performance can be easily obtained. Also, the first group and the fourth group
If the groups are integrated and zoomed, the lens barrel structure becomes simple.

【0013】次に前記条件(1)乃至条件(5)についてその
作用を説明する。非球面を用いて非点収差等の軸外収差
を補正することを考えると、非球面を絞りよりできるだ
け像面に近い位置に配設するのが望ましい。この点を考
慮したものが条件(1)で、これはズームレンズを4群構
成とした場合に、非球面を適切に用いることにより、少
なくとも1つの非球面により全長を短かくコンパクトに
した上で各収差とも良好に補正するための条件である。
この条件は、非球面を第4群の像面に近い面に用いるこ
とにより、各像高の光束が分離する傾向になり、かつ非
球面への入射角が大きくなり、更に軸上光線高が低くな
ることを利用して、球面収差への影響を小さくしなが
ら、コマ収差、非点収差の補正を良好に行うためのもの
である。この条件の上限を越えると、コマ収差、非点収
差が補正過剰となり、また軸上光線にも影響を与え球面
収差が劣化する。下限を越えると、非球面の効果が弱く
なりすぎ収差補正が困難になる。
Next, the operation of the conditions (1) to (5) will be described. Considering correction of off-axis aberrations such as astigmatism using an aspherical surface, it is desirable to dispose the aspherical surface as close to the image plane as possible than the diaphragm. Considering this point is the condition (1). This is because when the zoom lens is composed of four groups, the aspherical surface is appropriately used to make the overall length short and compact by at least one aspherical surface. It is a condition for satisfactorily correcting each aberration.
This condition is that when an aspherical surface is used on the surface close to the image surface of the fourth lens group, the light flux at each image height tends to be separated, the incident angle to the aspherical surface becomes large, and the axial ray height is increased. By utilizing the lowering, it is possible to favorably correct coma and astigmatism while reducing the influence on spherical aberration. If the upper limit of this condition is exceeded, coma and astigmatism will be overcorrected, and axial rays will also be affected, resulting in deterioration of spherical aberration. When the value goes below the lower limit, the effect of the aspherical surface becomes too weak, and it becomes difficult to correct the aberration.

【0014】また、条件(2)はズームレンズを3群構成
とした場合の像側に設けられた非球面の形状に関する条
件式である。条件式そのものは条件(1)と同じであり、
その上、下限越えの傾向も同様である。但し、結像レン
ズ群を1群で構成しているので、この結像レンズ群で発
生する像面湾曲の補正をこの非球面で補正すると球面収
差及びコマフレアーが補正しきれなくなるため、これを
結像レンズ群中に両凹レンズを設けることにより補正し
ている。
Condition (2) is a conditional expression regarding the shape of the aspherical surface provided on the image side when the zoom lens has a three-group configuration. The conditional expression itself is the same as the condition (1),
Moreover, the tendency of exceeding the lower limit is the same. However, since the imaging lens group is composed of one group, spherical aberration and coma flare cannot be completely corrected if the correction of the field curvature generated in this imaging lens group is corrected by this aspherical surface. The correction is made by providing a biconcave lens in the imaging lens group.

【0015】さて、条件(3)、(4)は前述したように適切
なパワー配分を定めるための条件であり、共に上限を越
えるとレンズ全長が長くなり、コンパクト化を達成でき
ない。下限を越えると、各群のパワーが強くなりすぎ、
前述の非球面を用いても各収差の補正が困難になる。条
件(5)は、前述したようにフォーカシングも考慮してよ
り良好な性能を得るための条件である。上限を越える
と、ズーミングによる歪曲収差の変動が大きくなる。下
限を越えると、フォーカシングの際球面収差の変動が大
きく中心と周辺の良像位置を一致させるのが難しくな
る。
The conditions (3) and (4) are conditions for determining an appropriate power distribution as described above, and if both of them exceed the upper limit, the total lens length becomes long and compactness cannot be achieved. Beyond the lower limit, the power of each group becomes too strong,
Even if the above-mentioned aspherical surface is used, it becomes difficult to correct each aberration. The condition (5) is a condition for obtaining better performance in consideration of focusing as described above. When the value exceeds the upper limit, the fluctuation of distortion due to zooming becomes large. When the value goes below the lower limit, the spherical aberration fluctuates greatly during focusing, and it becomes difficult to match the good image positions of the center and the periphery.

【0016】以上説明したように、本発明の構成を採用
すれば非球面を1枚用いることにより、良好な性能とレ
ンズ系のコンパクト化が達成される。次に、前述の構成
を採用するとともにさらに絞り近傍に1枚非球面を用い
ることで更なる高性能化が達成できる。それについて以
下に詳述する。特に本発明のようなタイプのズームレン
ズをコンパクトにする場合に問題となるのは、球面収差
と非点収差である。したがって、高性能化のためには、
この球面収差と非点収差を各々独立の非球面で補正する
ことが望ましい。
As described above, if the structure of the present invention is adopted, good performance and compactness of the lens system can be achieved by using one aspherical surface. Next, by adopting the above-mentioned structure and further using a single aspherical surface in the vicinity of the diaphragm, further high performance can be achieved. This will be described in detail below. In particular, spherical aberration and astigmatism are problems when a zoom lens of the type according to the present invention is made compact. Therefore, for high performance,
It is desirable to correct the spherical aberration and the astigmatism with independent aspherical surfaces.

【0017】さて、球面収差、非点収差ともに入射角度
によって収差の発生量が異なるが、球面収差の場合は軸
上マージナル光線の光線高に、非点収差の場合は軸外主
光線の光線高にもその発生量は大きく支配される。そこ
でレンズ系内部で軸上マージナル光線と軸外主光線が完
全に分離されている面が独立で存在すれば、その面を各
々非球面にすることで個別に収差補正が可能である。し
かし実際にはそのような理想的な面は存在せず、これに
近い面として軸上マージナル光線と軸外主光線の分離度
が高いことで、前述の像面近傍が基本的な非球面の配置
位置として選ばれた。
Although both spherical aberration and astigmatism produce different amounts of aberration depending on the angle of incidence, in the case of spherical aberration, the ray height of the axial marginal ray is the same as that of the off-axis principal ray in the case of astigmatism. However, the amount of generation is largely controlled. Therefore, if there are independent surfaces in which the axial marginal ray and the off-axis chief ray are completely separated in the lens system, it is possible to individually correct aberrations by making the surfaces aspherical. However, in reality, such an ideal surface does not exist.As a surface close to this, the degree of separation between the on-axis marginal ray and the off-axis chief ray is high, so that the vicinity of the image plane described above is a basic aspherical surface. Selected as the placement position.

【0018】さてこの像面近傍では、軸外主光線の光線
高が軸上マージナル光線の光線高よりも高いため、非球
面の非点収差に対する寄与の方が球面収差に対する寄与
よりも大きくなり、結果として球面収差が補正不足にな
る傾向がある。そこで本発明のズームレンズでは高性能
化のために、まず像面近傍に配置した第1の非球面で
は、球面収差の補正不足を認識した上で非点収差の補正
を十分に行ない、次に絞りの近傍に第2の非球面を配置
し、この第2の非球面で第1の非球面で補正不足となっ
た球面収差を十分補正する構成とした。第2の非球面の
位置を絞りの近傍に選んだのは、絞りの位置では軸上マ
ージナル光線の光線高が高く、軸外主高線が光軸と交わ
ることから、非点収差に影響を及ぼさずに球面収差を補
正することができるからである。
In the vicinity of this image plane, since the ray height of the off-axis chief ray is higher than that of the axial marginal ray, the contribution of the aspherical surface to the astigmatism is larger than that to the spherical aberration. As a result, spherical aberration tends to be undercorrected. Therefore, in order to improve the performance of the zoom lens according to the present invention, first, the first aspherical surface arranged near the image plane is sufficiently corrected for astigmatism after recognizing insufficient correction of spherical aberration. A second aspherical surface is arranged in the vicinity of the diaphragm, and the second aspherical surface is configured to sufficiently correct the spherical aberration that is insufficiently corrected in the first aspherical surface. The position of the second aspherical surface is selected near the stop because the height of the axial marginal ray is high at the position of the stop and the off-axis principal line intersects the optical axis, which affects astigmatism. This is because the spherical aberration can be corrected without affecting.

【0019】この結果、像面近傍に配置した非球面によ
って非点収差を十分補正するとともに、絞り近傍に配置
した非球面によって補正された非点収差への影響を最小
限にとどめたままで球面収差を良好に補正することがで
きる。尚、非球面を2面用いる場合においては、2つの
非球面のうちの像側の非球面が以下の条件を満足するよ
うにすると、非点収差が良好に補正され、より好まし
い。
As a result, the astigmatism is sufficiently corrected by the aspheric surface arranged near the image plane, and the spherical aberration is corrected while the influence on the astigmatism corrected by the aspheric surface arranged near the diaphragm is minimized. Can be satisfactorily corrected. When two aspherical surfaces are used, it is more preferable that the aspherical surface on the image side of the two aspherical surfaces satisfies the following condition, astigmatism is favorably corrected.

【0020】 0.1 ×10-5<|B4 |<0.1 ×10-3 ………(6) さらに、像面側の非球面の作用としては上記条件(1)の
説明と共通する面も多く、従って前記条件(6)を満足す
ることにより、非点収差をより良好に補正することがで
きる。この条件の上限を越えると、非点収差、球面収差
が補正過剰となる。下限を越えると、共に補正不足とな
る。
0.1 × 10 −5 <| B 4 | <0.1 × 10 −3 (6) Furthermore, as the action of the aspherical surface on the image side, there are many surfaces common to the explanation of the above condition (1). Therefore, by satisfying the condition (6), astigmatism can be better corrected. If the upper limit of this condition is exceeded, astigmatism and spherical aberration will be overcorrected. If the lower limits are exceeded, both will be undercorrected.

【0021】[0021]

【発明の実施の形態】以下、本発明のズームレンズの各
実施例について説明する。実施例1,2,4は第1図に
広角端の、第2図に望遠端の断面図を示すとおりの正・
負・正・正の4群構成で、非球面を2面用いたズームレ
ンズである。実施例3,5は第3図に広角端の断面図を
示すとおりの、上記同様の正・負・正・正の4群構成
で、非球面を2面用いたズームレンズである。これらの
実施例1乃至5において、非球面は絞り近傍の第3レン
ズ群最像側レンズ像側面及び第4レンズ群最像側レンズ
物体側面に設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Each embodiment of the zoom lens of the present invention will be described below. Examples 1, 2, and 4 are positive / negative as shown in the sectional views of the wide-angle end in FIG. 1 and the telephoto end in FIG.
This is a zoom lens that has four groups of negative, positive, and positive lenses and uses two aspherical surfaces. As shown in the sectional view at the wide-angle end in FIG. 3, Embodiments 3 and 5 are zoom lenses using the same positive, negative, positive, and positive four-group structure as described above and two aspherical surfaces. In Examples 1 to 5, the aspherical surfaces are provided on the image side surface of the third lens group closest to the image and on the object side surface of the fourth lens group closest to the image in the vicinity of the diaphragm.

【0022】実施例6は第4図に広角端の、第5図に望
遠端の断面図を示すとおりの正・負・正の3群構成で、
非球面を2面用いたズームレンズである。実施例7は第
6図に広角端の断面図を示すとおりの、実施例6と同様
正・負・正の3群構成で、非球面を2面用いたズームレ
ンズである。これらの実施例6,7において、非球面は
絞り近傍の第3レンズ群最物体側レンズ物体側面及び第
3レンズ群最像側レンズ像側面に設けられている。
The sixth embodiment has a positive / negative / positive three-group structure as shown in the wide-angle end in FIG. 4 and the telephoto end in FIG.
It is a zoom lens using two aspherical surfaces. Example 7 is a zoom lens using two aspherical surfaces, which has a positive / negative / positive three-group configuration as in Example 6, as shown in the sectional view at the wide-angle end in FIG. In Examples 6 and 7, the aspherical surfaces are provided on the lens object side surface of the third lens group closest to the object and on the image side surface of the third lens group most image side in the vicinity of the diaphragm.

【0023】実施例8,10は夫々第7,9図に広角端の
断面図を示すとおりの正・負・正・正の4群構成で、非
球面を1面用いたズームレンズである。これらの実施例
8,10において、非球面は第4レンズ群最像側レンズ物
体側面に設けられている。実施例9は第8図に広角端の
断面図を示すとおりの実施例8,10と同様正・負・正・
正の4群構成で非球面を1面用いたズームレンズであ
る。ここで、非球面は第4レンズ群最像側レンズ像側面
に設けられている。
Embodiments 8 and 10 are zoom lenses each having a positive, negative, positive, and positive four-group construction as shown in the sectional views at the wide-angle end in FIGS. In Examples 8 and 10, the aspherical surface is provided on the object side surface of the fourth lens group closest to the image side. Example 9 is the same as Examples 8 and 10 as shown in the sectional view at the wide-angle end in FIG.
This zoom lens has a positive four-group configuration and uses one aspherical surface. Here, the aspherical surface is provided on the image side surface of the fourth lens group closest to the image.

【0024】実施例11,12は第10図に広角端の断面図を
示すとおりの実施例10と同様正・負・正の3群構成で、
非球面を1面用いたズームレンズである。ここで、非球
面は第3レンズ群最像側レンズである正メニスカスレン
ズの像側面に設けられている。以下に、各実施例の数値
データを示す。
The eleventh and twelfth embodiments have a positive / negative / positive three-group construction similar to the tenth embodiment as shown in the sectional view at the wide-angle end in FIG.
It is a zoom lens using one aspherical surface. Here, the aspherical surface is provided on the image side surface of the positive meniscus lens, which is the most image side lens in the third lens group. The numerical data of each example are shown below.

【0025】[0025]

【実施例1】 f=35.9mm〜101.0 mm, F/3.57〜4.85, 2ω=62.0°〜24.2° r1 =291.8679 d1 =2.5000 n1 =1.80518 ν1 =25.43 r2 =67.6668 d2 =6.8000 n2 =1.65160 ν2 =58.52 r3 =-173.7374 d3 =0.2000 r4 =39.1397 d4 =4.3000 n3 =1.65160 ν3 =58.52 r5 =94.3469 d5 =(可変) r6 =361.1701 d6 =1.7293 n4 =1.77250 ν4 =49.66 r7 =22.8024 d7 =4.8000 r8 =-32.6627 d8 =1.7000 n5 =1.74100 ν5 =52.68 r9 =27.9925 d9 =0.5000 r10=28.1629 d10=4.2000 n6 =1.80518 ν6 =25.43 r11=-46.7666 d11=1.4000 n7 =1.80400 ν7 =46.57 r12=145.0476 d12=(可変) r13=45.6029 d13=2.4509 n8 =1.56873 ν8 =63.16 r14=-99.9305 d14=0.4200 r15=38.9381 d15=4.3500 n9 =1.48749 ν9 =70.20 r16=-20.6778 d16=1.2000 n10=1.67270 ν10=32.10 r17=-162.4476 (非球面)d17=1.0000 r18;絞り d18=(可変) r19=42.3383 d19=2.2400 n11=1.61272 ν11=58.75 r20=-7900.6178 d20=0.2000 r21=35.8796 d21=3.4000 n12=1.60311 ν12=60.70 r22=-67.9577 d22=2.5000 r23=-117.6327 d23=1.8537 n13=1.59551 ν13=39.21 r24=24.7948 d24=3.0000 r25=-117.2207 (非球面)d25=2.5000 n14=1.72825 ν14=28.46 r26=-126.3532 Example 1 f = 35.9 mm to 101.0 mm, F / 3.57 to 4.85, 2ω = 62.0 ° to 24.2 ° r 1 = 291.8679 d 1 = 2.5000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 67.6668 d 2 = 6.8000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -173.7374 d 3 = 0.2000 r 4 = 39.1397 d 4 = 4.3000 n 3 = 1.65160 ν 3 = 58.52 r 5 = 94.3469 d 5 = ( variable) r 6 = 361.1701 d 6 = 1.7293 n 4 = 1.77250 ν 4 = 49.66 r 7 = 22.8024 d 7 = 4.8000 r 8 = -32.6627 d 8 = 1.7000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 27.9925 d 9 = 0.5000 r 10 = 28.1629 d 10 = 4.2000 n 6 = 1.80518 ν 6 = 25.43 r 11 = -46.7666 d 11 = 1.4000 n 7 = 1.80400 ν 7 = 46.57 r 12 = 145.0476 d 12 = (variable) r 13 = 45.6029 d 13 = 2.4509 n 8 = 1.56873 ν 8 = 63.16 r 14 = -99.9305 d 14 = 0.4200 r 15 = 38.9381 d 15 = 4.3500 n 9 = 1.48749 ν 9 = 70.20 r 16 = -20.6778 d 16 = 1.2000 n 10 = 1.67270 ν 10 = 32.10 r 17 = -162.4476 (non Sphere d 17 = 1.0000 r 18; throttle d 18 = (Variable) r 19 = 42.3383 d 19 = 2.2400 n 11 = 1.61272 ν 11 = 58.75 r 20 = -7900.6178 d 20 = 0.2000 r 21 = 35.8796 d 21 = 3.4000 n 12 = 1.60311 ν 12 = 60.70 r 22 = -67.9577 d 22 = 2.5000 r 23 = -117.6327 d 23 = 1.8537 n 13 = 1.59551 ν 13 = 39.21 r 24 = 24.7948 d 24 = 3.0000 r 25 = -117.2207 (aspherical surface) d 25 = 2.5000 n 14 = 1.72825 ν 14 = 28.46 r 26 = -126.3532

【0026】[0026]

【表1】 [Table 1]

【0027】 非球面レンズデータ(非球面係数) r17;a2 =0,a4 =0.10492 ×10-5, a6 =0.56608 ×10-8, a8 =-0.12893×10-10 ,a10=-0.21888×10-12 25;a2 =0,a4 =-0.23442×10-4, a6 =-0.46934×10-7, a8 =-0.32520×10-9,a10=0.18599 ×10-12 |B4 |/|A4 |=22.3, |B4 |=0.23442 ×10-4, fRW/fW =0.73, e2T/fW =0.21, R/fW =2.63Aspherical lens data (aspherical coefficient) r 17 ; a 2 = 0, a 4 = 0.10492 × 10 -5 , a 6 = 0.56608 × 10 -8 , a 8 = -0.12893 × 10 -10 , a 10 = -0.21888 x 10 -12 r 25 ; a 2 = 0, a 4 = -0.23442 x 10 -4 , a 6 = -0.46934 x 10 -7 , a 8 = -0.32520 x 10 -9 , a 10 = 0.18599 x 10 -12 | B 4 | / | A 4 | = 22.3, | B 4 | = 0.23442 × 10 -4 , f RW / f W = 0.73, e 2T / f W = 0.21, R / f W = 2.63

【0028】[0028]

【実施例2】 f=35.9mm〜101.0 mm, F/3.58〜4.85, 2ω=62.0°〜24.2° r1 =312.2405 d1 =2.5000 n1 =1.80518 ν1 =25.43 r2 =68.8465 d2 =6.8000 n2 =1.65160 ν2 =58.52 r3 =-174.8560 d3 =0.2000 r4 =39.7352 d4 =4.4500 n3 =1.65830 ν3 =57.33 r5 =98.8411 d5 =(可変) r6 =383.5690 d6 =1.7300 n4 =1.77250 ν4 =49.66 r7 =23.2093 d7 =4.8000 r8 =-34.7608 d8 =1.6000 n5 =1.74100 ν5 =52.68 r9 =31.2002 d9 =0.9600 r10=31.0006 d10=4.3500 n6 =1.80518 ν6 =25.43 r11=-42.9177 d11=1.2500 n7 =1.80400 ν7 =46.57 r12=102.9517 d12=(可変) r13=38.9895 d13=2.6000 n8 =1.56873 ν8 =63.16 r14=-102.4423 d14=0.2000 r15=41.0031 d15=4.4500 n9 =1.48749 ν9 =70.20 r16=-21.8964 d16=1.2000 n10=1.67270 ν10=32.10 r17=-223.1431 (非球面)d17=1.0000 r18;絞り d18=(可変) r19=37.8825 d19=2.5500 n11=1.61272 ν11=58.75 r20=1311.3558 d20=0.2000 r21=34.0968 d21=3.3000 n12=1.60311 ν12=60.70 r22=-74.9584 d22=1.6800 r23=-183.6979 d23=1.8537 n13=1.59551 ν13=39.21 r24=22.3495 d24=3.0000 r25=-100.2426 (非球面)d25=2.4000 n14=1.72825 ν14=28.46 r26=-126.3532 Example 2 f = 35.9 mm to 101.0 mm, F / 3.58 to 4.85, 2ω = 62.0 ° to 24.2 ° r 1 = 312.2405 d 1 = 2.5000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 68.8465 d 2 = 6.8000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -174.8560 d 3 = 0.2000 r 4 = 39.7352 d 4 = 4.4500 n 3 = 1.65830 ν 3 = 57.33 r 5 = 98.8411 d 5 = ( variable) r 6 = 383.5690 d 6 = 1.7300 n 4 = 1.77250 ν 4 = 49.66 r 7 = 23.2093 d 7 = 4.8000 r 8 = -34.7608 d 8 = 1.6000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 31.2002 d 9 = 0.9600 r 10 = 31.0006 d 10 = 4.3500 n 6 = 1.80518 ν 6 = 25.43 r 11 = -42.9177 d 11 = 1.2500 n 7 = 1.80400 ν 7 = 46.57 r 12 = 102.9517 d 12 = (variable) r 13 = 38.9895 d 13 = 2.6000 n 8 = 1.56873 ν 8 = 63.16 r 14 = -102.4423 d 14 = 0.2000 r 15 = 41.0031 d 15 = 4.4500 n 9 = 1.48749 ν 9 = 70.20 r 16 = -21.8964 d 16 = 1.2000 n 10 = 1.67270 ν 10 = 32.10 r 17 = -223.1431 (Non Sphere d 17 = 1.0000 r 18; throttle d 18 = (Variable) r 19 = 37.8825 d 19 = 2.5500 n 11 = 1.61272 ν 11 = 58.75 r 20 = 1311.3558 d 20 = 0.2000 r 21 = 34.0968 d 21 = 3.3000 n 12 = 1.60311 v 12 = 60.70 r 22 = -74.9584 d 22 = 1.6800 r 23 = -183.6979 d 23 = 1.8537 n 13 = 1.59551 v 13 = 39.21 r 24 = 22.3495 d 24 = 3.0000 r 25 = -100.2426 (aspheric surface) d 25 = 2.4000 n 14 = 1.72825 ν 14 = 28.46 r 26 = -126.3532

【0029】[0029]

【表2】 [Table 2]

【0030】 非球面レンズデータ(非球面係数) r17;a2 =0,a4 =0.26934 ×10-5,a6 =0.64609 ×10-8, a8 =-0.44736×10-10 , a10=-0.22335×10-12 25;a2 =0,a4 =-0.24366×10-4,a6 =-0.52701×10-7, a8 =-0.52501×10-9,a10=0.14229 ×10-11 |B4 |/|A4 |=9.0, |B4 |=0.24366 ×10-4, fRW/fW =0.72, e2T/fW =0.21, R/fW =2.75Aspherical lens data (aspherical coefficient) r 17 ; a 2 = 0, a 4 = 0.26934 × 10 -5 , a 6 = 0.64609 × 10 -8 , a 8 = -0.44736 × 10 -10 , a 10 = -0.22335 x 10 -12 r 25 ; a 2 = 0, a 4 = -0.24366 x 10 -4 , a 6 = -0.52701 x 10 -7 , a 8 = -0.52501 x 10 -9 , a 10 = 0.14229 x 10 -11 | B 4 | / | A 4 | = 9.0, | B 4 | = 0.24366 × 10 -4 , f RW / f W = 0.72, e 2T / f W = 0.21, R / f W = 2.75

【0031】[0031]

【実施例3】 f=35.9mm〜101.0 mm, F/3.56〜4.85, 2ω=62.0°〜24.2° r1 =295.3209 d1 =2.5000 n1 =1.80518 ν1 =25.43 r2 =68.0618 d2 =7.0000 n2 =1.65160 ν2 =58.52 r3 =-178.5938 d3 =0.2000 r4 =38.9905 d4 =4.5000 n3 =1.65160 ν3 =58.52 r5 =94.5204 d5 =(可変) r6 =363.5847 d6 =1.7293 n4 =1.77250 ν4 =49.66 r7 =22.6581 d7 =4.8000 r8 =-33.2807 d8 =1.7000 n5 =1.74100 ν5 =52.68 r9 =34.5108 d9 =0.5000 r10=32.7693 d10=4.2000 n6 =1.80518 ν6 =25.43 r11=-36.6247 d11=1.4000 n7 =1.80400 ν7 =46.57 r12=125.9131 d12=(可変) r13=47.6517 d13=2.4509 n8 =1.56873 ν8 =63.16 r14=-96.5400 d14=0.4213 r15=36.4698 d15=4.3082 n9 =1.48749 ν9 =70.20 r16=-21.1809 d16=0.1000 r17=-20.5037 d17=1.2000 n10=1.67270 ν10=32.10 r18=-193.0274 (非球面)d18=1.0000 r19;絞り d19=(可変) r20=40.9151 d20=2.6729 n11=1.61272 ν11=58.75 r21=-538.9577 d21=0.2000 r22=31.3769 d22=2.9680 n12=1.60311 ν12=60.70 r23=-65.9045 d23=2.5000 r24=-77.8686 d24=1.8537 n13=1.66998 ν13=39.27 r25=24.8812 d25=3.0000 r26=-183.3897 (非球面)d26=2.5000 n14=1.72825 ν14=28.46 r27=-126.3532 Example 3 f = 35.9 mm to 101.0 mm, F / 3.56 to 4.85, 2ω = 62.0 ° to 24.2 ° r 1 = 295.3209 d 1 = 2.5000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 68.0618 d 2 = 7.0000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -178.5938 d 3 = 0.2000 r 4 = 38.9905 d 4 = 4.5000 n 3 = 1.65160 ν 3 = 58.52 r 5 = 94.5204 d 5 = ( variable) r 6 = 363.5847 d 6 = 1.7293 n 4 = 1.77250 ν 4 = 49.66 r 7 = 22.6581 d 7 = 4.8000 r 8 = -33.2807 d 8 = 1.7000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 34.5108 d 9 = 0.5000 r 10 = 32.7693 d 10 = 4.2000 n 6 = 1.80518 ν 6 = 25.43 r 11 = -36.6247 d 11 = 1.4000 n 7 = 1.80400 ν 7 = 46.57 r 12 = 125.9131 d 12 = ( variable) r 13 = 47.6517 d 13 = 2.4509 n 8 = 1.56873 ν 8 = 63.16 r 14 = -96.5400 d 14 = 0.4213 r 15 = 36.4698 d 15 = 4.3082 n 9 = 1.48749 ν 9 = 70.20 r 16 = -21.1809 d 16 = 0.1000 r 17 = -20.5037 d 17 = 1.2000 n 10 = 1.67270 ν 10 = 32.1 0 r 18 = -193.0274 (aspherical surface) d 18 = 1.0000 r 19 ; aperture d 19 = (variable) r 20 = 40.9151 d 20 = 2.6729 n 11 = 1.61272 ν 11 = 58.75 r 21 = -538.9577 d 21 = 0.2000 r 22 = 31.3769 d 22 = 2.9680 n 12 = 1.60311 ν 12 = 60.70 r 23 = -65.9045 d 23 = 2.5000 r 24 = -77.8686 d 24 = 1.8537 n 13 = 1.66998 ν 13 = 39.27 r 25 = 24.8812 d 25 = 3.0000 r 26 = -183.3897 (aspherical surface) d 26 = 2.5000 n 14 = 1.72825 ν 14 = 28.46 r 27 = -126.3532

【0032】[0032]

【表3】 [Table 3]

【0033】 非球面レンズデータ(非球面係数) r18;a2 =0,a4 =-0.66216×10-6,a6 =0.43521 ×10-9, a8 =-0.96779×10-11 ,a10=-0.11208×10-11 , r26;a2 =0,a4 =-0.25648×10-4,a6 =-0.47710×10-7, a8 =-0.19456×10-9,a10=-0.30097×10-12 |B4 |/|A4 |=3.87, |B4 |=0.25648 ×10-4, fRW/fW =0.72, e2T/fW =0.20, R/fW =2.63Aspherical lens data (aspherical coefficient) r 18 ; a 2 = 0, a 4 = -0.66216 × 10 -6 , a 6 = 0.43521 × 10 -9 , a 8 = -0.96779 × 10 -11 , a 10 = -0.11208 × 10 -11 , r 26 ; a 2 = 0, a 4 = -0.25648 × 10 -4 , a 6 = -0.47710 × 10 -7 , a 8 = -0.19456 × 10 -9 , a 10 = -0.30097 × 10 -12 | B 4 | / | A 4 | = 3.87, | B 4 | = 0.25648 × 10 -4 , f RW / f W = 0.72, e 2T / f W = 0.20, R / f W = 2.63

【0034】[0034]

【実施例4】 f=36.0mm〜101.0 mm, F/3.62〜4.85, 2ω=62.0°〜24.2° r1 =306.6968 d1 =2.5000 n1 =1.80518 ν1 =25.43 r2 =68.8581 d2 =6.7000 n2 =1.65160 ν2 =58.52 r3 =-176.6059 d3 =0.2000 r4 =39.8074 d4 =4.6200 n3 =1.65830 ν3 =57.33 r5 =98.9843 d5 =(可変) r6 =385.2105 d6 =1.7300 n4 =1.77250 ν4 =49.66 r7 =23.0232 d7 =4.8000 r8 =-33.9586 d8 =1.6000 n5 =1.74100 ν5 =52.68 r9 =30.8857 d9 =0.9600 r10=30.8824 d10=4.3500 n6 =1.80518 ν6 =25.43 r11=-42.2395 d11=1.2500 n7 =1.80400 ν7 =46.57 r12=106.4430 d12=(可変) r13=38.1326 d13=2.6000 n8 =1.56873 ν8 =63.16 r14=-95.1425 d14=0.2000 r15=42.9543 d15=4.4500 n9 =1.48749 ν9 =70.20 r16=-21.5600 d16=1.2000 n10=1.67270 ν10=32.10 r17=-223.1585 (非球面)d17=1.0000 r18;絞り d18=(可変) r19=39.1054 d19=2.5500 n11=1.61272 ν11=58.75 r20=2166.2549 d20=0.2000 r21=35.0493 d21=3.3000 n12=1.60311 ν12=60.70 r22=-69.0344 d22=1.6800 r23=-174.3032 d23=1.8537 n13=1.59551 ν13=39.21 r24=23.1442 d24=3.0000 r25=-100.0752 (非球面)d25=2.4000 n14=1.72825 ν14=28.46 r26=-126.3532 Example 4 f = 36.0 mm to 101.0 mm, F / 3.62 to 4.85, 2ω = 62.0 ° to 24.2 ° r 1 = 306.6968 d 1 = 2.5000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 68.8581 d 2 = 6.7000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -176.6059 d 3 = 0.2000 r 4 = 39.8074 d 4 = 4.6200 n 3 = 1.65830 ν 3 = 57.33 r 5 = 98.9843 d 5 = (variable) r 6 = 385.2105 d 6 = 1.7300 n 4 = 1.77250 ν 4 = 49.66 r 7 = 23.0232 d 7 = 4.8000 r 8 = -33.9586 d 8 = 1.6000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 30.8857 d 9 = 0.9600 r 10 = 30.8824 d 10 = 4.3500 n 6 = 1.80518 ν 6 = 25.43 r 11 = -42.2395 d 11 = 1.2500 n 7 = 1.80400 ν 7 = 46.57 r 12 = 106.4430 d 12 = (variable) r 13 = 38.1326 d 13 = 2.6000 n 8 = 1.56873 ν 8 = 63.16 r 14 = -95.1425 d 14 = 0.2000 r 15 = 42.9543 d 15 = 4.4500 n 9 = 1.48749 ν 9 = 70.20 r 16 = -21.5600 d 16 = 1.2000 n 10 = 1.67270 ν 10 = 32.10 r 17 = -223.1585 (Non Sphere d 17 = 1.0000 r 18; throttle d 18 = (Variable) r 19 = 39.1054 d 19 = 2.5500 n 11 = 1.61272 ν 11 = 58.75 r 20 = 2166.2549 d 20 = 0.2000 r 21 = 35.0493 d 21 = 3.3000 n 12 = 1.60311 v 12 = 60.70 r 22 = -69.0344 d 22 = 1.6800 r 23 = -174.3032 d 23 = 1.8537 n 13 = 1.59551 v 13 = 39.21 r 24 = 23.1442 d 24 = 3.0000 r 25 = -100.0752 (aspherical surface) d 25 = 2.4000 n 14 = 1.72825 ν 14 = 28.46 r 26 = -126.3532

【0035】[0035]

【表4】 [Table 4]

【0036】 非球面レンズデータ(非球面係数) r17;a2 =0,a4 =0.29092 ×10-5,a6 =0.70878 ×10-8, a8 =-0.36492×10-10 ,a10=-0.29267×10-12 25;a2 =0,a4 =-0.23987×10-4,a6 =-0.52191×10-7, a8 =-0.46119×10-9,a10=0.11852 ×10-11 |B4 |/|A4 |=8.25, |B4 |=0.23987 ×10-4, fRW/fW =0.72, e2T/fW =0.22, R/fW =2.76Aspherical lens data (aspherical coefficient) r 17 ; a 2 = 0, a 4 = 0.29092 × 10 -5 , a 6 = 0.70878 × 10 -8 , a 8 = -0.36492 × 10 -10 , a 10 = -0.29267 x 10 -12 r 25 ; a 2 = 0, a 4 = -0.23987 x 10 -4 , a 6 = -0.52191 x 10 -7 , a 8 = -0.46119 x 10 -9 , a 10 = 0.11852 x 10 -11 | B 4 | / | A 4 | = 8.25, | B 4 | = 0.23987 × 10 -4 , f RW / f W = 0.72, e 2T / f W = 0.22, R / f W = 2.76

【0037】[0037]

【実施例5】 f=36.0mm〜101.0 mm, F/3.58〜4.85, 2ω=62.0°〜24.2° r1 =252.0551 d1 =2.5000 n1 =1.80518 ν1 =25.43 r2 =65.1512 d2 =7.0000 n2 =1.65160 ν2 =58.52 r3 =-161.9672 d3 =0.2000 r4 =37.5457 d4 =4.5000 n3 =1.65160 ν3 =58.52 r5 =78.9480 d5 =(可変) r6 =532.5586 d6 =1.7293 n4 =1.77250 ν4 =49.66 r7 =22.4685 d7 =4.8000 r8 =-29.7002 d8 =1.7000 n5 =1.74100 ν5 =52.68 r9 =45.4110 d9 =0.5000 r10=40.6119 d10=4.2000 n6 =1.80518 ν6 =25.43 r11=-29.9067 d11=1.4000 n7 =1.80400 ν7 =46.57 r12=192.4248 d12=(可変) r13=40.9001 d13=2.4509 n8 =1.56873 ν8 =63.16 r14=-51.4228 d14=0.4213 r15=46.2648 d15=4.3082 n9 =1.48749 ν9 =70.20 r16=-22.4313 d16=0.5000 r17=-19.8955 d17=1.2000 n10=1.67270 ν10=32.10 r18=-382.3099 (非球面)d18=1.0000 r19;絞り d19=(可変) r20=65.3181 d20=2.6729 n11=1.61272 ν11=58.75 r21=-113.4383 d21=0.2000 r22=33.7189 d22=2.9680 n12=1.60311 ν12=60.70 r23=-71.5852 d23=2.5000 r24=-114.3990 d24=1.8537 n13=1.66998 ν13=39.27 r25=25.0369 d25=3.0000 r26=-313.9246 (非球面)d26=2.5000 n14=1.72825 ν14=28.46 r27=-126.3532 Example 5 f = 36.0 mm to 101.0 mm, F / 3.58 to 4.85, 2ω = 62.0 ° to 24.2 ° r 1 = 252.0551 d 1 = 2.5000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 65.1512 d 2 = 7.0000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -161.9672 d 3 = 0.2000 r 4 = 37.5457 d 4 = 4.5000 n 3 = 1.65160 ν 3 = 58.52 r 5 = 78.9480 d 5 = ( variable) r 6 = 532.5586 d 6 = 1.7293 n 4 = 1.77250 ν 4 = 49.66 r 7 = 22.4685 d 7 = 4.8000 r 8 = -29.7002 d 8 = 1.7000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 45.4110 d 9 = 0.5000 r 10 = 40.6119 d 10 = 4.2000 n 6 = 1.80518 ν 6 = 25.43 r 11 = -29.9067 d 11 = 1.4000 n 7 = 1.80400 ν 7 = 46.57 r 12 = 192.4248 d 12 = ( variable) r 13 = 40.9001 d 13 = 2.4509 n 8 = 1.56873 ν 8 = 63.16 r 14 = -51.4228 d 14 = 0.4213 r 15 = 46.2648 d 15 = 4.3082 n 9 = 1.48749 ν 9 = 70.20 r 16 = -22.4313 d 16 = 0.5000 r 17 = -19.8955 d 17 = 1.2000 n 10 = 1.67270 ν 10 = 32.1 0 r 18 = -382.3099 (aspherical surface) d 18 = 1.0000 r 19 ; aperture d 19 = (variable) r 20 = 65.3181 d 20 = 2.6729 n 11 = 1.61272 ν 11 = 58.75 r 21 = -113.4383 d 21 = 0.2000 r 22 = 33.7189 d 22 = 2.9680 n 12 = 1.60311 ν 12 = 60.70 r 23 = -71.5852 d 23 = 2.5000 r 24 = -114.3990 d 24 = 1.8537 n 13 = 1.66998 ν 13 = 39.27 r 25 = 25.0369 d 25 = 3.0000 r 26 = -313.9246 (aspherical surface) d 26 = 2.5000 n 14 = 1.72825 ν 14 = 28.46 r 27 = -126.3532

【0038】[0038]

【表5】 [Table 5]

【0039】 非球面レンズデータ(非球面係数) r18;a2 =0,a4 =-0.27217×10-5,a6 =0.50299 ×10-8, a8 =-0.18210×10-9,a10=-0.50016×10-12 26;a2 =0,a4 =-0.18698×10-4,a6 =0.12978 ×10-7, a8 =-0.90959×10-9,a10=0.32874 ×10-11 |B4 |/|A4 |=6.87, |B4 |=0.18698 ×10-4, fRW/fW =0.73, e2T/fW =0.22, R/fW =2.20Aspherical lens data (aspherical coefficient) r 18 ; a 2 = 0, a 4 = -0.27217 × 10 -5 , a 6 = 0.50299 × 10 -8 , a 8 = -0.18210 × 10 -9 , a 10 = -0.50016 x 10 -12 r 26 ; a 2 = 0, a 4 = -0.18698 x 10 -4 , a 6 = 0.12978 x 10 -7 , a 8 = -0.90959 x 10 -9 , a 10 = 0.32874 x 10 -11 | B 4 | / | A 4 | = 6.87, | B 4 | = 0.18698 × 10 -4 , f RW / f W = 0.73, e 2T / f W = 0.22, R / f W = 2.20

【0040】[0040]

【実施例6】 f=36.3mm〜102.0 mm, F/3.50〜4.84, 2ω=61.6°〜24.0° r1 =393.7230 d1 =2.5500 n1 =1.80518 ν1 =25.43 r2 =77.2250 d2 =7.0100 n2 =1.60311 ν2 =60.70 r3 =-118.4586 d3 =0.1000 r4 =40.5790 d4 =4.2500 n3 =1.69680 ν3 =55.52 r5 =78.3661 d5 =(可変) r6 =174.9416 d6 =1.3000 n4 =1.80610 ν4 =40.95 r7 =20.1043 d7 =4.8000 r8 =-61.2914 d8 =1.1000 n5 =1.83481 ν5 =42.72 r9 =66.7247 d9 =0.3600 r10=32.6794 d10=3.7900 n6 =1.80518 ν6 =25.43 r11=-38.1815 d11=1.5700 r12=-24.4385 d12=1.0000 n7 =1.80400 ν7 =46.57 r13=-231.5781 d13=(可変) r14;絞り d14=1.1000 r15=25.0368 (非球面)d15=2.4100 n8 =1.65016 ν8 =39.39 r16=-908.3515 d16=0.1000 r17=19.9465 d17=2.7600 n9 =1.65830 ν9 =57.33 r18=-264.0968 d18=0.1200 r19=724.5317 d19=6.7000 n10=1.80518 ν10=25.43 r20=13.5026 d20=2.1000 r21=-63.3761 d21=2.2800 n11=1.60311 ν11=60.70 r22=-35.4653 d22=0.8600 r23=24.2857 d23=3.2900 n12=1.53172 ν12=48.90 r24=63.0831 (非球面)Example 6 f = 36.3 mm to 102.0 mm, F / 3.50 to 4.84, 2ω = 61.6 ° to 24.0 ° r 1 = 393.7230 d 1 = 2.5500 n 1 = 1.80518 ν 1 = 25.43 r 2 = 77.2250 d 2 = 7.0100 n 2 = 1.60311 ν 2 = 60.70 r 3 = -118.4586 d 3 = 0.1000 r 4 = 40.5790 d 4 = 4.2500 n 3 = 1.69680 ν 3 = 55.52 r 5 = 78.3661 d 5 = (variable) r 6 = 174.9416 d 6 = 1.3000 n 4 = 1.80610 ν 4 = 40.95 r 7 = 20.1043 d 7 = 4.8000 r 8 = -61.2914 d 8 = 1.1000 n 5 = 1.83481 ν 5 = 42.72 r 9 = 66.7247 d 9 = 0.3600 r 10 = 32.6794 d 10 = 3.7900 n 6 = 1.80518 ν 6 = 25.43 r 11 = -38.1815 d 11 = 1.5700 r 12 = -24.4385 d 12 = 1.0000 n 7 = 1.80400 ν 7 = 46.57 r 13 = -231.5781 d 13 = ( variable) r 14; stop d 14 = 1.1000 r 15 = 25.0368 (aspherical) d 15 = 2.4100 n 8 = 1.65016 ν 8 = 39.39 r 16 = -908.3515 d 16 = 0.1000 r 17 = 19.9465 d 17 = 2.7600 n 9 = 1.65830 ν 9 = 57.33 r 18 = -264.0 968 d 18 = 0.1200 r 19 = 724.5317 d 19 = 6.7000 n 10 = 1.80518 ν 10 = 25.43 r 20 = 13.5026 d 20 = 2.1000 r 21 = -63.3761 d 21 = 2.2800 n 11 = 1.60311 ν 11 = 60.70 r 22 =- 35.4653 d 22 = 0.8600 r 23 = 24.2857 d 23 = 3.2900 n 12 = 1.53172 ν 12 = 48.90 r 24 = 63.0831 ( aspherical)

【0041】[0041]

【表6】 [Table 6]

【0042】 球面レンズデータ(非球面係数) r15;a2 =0,a4 =-0.88864×10-5,a6 =-0.20553×10-7, a8 =-0.16039×10-10 ,a10=0.36641 ×10-12 24;a2 =0,a4 =0.11255 ×10-4,a6 =-0.10349×10-7, a8 =-0.46647×10-10 ,a10=-0.31622×10-11 |B4 |/|A4 |=1.27, |B4 |=0.11255 ×10-4, fRW/fW =0.77, e2T/fW =0.18, R/fW =2.16Spherical lens data (aspherical coefficient) r 15 ; a 2 = 0, a 4 = -0.88864 × 10 −5 , a 6 = −0.20553 × 10 −7 , a 8 = −0.16039 × 10 −10 , a 10 = 0.36641 x 10 -12 r 24 ; a 2 = 0, a 4 = 0.11255 x 10 -4 , a 6 = -0.103 49 x 10 -7 , a 8 = -0.46647 x 10 -10 , a 10 = -0.31622 x 10 -11 | B 4 | / | A 4 | = 1.27, | B 4 | = 0.11255 × 10 -4, f RW / f W = 0.77, e 2T / f W = 0.18, R / f W = 2.16

【0043】[0043]

【実施例7】 f=36.3mm〜102.0 mm, F/3.50〜4.85, 2ω=61.6°〜24.0° r1 =-351.1978 d1 =2.5500 n1 =1.80518 ν1 =25.43 r2 =77.2250 d2 =7.0100 n2 =1.60311 ν2 =60.70 r3 =-155.4196 d3 =0.1000 r4 =49.8532 d4 =4.2500 n3 =1.69680 ν3 =55.52 r5 =272.3135 d5 =(可変) r6 =202.5582 d6 =1.3000 n4 =1.80610 ν4 =40.95 r7 =18.6630 d7 =4.8000 r8 =-123.1804 d8 =1.1000 n5 =1.83481 ν5 =42.72 r9 =65.1293 d9 =0.3600 r10=28.4356 d10=5.6000 n6 =1.80518 ν6 =25.43 r11=-40.4334 d11=1.5700 r12=-27.4208 d12=1.0000 n7 =1.80400 ν7 =46.57 r13=1198.1331 d13=(可変) r14;絞り d14=1.1000 r15=15.5915 (非球面)d15=4.1000 n8 =1.65016 ν8 =39.39 r16=-81.3885 d16=0.1000 r17=37.3048 d17=3.4000 n9 =1.65830 ν9 =57.33 r18=-68.3920 d18=0.1200 r19=-76.1286 d19=4.5000 n10=1.80518 ν10=25.43 r20=11.4644 d20=2.1000 r21=15.7645 d21=3.2900 n11=1.53172 ν11=48.90 r22=51.3460 (非球面)Example 7 f = 36.3 mm to 102.0 mm, F / 3.50 to 4.85, 2ω = 61.6 ° to 24.0 ° r 1 = -351.1978 d 1 = 2.5500 n 1 = 1.80518 ν 1 = 25.43 r 2 = 77.2250 d 2 = 7.0100 n 2 = 1.60311 ν 2 = 60.70 r 3 = -155.4196 d 3 = 0.1000 r 4 = 49.8532 d 4 = 4.2500 n 3 = 1.69680 ν 3 = 55.52 r 5 = 272.3135 d 5 = (variable) r 6 = 202.5582 d 6 = 1.3000 n 4 = 1.80610 ν 4 = 40.95 r 7 = 18.6630 d 7 = 4.8000 r 8 = -123.1804 d 8 = 1.1000 n 5 = 1.83481 ν 5 = 42.72 r 9 = 65.1293 d 9 = 0.3600 r 10 = 28.4356 d 10 = 5.6000 n 6 = 1.80518 ν 6 = 25.43 r 11 = -40.4334 d 11 = 1.5700 r 12 = -27.4208 d 12 = 1.0000 n 7 = 1.80400 ν 7 = 46.57 r 13 = 1198.1331 d 13 = (variable) r 14 ; Aperture d 14 = 1.1000 r 15 = 15.5915 (aspherical) d 15 = 4.1000 n 8 = 1.65016 ν 8 = 39.39 r 16 = -81.3885 d 16 = 0.1000 r 17 = 37.3048 d 17 = 3.4000 n 9 = 1.65830 ν 9 = 57.33 r 18 = -68. 3920 d 18 = 0.1200 r 19 = -76.1286 d 19 = 4.5000 n 10 = 1.80518 ν 10 = 25.43 r 20 = 11.4644 d 20 = 2.1000 r 21 = 15.7645 d 21 = 3.2900 n 11 = 1.53172 ν 11 = 48.90 r 22 = 51.3460 (Aspherical surface)

【0044】[0044]

【表7】 [Table 7]

【0045】 非球面レンズデータ(非球面係数) r15;a2 =0,a4 =-0.25760×10-4,a6 =-0.10071×10-6, a8 =-0.24203×10-9,a10=0.21849 ×10-12 22;a2 =0,a4 =0.39273 ×10-4,a6 =0.11228 ×10-6, a8 =-0.54087×10-9,a10=-0.31204 ×10-11 |B4 |/|A4 |=15.2, |B4 |=0.39273 ×10-4, fRW/fW =0.76, e2T/fW =0.11Aspherical lens data (aspherical coefficient) r 15 ; a 2 = 0, a 4 = -0.25760 × 10 -4 , a 6 = -0.10071 × 10 -6 , a 8 = -0.24203 × 10 -9 , a 10 = 0.21849 × 10 -12 r 22 ; a 2 = 0, a 4 = 0.39273 × 10 -4 , a 6 = 0.11228 × 10 -6 , a 8 = -0.54087 × 10 -9 , a 10 = -0.31204 × 10 -11 | B 4 | / | A 4 | = 15.2, | B 4 | = 0.39273 x 10 -4 , f RW / f W = 0.76, e 2T / f W = 0.11

【0046】[0046]

【実施例8】 f=36.0mm〜101.0 mm, F/3.55〜4.85, 2ω=62.0°〜24.2° r1 =302.6384 d1 =2.1578 n1 =1.76182 ν1 =26.52 r2 =49.5172 d2 =0.0019 r3 =48.3934 d3 =7.4999 n2 =1.66672 ν2 =48.32 r4 =-178.2271 d4 =0.2028 r5 =37.1977 d5 =4.4000 n3 =1.65160 ν3 =58.52 r6 =83.5369 d6 =(可変) r7 =287.6988 d7 =1.1680 n4 =1.6400 ν4 =60.09 r8 =21.8080 d8 =5.0029 r9 =-38.0524 d9 =2.4000 n5 =1.80518 ν5 =25.43 r10=-18.4836 d10=1.1707 n6 =1.72916 ν6 =54.68 r11=39.0369 d11=1.9989 r12=26.1346 d12=2.4000 n7 =1.80518 ν7 =25.43 r13=29.7372 d13=(可変) r14=98.4706 d14=2.4509 n8 =1.56873 ν8 =63.16 r15=-64.5651 d15=0.2870 r16=21.7173 d16=4.5000 n9 =1.48749 ν9 =70.20 r17=-24.0000 d17=1.3000 n10=1.72000 ν10=43.70 r18=236.2274 d18=1.0000 r19;絞り d19=(可変) r20=28.6431 d20=2.9200 n11=1.56873 ν11=63.16 r21=1066.5050 d21=0.2000 r22=49.1304 d22=3.2097 n12=1.62041 ν12=60.27 r23=-101.4396 d23=2.5000 r24=-594.4244 d24=1.8476 n13=1.66446 ν13=35.81 r25=28.3779 d25=1.6246 r26=457.2996(非球面)d26=2.5000 n 14=1.72825 ν14=28.46 r27=1713.8581 Example 8 f = 36.0 mm to 101.0 mm, F / 3.55 to 4.85, 2ω = 62.0 ° to 24.2 ° r 1 = 302.6384 d 1 = 2.1578 n 1 = 1.76182 ν 1 = 26.52 r 2 = 49.5172 d 2 = 0.0019 r 3 = 48.3934 d 3 = 7.4999 n 2 = 1.66672 ν 2 = 48.32 r 4 = -178.2271 d 4 = 0.2028 r 5 = 37.1977 d 5 = 4.4000 n 3 = 1.65160 ν 3 = 58.52 r 6 = 83.5369 d 6 = ( variable ) r 7 = 287.6988 d 7 = 1.1680 n 4 = 1.6400 ν 4 = 60.09 r 8 = 21.8080 d 8 = 5.0029 r 9 = -38.0524 d 9 = 2.4000 n 5 = 1.80518 ν 5 = 25.43 r 10 = -18.4836 d 10 = 1.1707 n 6 = 1.72916 ν 6 = 54.68 r 11 = 39.0369 d 11 = 1.9989 r 12 = 26.1346 d 12 = 2.4000 n 7 = 1.80518 ν 7 = 25.43 r 13 = 29.7372 d 13 = (variable) r 14 = 98.4706 d 14 2.4509 n 8 = 1.56873 ν 8 = 63.16 r 15 = -64.5651 d 15 = 0.2870 r 16 = 21.7173 d 16 = 4.5000 n 9 = 1.48749 ν 9 = 70.20 r 17 = -24.0000 d 17 = 1.3000 n 10 = 1.72000 ν 10 = 43.70 r 1 8 = 236.2274 d 18 = 1.0000 r 19 ; Aperture d 19 = (variable) r 20 = 28.6431 d 20 = 2.9200 n 11 = 1.56873 ν 11 = 63.16 r 21 = 1066.5050 d 21 = 0.2000 r 22 = 49.1304 d 22 = 3.2097 n 12 = 1.62041 ν 12 = 60.27 r 23 = -101.4396 d 23 = 2.5000 r 24 = -594.4244 d 24 = 1.8476 n 13 = 1.66446 ν 13 = 35.81 r 25 = 28.3779 d 25 = 1.6246 r 26 = 457.2996 (aspherical surface) d 26 = 2.5000 n 14 = 1.72825 ν 14 = 28.46 r 27 = 1713.8581

【0047】[0047]

【表8】 [Table 8]

【0048】 非球面レンズデータ(非球面係数) r26;a2 =0 ,a2 =-0.33217×10-4, a6 =-0.10545×10-6, a8 =-0.25371×10-9, a10=-0.12635×10-11 |C4 |=0.33217 ×10-4, fRW/fW =0.70, e2T/fW =0.20, R/fW =2.33Aspherical lens data (aspherical coefficient) r 26 ; a 2 = 0, a 2 = -0.33217 × 10 -4 , a 6 = -0.10545 × 10 -6 , a 8 = -0.25371 × 10 -9 , a 10 = -0.12635 x 10 -11 | C 4 | = 0.33217 x 10 -4 , f RW / f W = 0.70, e 2T / f W = 0.20, R / f W = 2.33

【0049】[0049]

【実施例9】 f=36.0mm〜102.0 mm, F/3.68〜4.82, 2ω=62.0°〜24.0° r1 =181.7590 d1 =2.0000 n1 =1.78470 ν1 =26.22 r2 =45.9183 d2 =7.0000 n2 =1.72600 ν2 =53.56 r3 =-627.4269 d3 =0.2000 r4 =37.9932 d4 =4.0000 n3 =1.72000 ν2 =50.25 r5 =87.8571 d5 =(可変) r6 =1261.1377 d6 =1.2000 n4 =1.78590 ν4 =44.18 r7 =18.0110 d7 =5.0000 r8 =-33.4090 d8 =2.0000 n5 =1.80518 ν5 =25.43 r9 =-20.9855 d9 =1.2000 r10=-20.4225 d10=1.2000 n6 =1.77250 ν6 =49.66 r11=24.5290 d11=2.5000 n7 =1.80518 ν7 =25.43 r12=76.8874 d12=1.5000 r13=38.0892 d13=2.0000 n8 =1.69895 ν8 =30.12 r14=85.9796 d14=(可変) r15=42.7340 d15=2.5000 n9 =1.51633 ν9 =64.15 r16=-63.4158 d16=0.2000 r17=23.5434 d17=4.5000 n10=1.51633 ν10=64.15 r18=-19.6426 d18=1.3000 n11=1.68250 ν11=44.65 r19=206.3415 d19=0.5000 r20=絞り d20=(可変) r21=112.0861 d21=3.0000 n12=1.52249 ν12=59.79 r22=-32.4239 d22=0.2000 r23=27.6866 d23=7.0000 n13=1.51633 ν13=64.15 r24=-22.8333 d24=2.0000 n14=1.80440 ν14=39.58 r25=33.6584 (非球面)Example 9 f = 36.0 mm to 102.0 mm, F / 3.68 to 4.82, 2ω = 62.0 ° to 24.0 ° r 1 = 181.7590 d 1 = 2.0000 n 1 = 1.78470 ν 1 = 26.22 r 2 = 45.9183 d 2 = 7.0000 n 2 = 1.72600 ν 2 = 53.56 r 3 = -627.4269 d 3 = 0.2000 r 4 = 37.9932 d 4 = 4.0000 n 3 = 1.72000 ν 2 = 50.25 r 5 = 87.8571 d 5 = (variable) r 6 = 1261.1377 d 6 = 1.2000 n 4 = 1.78590 ν 4 = 44.18 r 7 = 18.0110 d 7 = 5.0000 r 8 = -33.4090 d 8 = 2.0000 n 5 = 1.80518 ν 5 = 25.43 r 9 = -20.9855 d 9 = 1.2000 r 10 = -20.4225 d 10 = 1.2000 n 6 = 1.77250 ν 6 = 49.66 r 11 = 24.5290 d 11 = 2.5000 n 7 = 1.80518 ν 7 = 25.43 r 12 = 76.8874 d 12 = 1.5000 r 13 = 38.0892 d 13 = 2.0000 n 8 = 1.69895 ν 8 = 30. r 14 = 85.9796 d 14 = (variable) r 15 = 42.7340 d 15 = 2.5000 n 9 = 1.51633 ν 9 = 64.15 r 16 = -63.4158 d 16 = 0.2000 r 17 = 23.5434 d 17 = 4.5000 n 10 = 1.51633 ν 10 = 64.15 r 18 = -19.6426 d 18 = 1.3000 n 11 = 1.68250 ν 11 = 44.65 r 19 = 206.3415 d 19 = 0.5000 r 20 = stop d 20 = (Variable) r 21 = 112.0861 d 21 = 3.0000 n 12 = 1.52249 ν 12 = 59.79 r 22 = -32.4239 d 22 = 0.2000 r 23 = 27.6866 d 23 = 7.0000 n 13 = 1.51633 v 13 = 64.15 r 24 = -22.8333 d 24 = 2.0000 n 14 = 1.80440 v 14 = 39.58 r 25 = 33.6584 (aspherical surface)

【0050】[0050]

【表9】 [Table 9]

【0051】 非球面レンズデータ(非球面係数) r25;a2 =0, a4 =0.27831 ×10-4, a6 =0.29941 ×10-7, a8 =-0.38690×10-10 ,a10=-0.13006×10-12 |C4 |=0.27831 ×10-4, fRW/fW =0.64, e2T/fW =0.22, R/fW =2.43Aspherical lens data (aspherical coefficient) r 25 ; a 2 = 0, a 4 = 0.27831 × 10 -4 , a 6 = 0.29941 × 10 -7 , a 8 = -0.38690 × 10 -10 , a 10 = -0.13006 × 10 -12 | C 4 | = 0.27831 × 10 -4 , f RW / f W = 0.64, e 2T / f W = 0.22, R / f W = 2.43

【0052】[0052]

【実施例10】 f=36.0mm〜101.0 mm, F/3.68〜4.83, 2ω=62.0°〜24.2° r1 =278.0571 d1 =2.2109 n1 =1.80518 ν1 =25.43 r2 =64.2523 d2 =7.3000 n2 =1.61405 ν2 =54.95 r3 =-145.3627 d3 =0.2028 r4 =33.9610 d4 =4.4000 n3 =1.65160 ν3 =58.52 r5 =73.4447 d5 =(可変) r6 =227.2921 d6 =1.1680 n4 =1.64000 ν4 =60.09 r7 =16.8484 d7 =4.9951 r8 =-36.9833 d8 =2.4551 n5 =1.84666 ν5 =23.78 r9 =-24.1831 d9 =1.0000 r10=-21.2347 d10=1.1707 n6 =1.72916 ν6 =54.68 r11=48.3081 d11=0.4884 r12=29.8490 d12=3.0000 n7 =1.84666 ν7 =23.78 r13=54.3309 d13=(可変) r14=69.6586 d14=2.5000 n8 =1.51728 ν8 =69.56 r15=-40.4085 d15=0.2000 r16=23.5987 d16=4.5000 n9 =1.51728 ν9 =69.56 r17=-26.5000 d17=1.3000 n10=1.70154 ν10=41.24 r18=118.1083 d18=1.0000 r19=絞り d19=(可変) r20=32.4240 d20=3.0000 n11=1.60311 ν11=60.70 r21=-96.6813 d21=0.2000 r22=48.7873 d22=3.0000 n12=1.56873 ν12=63.16 r23=968.9901 d23=2.0000 r24=-41.9955 d24=1.9097 n13=1.72047 ν13=34.72 r25=27.4776 d25=2.6164 r26=-1709.3440(非球面)d26=2.6000 n14=1.61293 ν14=37.00 r27=-36.5500Example 10 f = 36.0 mm to 101.0 mm, F / 3.68 to 4.83, 2ω = 62.0 ° to 24.2 ° r 1 = 278.0571 d 1 = 2.2109 n 1 = 1.80518 ν 1 = 25.43 r 2 = 64.2523 d 2 = 7.3000 n 2 = 1.61405 ν 2 = 54.95 r 3 = -145.3627 d 3 = 0.2028 r 4 = 33.9610 d 4 = 4.4000 n 3 = 1.65160 ν 3 = 58.52 r 5 = 73.4447 d 5 = (variable) r 6 = 227.2921 d 6 = 1.1680 n 4 = 1.64000 ν 4 = 60.09 r 7 = 16.8484 d 7 = 4.9951 r 8 = -36.9833 d 8 = 2.4551 n 5 = 1.84666 ν 5 = 23.78 r 9 = -24.1831 d 9 = 1.0000 r 10 = -21.2347 d 10 = 1.1707 n 6 = 1.72916 ν 6 = 54.68 r 11 = 48.3081 d 11 = 0.4884 r 12 = 29.8490 d 12 = 3.0000 n 7 = 1.84666 ν 7 = 23.78 r 13 = 54.3309 d 13 = (variable) r 14 = 69.6586 d 14 = 2.5000 n 8 = 1.51728 v 8 = 69.56 r 15 = -40.4085 d 15 = 0.2000 r 16 = 23.5987 d 16 = 4.5000 n 9 = 1.51728 v 9 = 69.56 r 17 = -26.5000 d 17 = 1.3000 n 10 = 1.70154 v 10 = 41.24 r 18 = 118.1083 d 18 = 1.0000 r 19 = Aperture d 19 = (variable) r 20 = 32.4240 d 20 = 3.0000 n 11 = 1.60311 ν 11 = 60.70 r 21 = -96.6813 d 21 = 0.2000 r 22 = 48.7873 d 22 = 3.0000 n 12 = 1.56873 ν 12 = 63.16 r 23 = 968.9901 d 23 = 2.0000 r 24 = -41.9955 d 24 = 1.9097 n 13 = 1.72047 ν 13 = 34.72 r 25 = 27.4776 d 25 = 2.6164 r 26 = -1709.3440 ( aspherical) d 26 = 2.6000 n 14 = 1.61293 ν 14 = 37.00 r 27 = -36.5500

【0053】[0053]

【表10】 [Table 10]

【0054】 非球面レンズデータ(非球面係数) r26;a2 =0, a4 =-0.14953×10-4, a6 =-0.65576×10-7, a8 =-0.15217×10-9,a10=0.36986 ×10-12 |C4 |=0.14953 ×10-4, fRW/fW =0.72, e2T/fW =0.23, R/fW =2.04Aspherical lens data (aspherical coefficient) r 26 ; a 2 = 0, a 4 = -0.14953 × 10 -4 , a 6 = -0.65576 × 10 -7 , a 8 = -0.15217 × 10 -9 , a 10 = 0.36986 × 10 -12 | C 4 | = 0.14953 × 10 -4 , f RW / f W = 0.72, e 2T / f W = 0.23, R / f W = 2.04

【0055】[0055]

【実施例11】 f=36.3mm〜102.0 mm, F/3.56〜4.87, 2 ω=61.6°〜24.0° r1 =2157.3510 d1 =2.5500 n1 =1.80518 ν1 =25.43 r2 =77.2250 d2 =7.0100 n2 =1.60311 ν2 =60.70 r3 =-97.6780 d3 =0.1000 r4 =42.1265 d4 =4.2500 n3 =1.69680 ν3 =55.52 r5 =84.5493 d5 =(可変) r6 =227.9828 d6 =1.3000 n4 =1.80610 ν4 =40.95 r7 =19.0366 d7 =4.8000 r8 =-59.0564 d8 =1.1000 n5 =1.83481 ν5 =42.72 r9 =52.1969 d9 =0.3600 r10=31.3963 d10=3.7900 n6 =1.80518 ν6 =25.43 r11=-45.6222 d11=1.5700 r12=-23.1717 d12=1.0000 n7 =1.80400 ν7 =46.57 r13=-76.2904 d13=(可変) r14=絞り d14=1.1000 r15=39.8324 d15=2.4100 n8 =1.65016 ν8 =39.39 r16=-251.3243 d16=0.1000 r17=27.1172 d17=2.7600 n9 =1.65830 ν9 =57.33 r18=171.5496 d18=0.1200 r19=34.7864 d19=3.8300 n10=1.60311 ν10=60.70 r20=1489.2406 d20=2.0400 r21=-70.2050 d21=6.7000 n11=1.80518 ν11=25.43 r22=18.3645 d22=2.1000 r23=-156.1180 d23=2.2800 n12=1.60311 ν12=60.70 r24=-34.1925 d24=0.8600 r25=23.2912 d25=3.2900 n13=1.53172 ν13=48.90 r26=63.3541 (非球面)[Embodiment 11] f = 36.3 mm to 102.0 mm, F / 3.56 to 4.87, 2 ω = 61.6 ° to 24.0 ° r 1 = 2157.3510 d 1 = 2.5500 n 1 = 1.80518 ν 1 = 25.43 r 2 = 77.2250 d 2 = 7.0100 n 2 = 1.60311 ν 2 = 60.70 r 3 = -97.6780 d 3 = 0.1000 r 4 = 42.1265 d 4 = 4.2500 n 3 = 1.69680 ν 3 = 55.52 r 5 = 84.5493 d 5 = (variable) r 6 = 227.9828 d 6 = 1.3000 n 4 = 1.80610 ν 4 = 40.95 r 7 = 19.0366 d 7 = 4.8000 r 8 = -59.0564 d 8 = 1.1000 n 5 = 1.83481 ν 5 = 42.72 r 9 = 52.1969 d 9 = 0.3600 r 10 = 31.3963 d 10 = 3.7900 n 6 = 1.80518 ν 6 = 25.43 r 11 = -45.6222 d 11 = 1.5700 r 12 = -23.1717 d 12 = 1.0000 n 7 = 1.80400 ν 7 = 46.57 r 13 = -76.2904 d 13 = (variable) r 14 = diaphragm d 14 = 1.1000 r 15 = 39.8324 d 15 = 2.4100 n 8 = 1.65016 ν 8 = 39.39 r 16 = -251.3243 d 16 = 0.1000 r 17 = 27.1172 d 17 = 2.7600 n 9 = 1.65830 ν 9 = 57.33 r 18 = 171.5496 d 18 = 0.1200 19 = 34.7864 d 19 = 3.8300 n 10 = 1.60311 ν 10 = 60.70 r 20 = 1489.2406 d 20 = 2.0400 r 21 = -70.2050 d 21 = 6.7000 n 11 = 1.80518 ν 11 = 25.43 r 22 = 18.3645 d 22 = 2.1000 r 23 = -156.1180 d 23 = 2.2800 n 12 = 1.60311 ν 12 = 60.70 r 24 = -34.1925 d 24 = 0.8600 r 25 = 23.2912 d 25 = 3.2900 n 13 = 1.53172 ν 13 = 48.90 r 26 = 63.3541 ( aspherical)

【0056】[0056]

【表11】 [Table 11]

【0057】 非球面レンズデータ(非球面係数) r26;a2 =0,a4 =0.15029 ×10-4,a6 =0.17717 ×10-7, a8 =0.26414 ×10-9,a10=-0.30585×10-11 |D4 |=0.15029 ×10-4, fRW/fW =0.75, e2T/fW =0.24, R/fW =2.33Aspherical lens data (aspherical coefficient) r 26 ; a 2 = 0, a 4 = 0.15029 × 10 -4 , a 6 = 0.17717 × 10 -7 , a 8 = 0.26414 × 10 -9 , a 10 = -0.30585 × 10 -11 | D 4 | = 0.15029 × 10 -4 , f RW / f W = 0.75, e 2T / f W = 0.24, R / f W = 2.33

【0058】[0058]

【実施例12】 f=36.3mm〜102.0 mm, F/3.68〜4.87, 2ω=61.6°〜24.0° r1 =-3951.1688 d1 =2.5500 n1 =1.80518 ν1 =25.43 r2 =77.2250 d2 =7.0100 n2 =1.60311 ν2 =60.70 r3 =-99.3398 d3 =0.1000 r4 =43.5530 d4 =4.2500 n3 =1.69680 ν3 =55.52 r5 =107.1875 d5 =(可変) r6 =171.2378 d6 =1.3000 n4 =1.80610 ν4 =40.95 r7 =19.6682 d7 =4.8000 r8 =-58.5154 d8 =1.1000 n5 =1.83481 ν5 =42.72 r9 =49.4487 d9 =0.3600 r10=31.4924 d10=3.7900 n6 =1.80518 ν6 =25.43 r11=-39.8707 d11=1.5700 r12=-22.9601 d12=1.0000 n7 =1.80400 ν7 =46.57 r13=-103.9685 d13=(可変) r14;絞り d14=1.1000 r15=39.7399 d15=2.4100 n8 =1.65016 ν8 =39.39 r16=-220.6437 d16=0.1000 r17=25.3782 d17=2.7600 n9 =1.65830 ν9 =57.33 r18=237.5652 d18=0.1200 r19=35.4197 d19=3.8300 n10=1.60311 ν10=60.70 r20=961.7115 d20=2.0400 r21=-63.3939 d21=6.7000 n11=1.80518 ν11=25.43 r22=16.9825 d22=2.1000 r23=-58.9277 d23=2.2800 n12=1.60311 ν12=60.70 r24=-31.0354 d24=0.8600 r25=24.8572 d25=3.2900 n13=1.53172 ν13=48.90 r26=183.9976(非球面)Example 12 f = 36.3 mm to 102.0 mm, F / 3.68 to 4.87, 2ω = 61.6 ° to 24.0 ° r 1 = -3951.1688 d 1 = 2.5500 n 1 = 1.80518 ν 1 = 25.43 r 2 = 77.2250 d 2 = 7.0100 n 2 = 1.60311 ν 2 = 60.70 r 3 = -99.3398 d 3 = 0.1000 r 4 = 43.5530 d 4 = 4.2500 n 3 = 1.69680 ν 3 = 55.52 r 5 = 107.1875 d 5 = (variable) r 6 = 171.2378 d 6 = 1.3000 n 4 = 1.80610 ν 4 = 40.95 r 7 = 19.6682 d 7 = 4.8000 r 8 = -58.5154 d 8 = 1.1000 n 5 = 1.83481 ν 5 = 42.72 r 9 = 49.4487 d 9 = 0.3600 r 10 = 31.4924 d 10 = 3.7900 n 6 = 1.80518 ν 6 = 25.43 r 11 = -39.8707 d 11 = 1.5700 r 12 = -22.9601 d 12 = 1.0000 n 7 = 1.80400 ν 7 = 46.57 r 13 = -103.9685 d 13 = ( variable) r 14; stop d 14 = 1.1000 r 15 = 39.7399 d 15 = 2.4100 n 8 = 1.65016 ν 8 = 39.39 r 16 = -220.6437 d 16 = 0.1000 r 17 = 25.3782 d 17 = 2.7600 n 9 = 1.65830 ν 9 = 57.33 r 18 = 237.5652 d 18 = 0.120 0 r 19 = 35.4197 d 19 = 3.8300 n 10 = 1.60311 ν 10 = 60.70 r 20 = 961.7115 d 20 = 2.0400 r 21 = -63.3939 d 21 = 6.7000 n 11 = 1.80518 ν 11 = 25.43 r 22 = 16.9825 d 22 = 2.1000 r 23 = -58.9277 d 23 = 2.2800 n 12 = 1.60311 ν 12 = 60.70 r 24 = -31.0354 d 24 = 0.8600 r 25 = 24.8572 d 25 = 3.2900 n 13 = 1.53172 ν 13 = 48.90 r 26 = 183.9976 ( aspherical)

【0059】[0059]

【表12】 [Table 12]

【0060】 非球面レンズデータ(非球面係数) r26;a2 =0,a4 =0.12308 ×10-4, a6 =0.13270 ×10-7, a8 =0.37489 ×10-9,a10=-0.29362×10-11 |D4 |=0.12308 ×10-4, fRW/fW =0.75, e2T/fW =0.22, R/fW =2.96 但し、 f;全系の焦点距離 F;Fナンバー 2ω;画角 ri ;物体側より順次に各面の曲率半径 di ;物体側より順次に各レンズの肉厚及び空気間隔 ni ;物体側より順次に各レンズのd-lineの屈折率 νi ;物体側より順次に各レンズのアッベ数 fW ;広角端における全系の焦点距離 fRW;広角端における結像レンズ群の焦点距離 e2T;望遠端における第2群の後側主点と結像レンズ群
の前側主点との距離 R;第1レンズ群の最像側面の曲率半径 又、上記実施例で用いられている非球面は、光軸方面を
x,光軸の法線方向をy,近軸曲率半径をRとしたと
き、 x=cy2 (1+(1−c 2 y 2 ) 1/2 ) -1+a 2 y 2
a 4 y 4 +a 6 y 6 +……… c=1/R にて表わされる。但、a2 ,a4 ,a6 ,………は非球
面係数である。
Aspherical lens data (aspherical coefficient) r 26 ; a 2 = 0, a 4 = 0.12308 × 10 −4 , a 6 = 0.13270 × 10 −7 , a 8 = 0.37489 × 10 −9 , a 10 = -0.29362 × 10 -11 | D 4 | = 0.12308 × 10 -4 , f RW / f W = 0.75, e 2T / f W = 0.22, R / f W = 2.96 However, f; focal length of the entire system F; F number 2ω; angle of view r i ; radius of curvature of each surface sequentially from the object side d i ; thickness of each lens and air spacing n i from the object side sequentially; d-line of each lens sequentially from the object side Refractive index ν i ; Abbe number f W of each lens sequentially from the object side; focal length of the entire system at wide-angle end f RW ; focal length of imaging lens group at wide-angle end e 2T ; after second group at telephoto end The distance R between the side principal point and the front principal point of the imaging lens group R; the radius of curvature of the most image-side surface of the first lens group. Further, the aspherical surface used in the above embodiment is x on the optical axis direction, and the optical axis. Of the normal direction y, when the paraxial curvature radius and the R, x = cy 2 (1+ (1-c 2 y 2) 1/2) -1 + a 2 y 2 +
a 4 y 4 + a 6 y 6 + ... It is represented by c = 1 / R. However, a 2, a 4, a 6, ......... are aspherical coefficients.

【0061】尚、A4 ;第1の非球面における非球面係
数a44 ;第2の非球面における非球面係数a44 ,D4 ;非球面係数a4 である。
A 4 is the aspherical surface coefficient a 4 B 4 in the first aspherical surface; aspherical surface coefficients a 4 C 4 and D 4 in the second aspherical surface; aspherical surface coefficient a 4 .

【0062】[0062]

【発明の効果】各実施例の収差曲線図からも明らかなよ
うに、本発明によれば、各収差の良好に補正された高性
能でかつコンパクト化が十分に達成されたズームレンズ
が提供される。
As is clear from the aberration curve diagrams of the respective embodiments, the present invention provides a zoom lens in which each aberration is satisfactorily corrected and high performance and compactness are sufficiently achieved. It

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1,2,4の広角端のレンズ構
成の断面図である。
FIG. 1 is a sectional view of a lens configuration at a wide-angle end according to Examples 1, 2, and 4 of the present invention.

【図2】本発明の実施例1,2,4の望遠端のレンズ構
成の断面図である。
FIG. 2 is a sectional view of a lens configuration at a telephoto end according to Examples 1, 2, and 4 of the present invention.

【図3】本発明の実施例3,5の広角端のレンズ構成の
断面図である。
FIG. 3 is a cross-sectional view of lens configurations at wide-angle ends according to Examples 3 and 5 of the present invention.

【図4】本発明の実施例6の広角端のレンズ構成の断面
図である。
FIG. 4 is a sectional view of a lens configuration at a wide-angle end according to Example 6 of the present invention.

【図5】本発明の実施例6の望遠端のレンズ構成の断面
図である。
FIG. 5 is a sectional view of a lens configuration at a telephoto limit according to a sixth embodiment of the present invention.

【図6】本発明の実施例7の広角端のレンズ構成の断面
図である。
FIG. 6 is a sectional view of a lens configuration at a wide-angle end according to Example 7 of the present invention.

【図7】本発明の実施例8の広角端のレンズ構成の断面
図である。
FIG. 7 is a sectional view of a lens structure at a wide-angle end according to Example 8 of the present invention.

【図8】本発明の実施例9の広角端のレンズ構成の断面
図である。
FIG. 8 is a sectional view of a lens structure at a wide-angle end according to Example 9 of the present invention.

【図9】本発明の実施例10の広角端のレンズ構成の断面
図である。
FIG. 9 is a sectional view of a lens structure at a wide-angle end according to Example 10 of the present invention.

【図10】本発明の実施例11,12 の広角端のレンズ構成
の断面図である。
FIG. 10 is a sectional view of a lens structure at a wide-angle end according to Examples 11 and 12 of the present invention.

【図11】本発明の実施例1の広角端における収差曲線
図である。
FIG. 11 is an aberration curve diagram for Example 1 of the present invention at the wide-angle end.

【図12】本発明の実施例1の中間倍率における収差曲
線図である。
FIG. 12 is an aberration curve diagram at an intermediate magnification of Example 1 of the present invention.

【図13】本発明の実施例1の望遠端における収差図で
ある。
FIG. 13 is an aberration diagram for Example 1 of the present invention at the telephoto end.

【図14】本発明の実施例2の広角端における収差曲線
図である。
FIG. 14 is an aberration curve diagram for Example 2 of the present invention at the wide-angle end.

【図15】本発明の実施例2の中間倍率における収差曲
線図である。
FIG. 15 is an aberration curve diagram at an intermediate magnification of Example 2 of the present invention.

【図16】本発明の実施例2の望遠端における収差図で
ある。
FIG. 16 is an aberration diagram at a telephoto end according to a second embodiment of the present invention.

【図17】本発明の実施例3の広角端における収差曲線
図である。
FIG. 17 is an aberration curve diagram for Example 3 of the present invention at the wide-angle end.

【図18】本発明の実施例3の中間倍率における収差曲
線図である。
FIG. 18 is an aberration curve diagram at an intermediate magnification of Example 3 of the present invention.

【図19】本発明の実施例3の望遠端における収差図で
ある。
FIG. 19 is an aberration diagram at a telephoto end according to a third embodiment of the present invention.

【図20】本発明の実施例4の広角端における収差曲線
図である。
FIG. 20 is an aberration curve diagram for Example 4 of the present invention at the wide-angle end.

【図21】本発明の実施例4の中間倍率における収差曲
線図である。
FIG. 21 is an aberration curve diagram at an intermediate magnification of Example 4 of the present invention.

【図22】本発明の実施例4の望遠端における収差図で
ある。
FIG. 22 is an aberration diagram at a telephoto end according to a fourth embodiment of the present invention.

【図23】本発明の実施例5の広角端における収差曲線
図である。
FIG. 23 is an aberration curve diagram for Example 5 of the present invention at the wide-angle end.

【図24】本発明の実施例5の中間倍率における収差曲
線図である。
FIG. 24 is an aberration curve diagram at an intermediate magnification of Example 5 of the present invention.

【図25】本発明の実施例5の望遠端における収差図で
ある。
FIG. 25 is an aberration diagram for Example 5 of the present invention at the telephoto end.

【図26】本発明の実施例6の広角端における収差曲線
図である。
FIG. 26 is an aberration curve diagram for Example 6 of the present invention at the wide-angle end.

【図27】本発明の実施例6の中間倍率における収差曲
線図である。
FIG. 27 is an aberration curve diagram at an intermediate magnification of Example 6 of the present invention.

【図28】本発明の実施例6の望遠端における収差図で
ある。
FIG. 28 is an aberration diagram at a telephoto end according to a sixth embodiment of the present invention.

【図29】本発明の実施例7の広角端における収差曲線
図である。
FIG. 29 is an aberration curve diagram for Example 7 of the present invention at the wide-angle end.

【図30】本発明の実施例7の中間倍率における収差曲
線図である。
FIG. 30 is an aberration curve diagram at an intermediate magnification of Example 7 of the present invention.

【図31】本発明の実施例7の望遠端における収差図で
ある。
FIG. 31 is an aberration diagram at a telephoto end according to a seventh embodiment of the present invention.

【図32】本発明の実施例8の広角端における収差曲線
図である。
FIG. 32 is an aberration curve diagram for Example 8 of the present invention at the wide-angle end.

【図33】本発明の実施例8の中間倍率における収差曲
線図である。
FIG. 33 is an aberration curve diagram at an intermediate magnification of Example 8 of the present invention.

【図34】本発明の実施例8の望遠端における収差図で
ある。
FIG. 34 is an aberration diagram of Example 8 of the present invention at the telephoto end.

【図35】本発明の実施例9の広角端における収差曲線
図である。
FIG. 35 is an aberration curve diagram for Example 9 of the present invention at the wide-angle end.

【図36】本発明の実施例9の中間倍率における収差曲
線図である。
FIG. 36 is an aberration curve diagram at an intermediate magnification of Example 9 of the present invention.

【図37】本発明の実施例9の望遠端における収差図で
ある。
FIG. 37 is an aberration diagram at a telephoto end according to a ninth embodiment of the present invention.

【図38】本発明の実施例10の広角端における収差曲線
図である。
FIG. 38 is an aberration curve diagram for Example 10 of the present invention at the wide-angle end.

【図39】本発明の実施例10の中間倍率における収差曲
線図である。
FIG. 39 is an aberration curve diagram at an intermediate magnification of Example 10 of the present invention.

【図40】本発明の実施例10の望遠端における収差図で
ある。
FIG. 40 is an aberration diagram at a telephoto end of Example 10 of the present invention.

【図41】本発明の実施例11の広角端における収差曲線
図である。
FIG. 41 is an aberration curve diagram for Example 11 of the present invention at the wide-angle end.

【図42】本発明の実施例11の中間倍率における収差曲
線図である。
FIG. 42 is an aberration curve diagram at an intermediate magnification of Example 11 of the present invention.

【図43】本発明の実施例11の望遠端における収差図で
ある。
FIG. 43 is an aberration diagram at a telephoto end of Example 11 of the present invention.

【図44】本発明の実施例12の広角端における収差曲線
図である。
FIG. 44 is an aberration curve diagram for Example 12 of the present invention at the wide-angle end.

【図45】本発明の実施例12の中間倍率における収差曲
線図である。
FIG. 45 is an aberration curve diagram at an intermediate magnification of Example 12 of the present invention.

【図46】本発明の実施例12の望遠端における収差図で
ある。
FIG. 46 is an aberration diagram of Example 12 of the present invention at the telephoto end.

【符号の説明】[Explanation of symbols]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の第1レンズ群と負の
第2レンズ群と正の第3レンズ群と絞りと正の第4レン
ズ群とから成り、広角側から望遠側へズーミングする際
に前記第1レンズ群と前記第2レンズ群の間隔が増加し
前記第2レンズ群と前記第3レンズ群の間隔が減少し前
記第3レンズ群と前記第4レンズ群の間隔が減少するズ
ームレンズで、前記第4レンズ群が少なくとも1面の非
球面を有し、以下の条件を満足するズームレンズ。 0.1 ×10-4<|C4 |<0.1 ×10-3 ………(1) 但し、非球面の式を、 x=cy2 ( 1+(1−c 2 y 2 ) 1/2 ) -1+a 2 y 2
a 4 y 4 +a 6 y 6 +……… c=1/R とおくと、 x ;非球面の面頂からの光軸方向の座標 y ;光軸の法線方向の座標 R ;近軸曲率半径 a 2 ,a 4 ,a 6 ………;非球面係数 C4 ;非球面係数a 4 である。
1. A zoom lens system comprising a positive first lens group, a negative second lens group, a positive third lens group, a diaphragm, and a positive fourth lens group in order from the object side, and zooms from the wide-angle side to the telephoto side. At this time, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and the distance between the third lens group and the fourth lens group decreases. A zoom lens, wherein the fourth lens group has at least one aspherical surface and satisfies the following conditions. 0.1 × 10 -4 <| C 4 | <0.1 × 10 -3 (1) However, the aspherical expression is expressed as x = cy 2 (1+ (1-c 2 y 2 ) 1/2 ) -1 + a 2 y 2
a 4 y 4 + a 6 y 6 + ………… If c = 1 / R, then x is the coordinate in the direction of the optical axis from the apex of the aspheric surface y is the coordinate in the direction of the optical axis R is the paraxial curvature Radius a 2 , a 4 , a 6 ... Aspherical coefficient C 4 ; aspherical coefficient a 4 .
【請求項2】 物体側より順に正の第1レンズ群と負の
第2レンズ群と少なくとも1枚の両凹単レンズ及び最も
像面側に配置された物体側に凸の正メニスカスレンズを
有する結像レンズ群との3群から成り、前記正メニスカ
スレンズの少なくとも1面が非球面であり、該非球面の
形状が光軸から離れるに従って正の作用が弱まる形状で
あり、以下の条件を満足するズームレンズ。 0.1 ×10-4<|D4 |<0.1 ×10-3 ………(2) 但し、非球面の式を、 x=cy2 ( 1+(1−c 2 y 2 ) 1/2 ) -1+a 2 y 2
a 4 y 4 +a 6 y 6 +……… c=1/R とおくと、 x ;非球面の面頂からの光軸方向の座標 y ;光軸の法線方向の座標 R ;近軸曲率半径 a 2 ,a 4 ,a 6 ………;非球面係数 D4 ;非球面係数a 4 である。
2. A positive first lens group, a negative second lens group, at least one biconcave single lens in order from the object side, and a positive meniscus lens convex on the object side disposed closest to the image side. At least one surface of the positive meniscus lens is an aspherical surface, and the shape of the aspherical surface is such that the positive action is weakened as the distance from the optical axis is satisfied, and the following conditions are satisfied. Zoom lens. 0.1 × 10 -4 <| D 4 | <0.1 × 10 -3 (2) However, the aspherical expression is expressed as x = cy 2 (1+ (1-c 2 y 2 ) 1/2 ) -1 + a 2 y 2
a 4 y 4 + a 6 y 6 + ………… If c = 1 / R, then x is the coordinate in the direction of the optical axis from the apex of the aspheric surface y is the coordinate in the direction of the optical axis R is the paraxial curvature Radius a 2 , a 4 , a 6 ......... Aspherical surface coefficient D 4 ; Aspherical surface coefficient a 4 .
JP10563996A 1996-04-25 1996-04-25 Zoom lens Pending JPH08271790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10563996A JPH08271790A (en) 1996-04-25 1996-04-25 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10563996A JPH08271790A (en) 1996-04-25 1996-04-25 Zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63116682A Division JP2859616B2 (en) 1988-05-13 1988-05-13 Zoom lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP17455398A Division JPH10311948A (en) 1998-06-22 1998-06-22 Zoom lens

Publications (1)

Publication Number Publication Date
JPH08271790A true JPH08271790A (en) 1996-10-18

Family

ID=14413036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10563996A Pending JPH08271790A (en) 1996-04-25 1996-04-25 Zoom lens

Country Status (1)

Country Link
JP (1) JPH08271790A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347102A (en) * 1999-06-04 2000-12-15 Konica Corp Zoom lens
JP2001188169A (en) * 1999-12-27 2001-07-10 Asahi Optical Co Ltd Zoom lens system
JP2006284753A (en) * 2005-03-31 2006-10-19 Canon Inc Zoom lens, and optical apparatus having same
JP2007108544A (en) * 2005-10-15 2007-04-26 Canon Inc Zoom lens and imaging apparatus having the same
JP2012247758A (en) * 2011-05-31 2012-12-13 Canon Inc Zoom lens and imaging device including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347102A (en) * 1999-06-04 2000-12-15 Konica Corp Zoom lens
JP2001188169A (en) * 1999-12-27 2001-07-10 Asahi Optical Co Ltd Zoom lens system
JP2006284753A (en) * 2005-03-31 2006-10-19 Canon Inc Zoom lens, and optical apparatus having same
JP4689321B2 (en) * 2005-03-31 2011-05-25 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP2007108544A (en) * 2005-10-15 2007-04-26 Canon Inc Zoom lens and imaging apparatus having the same
JP2012247758A (en) * 2011-05-31 2012-12-13 Canon Inc Zoom lens and imaging device including the same
US8681432B2 (en) 2011-05-31 2014-03-25 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus equipped with zoom lens

Similar Documents

Publication Publication Date Title
JP3686178B2 (en) Zoom lens
JP3253405B2 (en) Two-group zoom lens
JP3365835B2 (en) Compact 3-group zoom lens
JP3296876B2 (en) Zoom lens
JP3204703B2 (en) Zoom lens
JP3140489B2 (en) Zoom lens
JPH07253542A (en) Zoom lens
JP2000275523A (en) Zoom lens system
JP3365837B2 (en) Focusing method of 3-group zoom lens
US4789226A (en) Zoom lens system
JP3366092B2 (en) High zoom ratio 2-group zoom lens
JP3369598B2 (en) Zoom lens
JP3733355B2 (en) Zoom lens
JP3331011B2 (en) Small two-group zoom lens
JP3678522B2 (en) Camera with zoom lens
JPH085920A (en) Zoom lens
JP3414552B2 (en) Zoom lens
JPH05188296A (en) Small-sized three-group zoom lens
JPH0868940A (en) Zoom lens
JP2001083420A (en) Zoom lens
JPH0949968A (en) Lens system
JPH05333266A (en) Small-sized two-group zoom lens
JP3162113B2 (en) Small and bright zoom lens
JPH08271790A (en) Zoom lens
JP3414519B2 (en) Camera using a small 3-group zoom lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990126