JPH0949968A - Lens system - Google Patents

Lens system

Info

Publication number
JPH0949968A
JPH0949968A JP7199697A JP19969795A JPH0949968A JP H0949968 A JPH0949968 A JP H0949968A JP 7199697 A JP7199697 A JP 7199697A JP 19969795 A JP19969795 A JP 19969795A JP H0949968 A JPH0949968 A JP H0949968A
Authority
JP
Japan
Prior art keywords
lens
positive
group
focusing
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7199697A
Other languages
Japanese (ja)
Other versions
JP3445413B2 (en
Inventor
Shinichi Mihara
三原伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19969795A priority Critical patent/JP3445413B2/en
Publication of JPH0949968A publication Critical patent/JPH0949968A/en
Application granted granted Critical
Publication of JP3445413B2 publication Critical patent/JP3445413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lens system for electronic image-pickup device whose exit angle of a principal light ray is nearly parallel to the optical axis even while the system has a retro-focus form. SOLUTION: This system is composed of two negative and positive groups GN, GP, has an aperture diaphragm AP in between, the positive group GP includes three lens components, a positive lens component on the closest side to an image is composed of a doublet of a positive lens and a negative lens or a positive single lens, the positive lens component is a rear focus lens moving for focusing and setting conditions of the focal distance of the negative group GN, the reduced air distance on the optical axis between the aperture diaphragm and the surface on the side closest to the object of the positive group, a shape factor of a lens component moving for focusing, its focal distance, a distance on the optical axis between the surface of the group moving for focusing closest to the object and the surface closest to the image among lenses on the side closer to the object at the time of focusing on an object at infinity are satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ系に関し、
特に、結像レンズ系と電子撮像素子との間にプリズムや
フィルター等の多くの光学素子を挿入するために、焦点
距離に対し長いバックフォーカスを必要とする電子カメ
ラ用撮影レンズに関するものである。
TECHNICAL FIELD The present invention relates to a lens system,
In particular, the present invention relates to a photographing lens for an electronic camera that requires a long back focus with respect to the focal length in order to insert many optical elements such as prisms and filters between the imaging lens system and the electronic image pickup element.

【0002】[0002]

【従来の技術】従来より、一眼レフレックスカメラのよ
うに、結像レンズ系と銀塩フィルムとの間にクイックリ
ターンミラーを挿入するために、焦点距離の短い撮影レ
ンズであっても長いバックフォーカスが確保できるよう
に、いわゆるレトロフォーカス型レンズ系が通常用いら
れている。しかし、銀塩フィルムの代わりに電子撮像素
子を用いる場合、結像レンズ系からの光線射出角が極力
撮像素子に対して垂直であることが望まれる。これに対
し、一眼レフレックスカメラ用のレトロフォーカス型レ
ンズ系は軸外物点に関する光線射出角が大きい。したが
って、それをそのまま電子撮像素子を用いたカメラに用
いるのは困難である。また、一眼レフレックスカメラ用
のレンズ系に比べて焦点距離がとりわけ短いため、合焦
に全体繰り出し方式を用いても、フォーカスストローク
が小さすぎて繰り出し精度が厳しい。
2. Description of the Related Art Conventionally, as in a single-lens reflex camera, since a quick return mirror is inserted between an imaging lens system and a silver salt film, a back focus is long even for a taking lens having a short focal length. A so-called retrofocus type lens system is usually used so as to ensure the above. However, when an electronic image pickup device is used instead of the silver salt film, it is desired that the light exit angle from the imaging lens system be as perpendicular to the image pickup device as possible. On the other hand, the retrofocus type lens system for a single-lens reflex camera has a large ray exit angle with respect to an off-axis object point. Therefore, it is difficult to use it as it is in a camera using an electronic image pickup device. Further, since the focal length is particularly short as compared with a lens system for a single-lens reflex camera, even if the whole payout method is used for focusing, the focus stroke is too small and the payout accuracy is severe.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来技術の上
記のような問題点に鑑みてなされたものであり、その目
的は、レトロフォーカス型の形態をとりながらも、主光
線(開口絞りと光軸との交点を通る軸外光線)射出角が
光軸に対し略平行になるようなレンズエレメントの形状
や構成、開口絞りの位置の設定について、最適なレンズ
系を提供することである。さらに、フォーカスストロー
クが焦点距離で決まってしまう全体繰り出し方式をや
め、部分繰り出し方式をうまく用いて繰り出し精度を緩
和したレトロフォーカス型レンズ系を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a chief ray (aperture stop and An optimal lens system is provided for the shape and configuration of the lens element and the setting of the position of the aperture stop such that the exit angle of an off-axis ray passing through the intersection with the optical axis is substantially parallel to the optical axis. Further, the present invention provides a retrofocus type lens system in which the entire extension method in which the focus stroke is determined by the focal length is stopped and the extension accuracy is relaxed by making good use of the partial extension method.

【0004】[0004]

【課題を解決するための手段】本発明のレンズ系は、以
上の課題を解決するために、物体側から順に、負、正の
2つの群で構成され、さらに、その中間に開口絞りを有
し、前記正群は3つの正レンズ成分を含み、その中の最
も像側の正レンズ成分が正レンズと負レンズのダブレッ
トで構成されており、その正レンズ成分が合焦のために
移動されるリアフォーカスレンズにおいて、以下の条件
を満たすことを特徴とするものである。 −20<f1 /f<−1 ・・・(1) 0.14<DAS/f<0.8 ・・・(2) 0<(rR1+rR2)/(rR1−rR2)<0.9 ・・・(3) 2.5<fR /f<10 ・・・(4) 0.12<D23/f<1 ・・・(5) ただし、fは全系の焦点距離、f1 は前記負群の焦点距
離、DASは開口絞りと前記正群の最も物体側の面の光軸
上の空気換算距離、rR1は前記の最も像側の正レンズ成
分の最も物体側の面の曲率半径、rR2は前記の最も像側
の正レンズ成分の最も像側の面の曲率半径、fR は合焦
のために移動される群の焦点距離、D23は合焦のために
移動される群の最も物体側の面とそれより物体側のレン
ズの中の最も像側の面との光軸上の無限遠物点合焦時の
距離である。
In order to solve the above problems, the lens system of the present invention is composed of two groups, a negative group and a positive group, in order from the object side, and has an aperture stop in the middle. However, the positive group includes three positive lens components, of which the positive lens component closest to the image side is composed of a doublet of a positive lens and a negative lens, and the positive lens component is moved for focusing. The rear focus lens according to the present invention is characterized by satisfying the following conditions. −20 <f 1 / f <−1 (1) 0.14 <D AS /f<0.8 (2) 0 <(r R1 + r R2 ) / (r R1 −r R2 ) <0.9 ・ ・ ・ (3) 2.5 <f R / f <10 ・ ・ ・ (4) 0.12 <D 23 / f <1 ・ ・ ・ (5) where f is the focus of the entire system The distance, f 1 is the focal length of the negative group, D AS is the air-equivalent distance on the optical axis of the aperture stop and the surface of the positive group closest to the object side, and r R1 is the maximum of the positive lens component closest to the image side. The radius of curvature of the object-side surface, r R2 is the radius of curvature of the most image-side surface of the most image-side positive lens component, f R is the focal length of the lens group moved for focusing, and D 23 is the focus It is the distance at the time of focusing on an object point at infinity on the optical axis between the most object-side surface of the group moved for focusing and the most image-side surface of the lens on the object side.

【0005】本発明のもう1つのレンズ系は、物体側か
ら順に、負、正の2つの群で構成され、さらに、その中
間に開口絞りを有し、前記正群は3つの正レンズ成分を
含み、その中の最も像側の正レンズ成分が単レンズで構
成されており、その正レンズ成分が合焦のために移動さ
れるリアフォーカスレンズにおいて、以下の条件を満た
すことを特徴とするものである。 −20<f1 /f<−1 ・・・(1) 0.14<DAS/f<0.8 ・・・(2) −2.0<(rR1+rR2)/(rR1−rR2)<0 ・・・(3') 2.5<fR /f<10 ・・・(4) 0.12<D23/f<1 ・・・(5) ただし、fは全系の焦点距離、f1 は前記負群の焦点距
離、DASは開口絞りと前記正群の最も物体側の面の光軸
上の空気換算距離、rR1は前記の最も像側の正レンズ成
分の最も物体側の面の曲率半径、rR2は前記の最も像側
の正レンズ成分の最も像側の面の曲率半径、fR は合焦
のために移動される群の焦点距離、D23は合焦のために
移動される群の最も物体側の面とそれより物体側のレン
ズの中の最も像側の面との光軸上の無限遠物点合焦時の
距離である。
Another lens system of the present invention is composed of two groups, a negative group and a positive group, in order from the object side, and further has an aperture stop in the middle thereof, and the positive group has three positive lens components. In the rear focus lens, in which the most positive lens component on the image side is composed of a single lens, and the positive lens component is moved for focusing, the following conditions are satisfied: Is. −20 <f 1 / f <−1 (1) 0.14 <D AS /f<0.8 (2) −2.0 <(r R1 + r R2 ) / (r R1 − r R2 ) <0 ・ ・ ・ (3 ′) 2.5 <f R / f <10 ・ ・ ・ (4) 0.12 <D 23 / f <1 ・ ・ ・ (5) where f is the whole system , F 1 is the focal length of the negative group, D AS is the air-equivalent distance on the optical axis of the aperture stop and the surface of the positive group closest to the object side, and r R1 is the positive lens component closest to the image side. Is the radius of curvature of the surface closest to the object, r R2 is the radius of curvature of the surface closest to the image of the positive lens component closest to the image, and f R is the focal length of the group moved for focusing, D 23 Is the distance at the time of focusing on an object point at infinity on the optical axis between the most object-side surface of the group moved for focusing and the most image-side surface of the lens on the object side.

【0006】この場合、前記負群は、物体側から順に、
正レンズ、負レンズの2枚から構成され、前記正群は、
物体側から順に、負レンズ、正レンズ3枚の合計4枚か
ら構成され、前記の正レンズ3枚の中、最も像側の1枚
の正レンズのみが合焦のために可動であり、以下の条件
を満たすことが望ましい。 0.1<n1 −n2 <0.4 ・・・(6) ν1 <35 ・・・(7) 1.65≦nR <1.80の範囲において、 −2.0<(rR1+rR2)/(rR1−rR2)<−0.75 ・・(3'-1) 1.55≦nR <1.65の範囲において、 −0.95<(rR1+rR2)/(rR1−rR2)<−0.25・・(3'-2) 1.45≦nR <1.55の場合 −0.45<(rR1+rR2)/(rR1−rR2)<0 ・・(3'-3) ただし、nR は前記の最も像側の1枚の正レンズの媒質
屈折率、n1 は前記負群の正レンズの媒質屈折率、n2
は前記負群の負レンズの媒質屈折率、ν1 は前記負群の
正レンズの媒質アッベ数である。
In this case, the negative group is, in order from the object side,
The positive group is composed of two lenses, a positive lens and a negative lens.
It is composed of a total of four negative lenses and three positive lenses in order from the object side. Among the three positive lenses, only one positive lens closest to the image side is movable for focusing. It is desirable to satisfy the condition of. 0.1 <n 1 −n 2 <0.4 (6) ν 1 <35 (7) In the range of 1.65 ≦ n R <1.80, −2.0 <(r R1 + r R2) / (r R1 -r R2) <- at 0.75 · (range of 3'-1) 1.55 ≦ n R <1.65, -0.95 <(r R1 + r R2) / (R R1 −r R2 ) <− 0.25 · (3′−2) 1.45 ≦ n R <1.55 −0.45 <(r R1 + r R2 ) / (r R1 −r R2 ) <0 ··· (3′-3) where n R is the medium refractive index of the one positive lens closest to the image side, n 1 is the medium refractive index of the negative lens positive lens, and n 2
Is the medium refractive index of the negative lens of the negative group, and ν 1 is the medium Abbe number of the positive lens of the negative group.

【0007】以下、上記の構成をとる理由と作用を説明
する。本発明のレンズ系は、物体側から順に、負、正の
2つの群で構成され、さらに、その中間に開口絞りを有
し、正群は3つの正レンズ成分を含み、その中の最も像
側の正レンズ成分が正レンズと負レンズのダブレットで
構成されており、その正レンズ成分が合焦のために移動
されるリアフォーカス式のレトロフォーカスレンズであ
るが、バックフォーカスの対焦点距離比が空気換算長で
1.5以上のものを対象としている。したがって、 −20<f1 /f<−1 ・・・(1) において、上限値の−1を越えると、バックフォーカス
が短くなり、本発明の対象外である。一方、下限値の−
20を越えると、バックフォーカスは長くしやすいが、
各収差の補正が困難となり、少ない構成枚数で結像性能
を良くできないため、これも対象から外している。な
お、条件(1)は、 −4<f1 /f<−1.1 ・・・(1') の範囲であればさらに好ましい。また、上記の最も像側
の正レンズ成分がダブレットで構成された場合、 −2.1<f1 /f<−1.2 ・・・(1") の範囲を満たすことがベストである。一方、上記の最も
像側の正レンズ成分が単レンズで構成された場合、 −3.3<f1 /f<−1.8 ・・・(1"') の範囲を満たすことがベストである。
The reason and operation of the above configuration will be described below. The lens system of the present invention is composed of two groups, a negative group and a positive group, in order from the object side, and further has an aperture stop in the middle, and the positive group includes three positive lens components. The positive lens component on the side is composed of a doublet consisting of a positive lens and a negative lens, and this positive lens component is a rear focus type retrofocus lens that is moved for focusing. Is for air-converted lengths of 1.5 or more. Therefore, in the case of −20 <f 1 / f <−1 (1), if the upper limit value of −1 is exceeded, the back focus becomes short, which is outside the scope of the present invention. On the other hand, the lower limit −
If it exceeds 20, the back focus tends to be long, but
Since it is difficult to correct each aberration and the imaging performance cannot be improved with a small number of constituents, this is also excluded from the object. The condition (1) is more preferably in the range of −4 <f 1 /f<−1.1 (1 ′). When the positive lens component closest to the image side is composed of a doublet, it is best to satisfy the range of −2.1 <f 1 /f<−1.2 (1 ″). On the other hand, when the positive lens component closest to the image side is composed of a single lens, it is best to satisfy the range of −3.3 <f 1 /f<−1.8 (1 ″ ′). is there.

【0008】次に、主光線(開口絞りと光軸との交点を
通る軸外光線)射出角を光軸に対し略平行にできるよ
う、開口絞りの位置を以下の条件のごとく指定する。 0.14<DAS/f<0.8 ・・・(2) DASは、開口絞りと正群の最も物体側の面の光軸上の空
気換算距離である。この条件(2)により、主光線射出
角が光軸に対し略平行にできる。その下限値の0.14
を越えると、従来のレトロフォーカスレンズのように、
主光線の射出角が大きくなり、本発明の目的を達成する
ことができなくなる。一方、上限値の0.8を越える
と、屈折力の大きい正群での光線高が高くなりすぎ、軸
外収差の補正が困難になる。このように、主光線射出角
を光軸に対し略平行にするような構成とした場合、最も
像側の正レンズ成分の形状は、物体側の面の曲率半径を
小さくした方が、軸上収差、軸外収差両方にとって好ま
しい。なお、 0.15<DAS/f<0.7 ・・・(2') の範囲であればさらによい。さらに、 0.25<DAS/f<0.6 ・・・(2") の範囲がベストである。
Next, the position of the aperture stop is specified under the following conditions so that the emission angle of the principal ray (the off-axis ray passing through the intersection of the aperture stop and the optical axis) can be made substantially parallel to the optical axis. 0.14 <D AS /f<0.8 (2) D AS is the air-equivalent distance on the optical axis of the aperture stop and the surface of the positive group closest to the object side. Under this condition (2), the chief ray exit angle can be made substantially parallel to the optical axis. The lower limit of 0.14
Beyond, like a conventional retrofocus lens,
The exit angle of the chief ray becomes large and the object of the present invention cannot be achieved. On the other hand, when the upper limit of 0.8 is exceeded, the ray height in the positive group having a large refractive power becomes too high, and it becomes difficult to correct the off-axis aberration. In this way, when the chief ray exit angle is set to be substantially parallel to the optical axis, the shape of the positive lens component closest to the image side is on the axis when the radius of curvature of the object side surface is reduced. It is preferable for both aberration and off-axis aberration. It should be noted that the range of 0.15 <D AS /f<0.7 (2 ′) is more preferable. Further, the range of 0.25 <D AS /f<0.6 (2 ") is the best.

【0009】次に、上記の最も像側の正レンズ成分の形
状に関して、ダブレット時と単レンズ時では条件が異な
り、ダブレット時は、 0<(rR1+rR2)/(rR1−rR2)<0.9 ・・・(3) の条件を満たし、単レンズ時は、 −2.0<(rR1+rR2)/(rR1−rR2)<0 ・・・(3') を満たすことが必要である。ここで、rR1は上記の最も
像側の正レンズ成分の最も物体側の面の曲率半径、rR2
はその最も像側の正レンズ成分の最も像側の面の曲率半
径である。(3)式あるいは(3’)式の上限値0.9
あるいは0を越えると、従来のレトロフォーカスレンズ
のように主光線の射出角が大きな場合に有効であり、本
発明のように、主光線射出角が光軸に対し略平行な場合
の特に軸上収差にとって好ましくない。また、それぞれ
の式の下限値0あるいは−2.0を越えると、かえって
軸外収差に好ましくない。なお、ダブレット時は、 0<(rR1+rR2)/(rR1−rR2)<0.5 単レンズ時は、 −1.3<(rR1+rR2)/(rR1−rR2)<−0.1 の範囲であればさらに好ましい。さらに、単レンズ時
に、 −1.1<(rR1+rR2)/(rR1−rR2)<−0.15 の範囲であればなお一層好ましい。
Next, regarding the shape of the positive lens component closest to the image side, the condition is different between the doublet and the single lens, and when doublet, 0 <(r R1 + r R2 ) / (r R1- r R2 ). <0.9 ... (3) is satisfied, and when a single lens is used, −2.0 <(r R1 + r R2 ) / (r R1 −r R2 ) <0 ... (3 ′) is satisfied. It is necessary. Where r R1 is the radius of curvature of the most object-side surface of the most image-side positive lens component, and r R2
Is the radius of curvature of the most image-side surface of the most image-side positive lens component. Upper limit value 0.9 of equation (3) or equation (3 ')
Alternatively, when it exceeds 0, it is effective in the case where the exit angle of the principal ray is large as in the conventional retrofocus lens, and particularly in the case where the exit angle of the principal ray is substantially parallel to the optical axis as in the present invention. Not good for aberrations. On the other hand, if the lower limit value of each equation is 0 or -2.0, it is not preferable for off-axis aberrations. When doublet, 0 <(r R1 + r R2 ) / (r R1 −r R2 ) <0.5, and when single lens, −1.3 <(r R1 + r R2 ) / (r R1 −r R2 ). A range of <-0.1 is more preferable. Furthermore, in the case of a single lens, it is even more preferable that the range is −1.1 <(r R1 + r R2 ) / (r R1 −r R2 ) <− 0.15.

【0010】次に、本発明では、焦点距離が極端に短い
光学系の合焦ストロークを長くして、繰り出し精度を緩
和する方法を与えている。それは、上記の正群の3つの
正レンズ成分の中、最も像側の1つ又は2つの正レンズ
成分について以下の条件を満足するようにしたリアフォ
ーカスレンズである。 2.5<fR /f<10 ・・・(4) 0.12<D23/f<1 ・・・(5) ここで、fR は合焦のために可動である群の焦点距離、
23は合焦のために移動される群の最も物体側の面とそ
れより物体側のレンズの中の最も像側の面との光軸上の
無限遠物点合焦時の距離である。
Next, the present invention provides a method of lengthening the focusing stroke of an optical system having an extremely short focal length to relax the feeding accuracy. It is a rear focus lens that satisfies the following conditions for one or two positive lens components closest to the image among the above three positive lens components of the positive group. 2.5 <f R / f <10 (4) 0.12 <D 23 / f <1 (5) where f R is the focal length of the group that is movable for focusing. ,
D 23 is the distance at the time of focusing on an object point at infinity on the optical axis between the most object-side surface of the group moved for focusing and the most image-side surface of the lens on the object side of the group. .

【0011】合焦のために可動である群の焦点距離は極
力長い方が合焦ストロークが長くなり、繰り出し精度が
緩くてよい。しかし、(4)式の上限値の10を越える
と、合焦ストロークが長くなりすぎるばかりでなく、屈
折力配分においてもそれより物体側に負担が係り、収差
補正上不利になる。(4)式の下限値の2.5を越える
と、合焦ストロークが短くなりすぎ、繰り出し精度が厳
しくなり、本発明の目的にそぐわなくなる。一方、合焦
ストロークを長くする関係上、合焦のために可動である
レンズの最も物体側の面とそれより物体側のレンズの中
の最も像側の面との光軸上での無限遠物点合焦時の距離
を、多めに確保する必要がある。(5)式の下限値の
0.12を越えると、可動距離が短すぎて近距離物点に
合焦できなくなる。また、この間隔が大きい程、主光線
射出角を光軸に対して小さくするのにも有効である。一
方、その上限値の1を越えると、全長が長くなり好まし
くない。なお、 2.7<fR /f<5 ・・・(4') 0.12<D23/f<0.5 ・・・(5') の範囲であればさらによい。本発明の実施例程度の焦点
距離の場合は、 2.7<fR /f<3.2 ・・・(4") 0.13<D23/f<0.2 ・・・(5") の範囲がベストである。
If the focal length of the group that is movable for focusing is as long as possible, the focusing stroke becomes longer and the payout accuracy may be slower. However, if the upper limit of 10 in the expression (4) is exceeded, not only the focusing stroke becomes too long, but also the distribution of the refracting power imposes a burden on the object side, which is disadvantageous in aberration correction. When the lower limit of 2.5 in the equation (4) is exceeded, the focusing stroke becomes too short and the feeding accuracy becomes severe, which defeats the purpose of the present invention. On the other hand, due to the lengthening of the focusing stroke, infinity on the optical axis between the most object-side surface of the lens that is movable for focusing and the most image-side surface of the lens closer to the object side It is necessary to secure a large distance when focusing on an object point. When the lower limit of 0.12 in the equation (5) is exceeded, the movable distance is too short to focus on the near object point. Further, the larger this distance, the more effective it is to make the chief ray exit angle smaller with respect to the optical axis. On the other hand, when the upper limit of 1 is exceeded, the total length becomes long, which is not preferable. It should be noted that the range of 2.7 <f R / f <5 (4 ′) 0.12 <D 23 /f<0.5 (5 ′) is more preferable. In the case of the focal length of the embodiment of the present invention, 2.7 <f R /f<3.2 (4 ″) 0.13 <D 23 /f<0.2 (5 ″) ) Is the best range.

【0012】次に、上記の負群は、物体側から順に、正
レンズ、負レンズの2枚にて構成し、上記の正群は、物
体側から順に、負レンズ、正レンズ3枚の合計4枚にて
構成し、その正レンズ3枚の中、像側の1枚又は2枚の
正レンズのみフォーカシングのために可動である構成と
した場合、以下の条件を満たせば、全体の構成枚数が6
枚と少なく、バックフォーカスの長い、結像性能の良好
な電子撮像素子向けのレンズ系ができる。この場合、最
も像側の正レンズのシェープファクターは、その硝材の
屈折率に応じて範囲を変えた方がよい。その屈折率をn
R とした時、1.65≦nR <1.80の範囲におい
て、 −2.0<(rR1+rR2)/(rR1−rR2)<−0.75 ・・(3'-1) 1.55≦nR <1.65の範囲において、 −0.95<(rR1+rR2)/(rR1−rR2)<−0.25・・(3'-2) 1.45≦nR <1.55の場合 −0.45<(rR1+rR2)/(rR1−rR2)<0 ・・(3'-3) を満たすようにする。
Next, the negative group is composed of two lenses, a positive lens and a negative lens in order from the object side, and the positive group is a total of three negative lenses and three positive lenses in order from the object side. If the configuration is made up of four lenses and only one or two positive lenses on the image side of the three positive lenses are movable for focusing, if the following conditions are satisfied, then the total number of components Is 6
It is possible to provide a lens system for an electronic image pickup device having a small number of sheets, a long back focus, and good imaging performance. In this case, it is better to change the range of the shape factor of the positive lens closest to the image side according to the refractive index of the glass material. The refractive index is n
When R , in the range of 1.65 ≦ n R <1.80, −2.0 <(r R1 + r R2 ) / (r R1 −r R2 ) <− 0.75 ... (3′-1 ) In the range of 1.55 ≦ n R <1.65, −0.95 <(r R1 + r R2 ) / (r R1 −r R2 ) <− 0.25 ·· (3′−2) 1.45 When ≦ n R <1.55: −0.45 <(r R1 + r R2 ) / (r R1 −r R2 ) <0 ··· (3′−3) is satisfied.

【0013】正レンズのみフォーカシングのために可動
である構成とした場合、最も像側の正レンズは上記範囲
を満たすようにするのがよい。先の場合と同様、それぞ
れの上限値を越えると、従来のレトロフォーカスレンズ
のように主光線の射出角が大きな場合に有効であり、本
発明のように主光線射出角が光軸に対して略平行な場合
の特に軸上収差にとって好ましくない。また、それぞれ
の下限値を越えると、かえって軸外収差にとって好まし
くない。なお、このように、主光線射出角が光軸に対し
て略平行になるようなレンズ系は、往々にしてペッツバ
ール和が正の大きな値をとりやすく、軸外結像性能が悪
化しやすい。これを補正するには、正レンズの屈折率を
高くし、負レンズのそれを低くするのはよく知られてい
るが、これを正群で実施すると、球面収差、コマ収差、
色収差が悪化するので、負群で実施すると、他の収差が
悪化せずにペッツバール和を補正できる。そこで、 0.1<n1 −n2 <0.4 ・・・(6) とする。式(6)の下限値の0.1を越えると、ペッツ
バール和を十分に補正できず、軸外性能が悪化しやす
い。上限値の0.4は通常の硝材の範囲では設けなくて
もよいが、理論上はペッツバール和が逆方向に悪化す
る。また、正レンズの屈折率が2以上になると、理論上
心取り精度が悪化しやすい。ただし、n1 は負群の正レ
ンズの媒質屈折率、n2 は負群の負レンズの媒質屈折率
である。一方、負群の正レンズのアッべ数は、 ν1 <35 ・・・(7) を満足するのがよい。上限値の35を越えると、倍率の
色収差が補正し切れなくなる。下限値は、現実に存在す
る硝材では設ける必要はない(23<ν1 )。なお、 0.14<n1 −n2 <0.35 ・・・(6') ν1 <28 ・・・(7') とすればよりよい。
When only the positive lens is movable for focusing, it is preferable that the positive lens closest to the image side satisfies the above range. As in the previous case, when the upper limit values are exceeded, it is effective when the exit angle of the chief ray is large as in the conventional retrofocus lens, and the exit angle of the chief ray with respect to the optical axis is the same as in the present invention. Especially when they are substantially parallel to each other, it is not preferable for axial aberration. Further, if the respective lower limit values are exceeded, it is rather undesirable for off-axis aberrations. Incidentally, in such a lens system in which the chief ray exit angle is substantially parallel to the optical axis, the Petzval sum tends to take a large positive value, and the off-axis imaging performance is likely to deteriorate. To correct this, it is well known that the positive lens has a high refractive index and the negative lens has a low refractive index. However, when this is performed in the positive group, spherical aberration, coma aberration,
Since the chromatic aberration is aggravated, the Petzval sum can be corrected without deterioration of other aberrations when the negative group is used. Therefore, 0.1 <n 1 −n 2 <0.4 (6). If the lower limit of 0.1 in the equation (6) is exceeded, the Petzval sum cannot be sufficiently corrected, and the off-axis performance tends to deteriorate. The upper limit of 0.4 does not have to be set within the range of ordinary glass materials, but theoretically the Petzval sum deteriorates in the opposite direction. When the refractive index of the positive lens is 2 or more, theoretically, the centering accuracy is likely to be deteriorated. However, n 1 is the medium refractive index of the positive lens of the negative group, and n 2 is the medium refractive index of the negative lens of the negative group. On the other hand, the Abbe number of the positive lens in the negative group should preferably satisfy ν 1 <35 (7). When the upper limit value of 35 is exceeded, lateral chromatic aberration cannot be completely corrected. The lower limit does not have to be set for a glass material that actually exists (23 <ν 1 ). It is more preferable to set 0.14 <n 1 −n 2 <0.35 (6 ′) ν 1 <28 (7 ′).

【0014】[0014]

【発明の実施の形態】以下、本発明のレンズ系の実施例
1〜6について説明する。図1〜図6にそれぞれ実施例
1〜6の無限遠物点合焦時のレンズ断面を示す。それぞ
れの図において、GNは負群、APは開口絞り、GPは
正群、P1〜P4は偏光解消板、ローパスフィルター、
ハーフプリズム等の平行平面板、P5はカバーガラスで
ある。
Embodiments 1 to 6 of the lens system of the present invention will be described below. 1 to 6 show lens cross sections of Examples 1 to 6 when focusing on an object point at infinity, respectively. In each figure, GN is a negative group, AP is an aperture stop, GP is a positive group, P1 to P4 are depolarizers, low-pass filters,
A plane parallel plate such as a half prism, P5 is a cover glass.

【0015】実施例1のレンズ構成は、図1に示すよう
に、負群GNは、物体側に凸面を向けた負メニスカスレ
ンズ、両凸レンズ、物体側に凸面を向けた負メニスカス
レンズからなり、開口絞りAPを介して、正群GPは、
両凸レンズ、両凹レンズ、像側に凸面を向けた正メニス
カスレンズ、両凸レンズと像側に凸面を向けた負メニス
カスレンズの接合レンズからなり、平行平面板P1〜P
3及びカバーガラスP5は正群GPの像側に配置されて
いる。フォーカシングは、正群GPの最も像側の接合レ
ンズを繰り出して行う。物体距離20cmに対して物体
側への繰り出し量は0.90mmである。
As shown in FIG. 1, in the lens structure of the first embodiment, the negative group GN is composed of a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a negative meniscus lens having a convex surface facing the object side. Through the aperture stop AP, the positive group GP is
A biconvex lens, a biconcave lens, a positive meniscus lens with a convex surface facing the image side, and a cemented lens of a biconvex lens and a negative meniscus lens with a convex surface facing the image side.
3 and the cover glass P5 are arranged on the image side of the positive group GP. Focusing is performed by extending the cemented lens closest to the image side of the positive lens group GP. The amount of extension to the object side is 0.90 mm for an object distance of 20 cm.

【0016】実施例2のレンズ構成は、図2に示すよう
に、負群GNは、物体側に凸面を向けた正メニスカスレ
ンズ、物体側に凸面を向けた負メニスカスレンズからな
り、開口絞りAPを介して、正群GPは、凹平レンズと
平凸レンズの接合レンズ、像側に凸面を向けた正メニス
カスレンズ、平行平面板P1を挟んで、両凸レンズと像
側に凸面を向けた負メニスカスレンズの接合レンズから
なり、平行平面板P2〜P3及びカバーガラスP5は正
群GPの像側に配置されている。フォーカシングは、正
群GPの最も像側の接合レンズを繰り出して行う。物体
距離20cmに対して物体側への繰り出し量は0.91
mmである。
In the lens structure of the second embodiment, as shown in FIG. 2, the negative group GN is composed of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side. The positive group GP includes a cemented lens of a concave plano lens and a plano-convex lens, a positive meniscus lens having a convex surface facing the image side, and a biconvex lens and a negative meniscus having a convex surface facing the image side with a plane-parallel plate P1 interposed therebetween. The plane-parallel plates P2 to P3 and the cover glass P5 are formed of cemented lenses, and are arranged on the image side of the positive group GP. Focusing is performed by extending the cemented lens closest to the image side of the positive lens group GP. The amount of extension to the object side is 0.91 for an object distance of 20 cm
mm.

【0017】実施例3のレンズ構成は、図3に示すよう
に、負群GNは、物体側に凸面を向けた正メニスカスレ
ンズ、物体側に凸面を向けた負メニスカスレンズからな
り、開口絞りAPを介して、正群GPは、像側に凸面を
向けた正メニスカスレンズと像側に凸面を向けた負メニ
スカスレンズの接合レンズ、像側に凸面を向けた正メニ
スカスレンズ、両凸レンズからなり、平行平面板P1〜
P3及びカバーガラスP5は正群GPの像側に配置され
ている。フォーカシングは、正群GPの最も像側の両凸
レンズを繰り出して行う。物体距離20cmに対して物
体側への繰り出し量は0.81mmである。
In the lens configuration of the third embodiment, as shown in FIG. 3, the negative group GN is composed of a positive meniscus lens having a convex surface directed toward the object side and a negative meniscus lens having a convex surface directed toward the object side. Through, the positive group GP is composed of a cemented lens of a positive meniscus lens having a convex surface facing the image side and a negative meniscus lens having a convex surface facing the image side, a positive meniscus lens having a convex surface facing the image side, and a biconvex lens, Parallel plane plate P1
P3 and the cover glass P5 are arranged on the image side of the positive group GP. Focusing is performed by extending the biconvex lens closest to the image side of the positive group GP. The amount of extension to the object side is 0.81 mm for an object distance of 20 cm.

【0018】実施例4のレンズ構成は、図4に示すよう
に、負群GNは、物体側に凸面を向けた正メニスカスレ
ンズ、物体側に凸面を向けた負メニスカスレンズからな
り、開口絞りAPを介して、正群GPは、像側に凸面を
向けた負メニスカスレンズ、像側に凸面を向けた正メニ
スカスレンズ、両凸レンズ、物体側に凸面を向けた正メ
ニスカスレンズからなり、平行平面板P1〜P3及びカ
バーガラスP5は正群GPの像側に配置されている。フ
ォーカシングは、正群GPの最も像側の正メニスカスレ
ンズを繰り出して行う。物体距離20cmに対して物体
側への繰り出し量は0.85mmである。
As shown in FIG. 4, in the lens structure of the fourth embodiment, the negative group GN is composed of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side. Through, the positive group GP includes a negative meniscus lens having a convex surface facing the image side, a positive meniscus lens having a convex surface facing the image side, a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. P1 to P3 and the cover glass P5 are arranged on the image side of the positive group GP. Focusing is performed by extending the positive meniscus lens closest to the image side of the positive group GP. The amount of extension to the object side is 0.85 mm for an object distance of 20 cm.

【0019】実施例5のレンズ構成は、図5に示すよう
に、負群GNは、物体側に凸面を向けた正メニスカスレ
ンズ、物体側に凸面を向けた負メニスカスレンズからな
り、開口絞りAPを介して、正群GPは、両凹レンズ、
像側に凸面を向けた正メニスカスレンズ、両凸レンズ、
両凸レンズからなり、平行平面板P1〜P4及びカバー
ガラスP5は正群GPの像側に配置されている。フォー
カシングは、正群GPの最も像側の両凸レンズを繰り出
して行う。物体距離20cmに対して物体側への繰り出
し量は0.82mmである。
In the lens construction of the fifth embodiment, as shown in FIG. 5, the negative group GN is composed of a positive meniscus lens having a convex surface directed toward the object side and a negative meniscus lens having a convex surface directed toward the object side. Through, the positive group GP is a biconcave lens,
A positive meniscus lens with a convex surface facing the image side, a biconvex lens,
It is composed of a biconvex lens, and the plane-parallel plates P1 to P4 and the cover glass P5 are arranged on the image side of the positive group GP. Focusing is performed by extending the biconvex lens closest to the image side of the positive group GP. The amount of extension to the object side is 0.82 mm for an object distance of 20 cm.

【0020】実施例6のレンズ構成は、図6に示すよう
に、負群GNは、両凸レンズ、物体側に凸面を向けた負
メニスカスレンズからなり、開口絞りAPを介して、正
群GPは、両凹レンズ、像側に凸面を向けた正メニスカ
スレンズ、両凸レンズ、両凸レンズからなり、平行平面
板P1〜P4及びカバーガラスP5は正群GPの像側に
配置されている。フォーカシングは、正群GPの最も像
側の両凸レンズを繰り出して行う。物体距離20cmに
対して物体側への繰り出し量は0.82mmである。
In the lens construction of the sixth embodiment, as shown in FIG. 6, the negative group GN is composed of a biconvex lens and a negative meniscus lens having a convex surface facing the object side. , A biconcave lens, a positive meniscus lens having a convex surface facing the image side, a biconvex lens, and a biconvex lens, and the plane-parallel plates P1 to P4 and the cover glass P5 are arranged on the image side of the positive group GP. Focusing is performed by extending the biconvex lens closest to the image side of the positive group GP. The amount of extension to the object side is 0.82 mm for an object distance of 20 cm.

【0021】以下に、上記各実施例の数値データを示す
が、記号は上記の外、fは全系焦点距離、FNOはFナン
バー、ωは半画角、fB はバックフォーカス、r1 、r
2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ
面間の間隔、nd1、nd2…は各レンズのd線の屈折率、
νd1、νd2…は各レンズのアッベ数である。
Numerical data of each of the above-mentioned embodiments will be shown below. Symbols are other than the above, f is the focal length of the entire system, F NO is the F number, ω is the half angle of view, f B is the back focus, and r 1 , R
2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens,
ν d1 , ν d2 ... are Abbe numbers of the respective lenses.

【0022】実施例1 f=12.000 ,FNO=2.8 ,ω=20.6°,fB /f=1.566 r1 = 17.5037 d1 = 0.900 nd1 =1.51633 νd1 =64.15 r2 = 7.8220 d2 = 1.240 r3 = 42.0901 d3 = 1.900 nd2 =1.69895 νd2 =30.12 r4 = -39.7078 d4 = 0.600 r5 = 29.1518 d5 = 0.800 nd3 =1.51633 νd3 =64.15 r6 = 6.2343 d6 = 4.000 r7 = ∞(絞り) d7 = 6.000 r8 = 13.9321 d8 = 2.900 nd4 =1.80610 νd4 =40.95 r9 = -16.6901 d9 = 0.010 r10= -16.4839 d10= 0.900 nd5 =1.74950 νd5 =35.27 r11= 13.1922 d11= 0.830 r12= -50.4005 d12= 2.100 nd6 =1.77250 νd6 =49.60 r13= -11.1976 d13= 2.000 r14= 41.7761 d14= 3.300 nd7 =1.51633 νd7 =64.15 r15= -9.1587 d15= 1.000 nd8 =1.84666 νd8 =23.78 r16= -16.9185 d16= 2.000 r17= ∞ d17= 5.000 nd9 =1.54771 νd9 =62.83 r18= ∞ d18= 2.240 nd10=1.54771 νd10=62.83 r19= ∞ d19=10.000 nd11=1.51633 νd11=64.15 r20= ∞ d20= 3.610 r21= ∞ d21= 0.750 nd12=1.48749 νd12=70.20 r22= ∞ 。Example 1 f = 12,000, F NO = 2.8, ω = 20.6 °, f B /f=1.566 r 1 = 17.5037 d 1 = 0.900 n d1 = 1.51633 ν d1 = 64.15 r 2 = 7.8220 d 2 = 1.240 r 3 = 42.0901 d 3 = 1.900 n d2 = 1.69895 ν d2 = 30.12 r 4 = -39.7078 d 4 = 0.600 r 5 = 29.1518 d 5 = 0.800 n d3 = 1.51633 ν d3 = 64.15 r 6 = 6.2343 d 6 = 4.000 r 7 = ∞ (stop) d 7 = 6.000 r 8 = 13.9321 d 8 = 2.900 n d4 = 1.80610 ν d4 = 40.95 r 9 = -16.6901 d 9 = 0.010 r 10 = -16.4839 d 10 = 0.900 n d5 = 1.74950 ν d5 = 35.27 r 11 = 13.1922 d 11 = 0.830 r 12 = -50.4005 d 12 = 2.100 n d6 = 1.77250 ν d6 = 49.60 r 13 = -11.1976 d 13 = 2.000 r 14 = 41.7761 d 14 = 3.300 n d7 = 1.51633 ν d7 = 64.15 r 15 = -9.1587 d 15 = 1.000 n d8 = 1.84666 ν d8 = 23.78 r 16 = -16.9185 d 16 = 2.000 r 17 = ∞ d 17 = 5.000 n d9 = 1.54771 ν d9 = 62.83 r 18 = ∞ d 18 = 2.240 n d10 = 1.54771 ν d10 = 62.83 r 19 = ∞ d 19 = 10.000 nd 11 = 1.51633 ν d11 = 64.15 r 20 = ∞ d 20 = 3.610 r 21 = ∞ d 21 = 0.750 n d12 = 1.48749 ν d12 = 70.20 r 22 = ∞.

【0023】実施例2 f=12.003 ,FNO=2.8 ,ω=20.6°,fB /f=1.296 r1 = 34.0111 d1 = 2.000 nd1 =1.84666 νd1 =23.78 r2 = 391.9139 d2 = 0.200 r3 = 20.1738 d3 = 1.200 nd2 =1.51742 νd2 =52.41 r4 = 5.3841 d4 = 7.000 r5 = ∞(絞り) d5 = 4.500 r6 = -13.0319 d6 = 0.900 nd3 =1.64769 νd3 =33.80 r7 = ∞ d7 = 3.100 nd4 =1.77250 νd4 =49.60 r8 = -11.7141 d8 = 0.150 r9 = -54.8602 d9 = 1.800 nd5 =1.78590 νd5 =44.19 r10= -19.5142 d10= 0.200 r11= ∞ d11= 5.000 nd6 =1.54771 νd6 =62.83 r12= ∞ d12= 2.000 r13= 42.2244 d13= 3.600 nd7 =1.72000 νd7 =50.25 r14= -10.7376 d14= 1.000 nd8 =1.84666 νd8 =23.78 r15= -34.7936 d15= 2.000 r16= ∞ d16= 2.240 nd9 =1.54771 νd9 =62.83 r17= ∞ d17=10.000 nd11=1.51633 νd11=64.15 r18= ∞ d18= 3.610 r19= ∞ d19= 0.750 nd12=1.48749 νd12=70.20 r20= ∞ 。Example 2 f = 12.003, F NO = 2.8, ω = 20.6 °, f B /f=1.296 r 1 = 34.0111 d 1 = 2.000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 391.9139 d 2 = 0.200 r 3 = 20.1738 d 3 = 1.200 n d2 = 1.51742 ν d2 = 52.41 r 4 = 5.3841 d 4 = 7.000 r 5 = ∞ (aperture) d 5 = 4.500 r 6 = -13.0319 d 6 = 0.900 n d3 = 1.64769 ν d3 = 33.80 r 7 = ∞ d 7 = 3.100 n d4 = 1.77250 ν d4 = 49.60 r 8 = -11.7141 d 8 = 0.150 r 9 = -54.8602 d 9 = 1.800 n d5 = 1.78590 ν d5 = 44.19 r 10 = -19.5142 d 10 = 0.200 r 11 = ∞ d 11 = 5.000 n d6 = 1.54771 ν d6 = 62.83 r 12 = ∞ d 12 = 2.000 r 13 = 42.2244 d 13 = 3.600 n d7 = 1.72000 ν d7 = 50.25 r 14 = -10.7376 d 14 = 1.000 n d8 = 1.84666 ν d8 = 23.78 r 15 = -34.7936 d 15 = 2.000 r 16 = ∞ d 16 = 2.240 nd 9 = 1.54771 ν d9 = 62.83 r 17 = ∞ d 17 = 10.000 n d11 = 1.51633 ν d11 = 64.15 r 18 = ∞ d 18 = 3.610 r 19 = ∞ d 19 = 0.750 n d12 = 1.48749 ν d12 = 70.20 20 = ∞.

【0024】実施例3 f=12.005 ,FNO=2.8 ,ω=20.6°,fB /f=1.564 r1 = 21.2963 d1 = 2.000 nd1 =1.84666 νd1 =23.78 r2 = 76.7949 d2 = 0.200 r3 = 21.4802 d3 = 1.200 nd2 =1.48749 νd2 =70.20 r4 = 5.7893 d4 = 7.000 r5 = ∞(絞り) d5 = 3.000 r6 = -9.1368 d6 = 6.000 nd3 =1.74400 νd3 =44.79 r7 = -5.3343 d7 = 0.900 nd4 =1.84666 νd4 =23.78 r8 = -10.4492 d8 = 0.500 r9 = -58.9796 d9 = 2.000 nd5 =1.69680 νd5 =55.53 r10= -16.9237 d10= 1.800 r11= 32.1871 d11= 2.100 nd6 =1.69680 νd6 =55.53 r12= -78.1698 d12= 2.000 r13= ∞ d13= 5.000 nd7 =1.54771 νd7 =62.83 r14= ∞ d14= 2.240 nd8 =1.54771 νd8 =62.83 r15= ∞ d15=10.000 nd9 =1.51633 νd9 =64.15 r16= ∞ d16= 3.610 r17= ∞ d17= 0.750 nd10=1.48749 νd10=70.20 r18= ∞ 。Example 3 f = 1.005, F NO = 2.8, ω = 20.6 °, f B /f=1.564 r 1 = 21.2963 d 1 = 2.000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 76.7949 d 2 = 0.200 r 3 = 21.4802 d 3 = 1.200 n d2 = 1.48749 ν d2 = 70.20 r 4 = 5.7893 d 4 = 7.000 r 5 = ∞ (aperture) d 5 = 3.000 r 6 = -9.1368 d 6 = 6.000 n d3 = 1.74400 ν d3 = 44.79 r 7 = -5.3343 d 7 = 0.900 n d4 = 1.84666 ν d4 = 23.78 r 8 = -10.4492 d 8 = 0.500 r 9 = -58.9796 d 9 = 2.000 n d5 = 1.69680 ν d5 = 55.53 r 10 = -16.9237 d 10 = 1.800 r 11 = 32.1871 d 11 = 2.100 n d6 = 1.69680 ν d6 = 55.53 r 12 = -78.1698 d 12 = 2.000 r 13 = ∞ d 13 = 5.000 n d7 = 1.54771 ν d7 = 62.83 r 14 = ∞ d 14 = 2.240 n d8 = 1.54771 ν d8 = 62.83 r 15 = ∞ d 15 = 10.000 n d9 = 1.51633 ν d9 = 64.15 r 16 = ∞ d 16 = 3.610 r 17 = ∞ d 17 = 0.750 n d10 = 1.48749 ν d10 = 70.20 r 18 = ∞.

【0025】実施例4 f=12.000 ,FNO=2.8 ,ω=20.6°,fB /f=1.565 r1 = 16.1929 d1 = 2.400 nd1 =1.84666 νd1 =23.78 r2 = 53.8295 d2 = 0.150 r3 = 15.9084 d3 = 1.000 nd2 =1.69680 νd2 =55.53 r4 = 5.3300 d4 =10.000 r5 = ∞(絞り) d5 = 2.000 r6 = -9.8812 d6 = 0.900 nd3 =1.84666 νd3 =23.78 r7 = -476.4836 d7 = 0.180 r8 = -31.3409 d8 = 1.900 nd4 =1.69680 νd4 =55.53 r9 = -10.0962 d9 = 0.150 r10= 6482.1895 d10= 2.300 nd5 =1.69680 νd5 =55.53 r11= -11.4666 d11= 2.000 r12= 24.8349 d12= 1.700 nd6 =1.69680 νd6 =55.53 r13= 1833.2522 d13= 2.000 r14= ∞ d14= 5.000 nd7 =1.54771 νd7 =62.83 r15= ∞ d15= 2.240 nd8 =1.54771 νd8 =62.83 r16= ∞ d16=10.000 nd9 =1.51633 νd9 =64.15 r17= ∞ d17= 3.610 r18= ∞ d18= 0.750 nd10=1.48749 νd10=70.20 r19= ∞ 。Example 4 f = 12,000, F NO = 2.8, ω = 20.6 °, f B /f=1.565 r 1 = 16.1929 d 1 = 2.400 n d1 = 1.84666 ν d1 = 23.78 r 2 = 53.8295 d 2 = 0.150 r 3 = 15.9084 d 3 = 1.000 n d2 = 1.69680 ν d2 = 55.53 r 4 = 5.3300 d 4 = 10.000 r 5 = ∞ (aperture) d 5 = 2.000 r 6 = -9.8812 d 6 = 0.900 n d3 = 1.84666 ν d3 = 23.78 r 7 = -476.4836 d 7 = 0.180 r 8 = -31.3409 d 8 = 1.900 n d4 = 1.69680 ν d4 = 55.53 r 9 = -10.0962 d 9 = 0.150 r 10 = 6482.1895 d 10 = 2.300 n d5 = 1.69680 ν d5 = 55.53 r 11 = -11.4666 d 11 = 2.000 r 12 = 24.8349 d 12 = 1.700 n d6 = 1.69680 ν d6 = 55.53 r 13 = 1833.2522 d 13 = 2.000 r 14 = ∞ d 14 = 5.000 n d7 = 1.54771 ν d7 = 62.83 r 15 = ∞ d 15 = 2.240 n d8 = 1.54771 ν d8 = 62.83 r 16 = ∞ d 16 = 10.000 n d9 = 1.51633 ν d9 = 64.15 r 17 = ∞ d 17 = 3.610 r 18 = ∞ d 18 = 0.750 n d10 = 1.48749 ν d10 = 70.20 r 19 = ∞.

【0026】実施例5 f=12.000 ,FNO=2.8 ,ω=20.6°,fB /f=1.641 r1 = 14.8369 d1 = 2.400 nd1 =1.84666 νd1 =23.78 r2 = 54.8349 d2 = 0.300 r3 = 19.4900 d3 = 1.000 nd2 =1.69680 νd2 =55.53 r4 = 5.0060 d4 = 6.500 r5 = ∞(絞り) d5 = 4.500 r6 = -13.3748 d6 = 0.900 nd3 =1.84666 νd3 =23.78 r7 = 160.8036 d7 = 0.250 r8 = -33.9182 d8 = 2.000 nd4 =1.69680 νd4 =55.53 r9 = -10.9615 d9 = 0.150 r10= 179.5907 d10= 3.000 nd5 =1.56873 νd5 =63.16 r11= -10.8699 d11= 1.600 r12= 29.2589 d12= 2.100 nd6 =1.56873 νd6 =63.16 r13= -64.5253 d13= 2.000 r14= ∞ d14= 5.000 nd7 =1.54771 νd7 =62.83 r15= ∞ d15= 1.600 nd8 =1.51633 νd8 =64.15 r16= ∞ d16= 2.240 nd9 =1.54771 νd9 =62.83 r17= ∞ d17=13.000 nd10=1.51633 νd10=64.15 r18= ∞ d18= 1.500 r19= ∞ d19= 0.750 nd11=1.48749 νd11=70.20 r20= ∞ 。Example 5 f = 12,000, F NO = 2.8, ω = 20.6 °, f B /f=1.641 r 1 = 14.8369 d 1 = 2.400 n d1 = 1.84666 ν d1 = 23.78 r 2 = 54.8349 d 2 = 0.300 r 3 = 19.4900 d 3 = 1.000 n d2 = 1.69680 ν d2 = 55.53 r 4 = 5.0060 d 4 = 6.500 r 5 = ∞ (aperture) d 5 = 4.500 r 6 = -13.3748 d 6 = 0.900 n d3 = 1.84666 ν d3 = 23.78 r 7 = 160.8036 d 7 = 0.250 r 8 = -33.9182 d 8 = 2.000 n d4 = 1.69680 ν d4 = 55.53 r 9 = -10.9615 d 9 = 0.150 r 10 = 179.5907 d 10 = 3.000 n d5 = 1.56873 ν d5 = 63.16 r 11 = -10.8699 d 11 = 1.600 r 12 = 29.2589 d 12 = 2.100 n d6 = 1.56873 ν d6 = 63.16 r 13 = -64.5253 d 13 = 2.000 r 14 = ∞ d 14 = 5.000 n d7 = 1.54771 ν d7 = 62.83 r 15 = ∞ d 15 = 1.600 n d8 = 1.51633 ν d8 = 64.15 r 16 = ∞ d 16 = 2.240 n d9 = 1.54771 ν d9 = 62.83 r 17 = ∞ d 17 = 13.000 n d10 = 1.51633 ν d10 = 64.15 r 18 = ∞ d 18 = 1.500 r 19 = ∞ d 19 = 0.750 n d11 = 1.48749 ν d11 = 70.2 0 r 20 = ∞.

【0027】実施例6 f=12.000 ,FNO=2.8 ,ω=20.6°,fB /f=1.642 r1 = 19.7495 d1 = 2.200 nd1 =1.84666 νd1 =23.78 r2 = 298.3938 d2 = 0.600 r3 = 47.3674 d3 = 0.900 nd2 =1.51633 νd2 =64.15 r4 = 4.9415 d4 = 4.500 r5 = ∞(絞り) d5 = 6.500 r6 = -15.1388 d6 = 0.900 nd3 =1.84666 νd3 =23.78 r7 = 104.4931 d7 = 0.250 r8 = -36.0058 d8 = 2.200 nd4 =1.56873 νd4 =63.16 r9 = -10.4558 d9 = 0.150 r10= 107.1696 d10= 3.100 nd5 =1.56873 νd5 =63.16 r11= -11.4135 d11= 1.600 r12= 30.9530 d12= 2.300 nd6 =1.51633 νd6 =64.15 r13= -44.2824 d13= 2.000 r14= ∞ d14= 5.000 nd7 =1.54771 νd7 =62.83 r15= ∞ d15= 1.600 nd8 =1.51633 νd8 =64.15 r16= ∞ d16= 2.240 nd9 =1.54771 νd9 =62.83 r17= ∞ d17=13.000 nd10=1.51633 νd10=64.15 r18= ∞ d18= 1.500 r19= ∞ d19= 0.750 nd11=1.48749 νd11=70.20 r20= ∞ 。Example 6 f = 12,000, F NO = 2.8, ω = 20.6 °, f B /f=1.642 r 1 = 19.7495 d 1 = 2.200 n d1 = 1.84666 ν d1 = 23.78 r 2 = 298.3938 d 2 = 0.600 r 3 = 47.3674 d 3 = 0.900 n d2 = 1.51633 ν d2 = 64.15 r 4 = 4.9415 d 4 = 4.500 r 5 = ∞ (aperture) d 5 = 6.500 r 6 = -15.1388 d 6 = 0.900 n d3 = 1.84666 ν d3 = 23.78 r 7 = 104.4931 d 7 = 0.250 r 8 = -36.0058 d 8 = 2.200 n d4 = 1.56873 ν d4 = 63.16 r 9 = -10.4558 d 9 = 0.150 r 10 = 107.1696 d 10 = 3.100 nd d = 1.56873 ν d5 = 63.16 r 11 = -11.4135 d 11 = 1.600 r 12 = 30.9530 d 12 = 2.300 n d6 = 1.51633 ν d6 = 64.15 r 13 = -44.2824 d 13 = 2.000 r 14 = ∞ d 14 = 5.000 n d7 = 1.54771 ν d7 = 62.83 r 15 = ∞ d 15 = 1.600 n d8 = 1.51633 ν d8 = 64.15 r 16 = ∞ d 16 = 2.240 n d9 = 1.54771 ν d9 = 62.83 r 17 = ∞ d 17 = 13.000 n d10 = 1.51633 ν d10 = 64.15 r 18 = ∞ d 18 = 1.500 r 19 = ∞ d 19 = 0.750 n d11 = 1.48749 ν d11 = 70. 20 r 20 = ∞.

【0028】図7〜図8に上記実施例1のそれぞれ無限
遠物点、近距離物点(物体距離20cm)合焦時の収差
図を示す。図中、(a)は球面収差、(b)は非点収
差、(c)は歪曲収差、(d)は倍率色収差である。実
施例2〜6に関する同様の収差図をそれぞれ図9〜図1
0、図11〜図12、図13〜図14、図15〜図1
6、図17〜図18に示す。
7 to 8 are aberration charts of Example 1 when focusing on an object point at infinity and an object point at a short distance (object distance of 20 cm), respectively. In the figure, (a) is spherical aberration, (b) is astigmatism, (c) is distortion, and (d) is lateral chromatic aberration. Similar aberration diagrams for Examples 2 to 6 are shown in FIGS. 9 to 1, respectively.
0, FIGS. 11 to 12, 13 to 14, and 15 to 1
6, shown in FIGS.

【0029】次に、上記実施例1〜6の条件式(1)〜
(5)(条件式(3)についてはその代わりに条件式
(3’)の場合もあるが形式は同じなので条件式(3)
とする。)の値を次の表に示す。 *:平行平面板(フィルター)なしでは、0.452 である。
Next, the conditional expressions (1)-
(5) (Regarding conditional expression (3), conditional expression (3 ′) may be used instead, but conditional expression (3)
And ) Values are shown in the following table. *: 0.452 without parallel plane plate (filter).

【0030】[0030]

【発明の効果】以上詳細に説明した本発明のレンズ系を
用いれば、バックフォーカスが長く、光線射出角が小さ
く、かつ、結像性能が良好な電子撮像素子向けのレンズ
系が得られる。また、焦点距離が極端に短くても、長い
フォーカスストロークをとれるようにでき、フォーカス
精度を緩和することができる。
By using the lens system of the present invention described in detail above, it is possible to obtain a lens system for an electronic image pickup device which has a long back focus, a small light exit angle, and good imaging performance. Further, even if the focal length is extremely short, a long focus stroke can be taken, and the focus accuracy can be relaxed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のレンズ系の無限遠物点合焦
時のレンズ断面図である。
FIG. 1 is a lens sectional view of a lens system of Example 1 of the present invention when focusing on an object point at infinity.

【図2】本発明の実施例2のレンズ系の無限遠物点合焦
時のレンズ断面図である。
FIG. 2 is a lens cross-sectional view of a lens system of Example 2 of the present invention when focused on an object point at infinity.

【図3】本発明の実施例3のレンズ系の無限遠物点合焦
時のレンズ断面図である。
FIG. 3 is a lens cross-sectional view of a lens system of Example 3 of the present invention when an object point at infinity is focused.

【図4】本発明の実施例4のレンズ系の無限遠物点合焦
時のレンズ断面図である。
FIG. 4 is a lens cross-sectional view of a lens system of Example 4 of the present invention when focused on an object point at infinity.

【図5】本発明の実施例5のレンズ系の無限遠物点合焦
時のレンズ断面図である。
FIG. 5 is a lens sectional view of a lens system of Example 5 of the present invention when focusing on an object point at infinity.

【図6】本発明の実施例6のレンズ系の無限遠物点合焦
時のレンズ断面図である。
FIG. 6 is a lens cross-sectional view of a lens system of Example 6 of the present invention when focused on an object point at infinity.

【図7】実施例1の無限遠物点合焦時の収差図である。FIG. 7 is an aberration diagram for Example 1 upon focusing on an object point at infinity.

【図8】実施例1の近距離物点合焦時の収差図である。FIG. 8 is an aberration diagram for Example 1 upon focusing on an object point at a short distance.

【図9】実施例2の無限遠物点合焦時の収差図である。FIG. 9 is an aberration diagram for Example 2 upon focusing on an object point at infinity.

【図10】実施例2の近距離物点合焦時の収差図であ
る。
FIG. 10 is an aberration diagram for Example 2 upon focusing on an object point at a short distance.

【図11】実施例3の無限遠物点合焦時の収差図であ
る。
FIG. 11 is an aberration diagram for Example 3 upon focusing on an object point at infinity.

【図12】実施例3の近距離物点合焦時の収差図であ
る。
FIG. 12 is an aberration diagram of Example 3 upon focusing on a short-distance object point.

【図13】実施例4の無限遠物点合焦時の収差図であ
る。
FIG. 13 is an aberration diagram for Example 4 upon focusing on an object point at infinity.

【図14】実施例4の近距離物点合焦時の収差図であ
る。
FIG. 14 is an aberration diagram for Example 4 upon focusing on an object point at a short distance.

【図15】実施例5の無限遠物点合焦時の収差図であ
る。
FIG. 15 is an aberration diagram for Example 5 upon focusing on an object point at infinity.

【図16】実施例5の近距離物点合焦時の収差図であ
る。
FIG. 16 is an aberration diagram for Example 5 upon focusing on an object point at a short distance.

【図17】実施例6の無限遠物点合焦時の収差図であ
る。
FIG. 17 is an aberration diagram for Example 6 upon focusing on an object point at infinity.

【図18】実施例6の近距離物点合焦時の収差図であ
る。
FIG. 18 is an aberration diagram for Example 6 upon focusing on an object point at a short distance.

【符号の説明】[Explanation of symbols]

GN…負群 AP…開口絞り GP…正群 P1〜P4…平行平面板 P5…カバーガラス GN ... Negative group AP ... Aperture stop GP ... Positive group P1 to P4 ... Parallel plane plate P5 ... Cover glass

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、負、正の2つの群で構
成され、さらに、その中間に開口絞りを有し、前記正群
は3つの正レンズ成分を含み、その中の最も像側の正レ
ンズ成分が正レンズと負レンズのダブレットで構成され
ており、その正レンズ成分が合焦のために移動されるリ
アフォーカスレンズにおいて、以下の条件を満たすこと
を特徴とするレンズ系。 −20<f1 /f<−1 ・・・(1) 0.14<DAS/f<0.8 ・・・(2) 0<(rR1+rR2)/(rR1−rR2)<0.9 ・・・(3) 2.5<fR /f<10 ・・・(4) 0.12<D23/f<1 ・・・(5) ただし、fは全系の焦点距離、f1 は前記負群の焦点距
離、DASは開口絞りと前記正群の最も物体側の面の光軸
上の空気換算距離、rR1は前記の最も像側の正レンズ成
分の最も物体側の面の曲率半径、rR2は前記の最も像側
の正レンズ成分の最も像側の面の曲率半径、fR は合焦
のために移動される群の焦点距離、D23は合焦のために
移動される群の最も物体側の面とそれより物体側のレン
ズの中の最も像側の面との光軸上の無限遠物点合焦時の
距離である。
1. A lens unit comprising, in order from the object side, two groups, a negative group and a positive group, and further having an aperture stop in the middle, the positive group includes three positive lens components, and the most image side among them. A lens system characterized by satisfying the following conditions in a rear focus lens in which the positive lens component of is composed of a doublet of a positive lens and a negative lens, and the positive lens component is moved for focusing. −20 <f 1 / f <−1 (1) 0.14 <D AS /f<0.8 (2) 0 <(r R1 + r R2 ) / (r R1 −r R2 ) <0.9 ・ ・ ・ (3) 2.5 <f R / f <10 ・ ・ ・ (4) 0.12 <D 23 / f <1 ・ ・ ・ (5) where f is the focus of the entire system The distance, f 1 is the focal length of the negative group, D AS is the air-equivalent distance on the optical axis of the aperture stop and the surface of the positive group closest to the object side, and r R1 is the maximum of the positive lens component closest to the image side. The radius of curvature of the object-side surface, r R2 is the radius of curvature of the most image-side surface of the most image-side positive lens component, f R is the focal length of the lens group moved for focusing, and D 23 is the focus It is the distance at the time of focusing on an object point at infinity on the optical axis between the most object-side surface of the group moved for focusing and the most image-side surface of the lens on the object side.
【請求項2】 物体側から順に、負、正の2つの群で構
成され、さらに、その中間に開口絞りを有し、前記正群
は3つの正レンズ成分を含み、その中の最も像側の正レ
ンズ成分が単レンズで構成されており、その正レンズ成
分が合焦のために移動されるリアフォーカスレンズにお
いて、以下の条件を満たすことを特徴とするレンズ系。 −20<f1 /f<−1 ・・・(1) 0.14<DAS/f<0.8 ・・・(2) −2.0<(rR1+rR2)/(rR1−rR2)<0 ・・・(3') 2.5<fR /f<10 ・・・(4) 0.12<D23/f<1 ・・・(5) ただし、fは全系の焦点距離、f1 は前記負群の焦点距
離、DASは開口絞りと前記正群の最も物体側の面の光軸
上の空気換算距離、rR1は前記の最も像側の正レンズ成
分の最も物体側の面の曲率半径、rR2は前記の最も像側
の正レンズ成分の最も像側の面の曲率半径、fR は合焦
のために移動される群の焦点距離、D23は合焦のために
移動される群の最も物体側の面とそれより物体側のレン
ズの中の最も像側の面との光軸上の無限遠物点合焦時の
距離である。
2. The optical system is composed of two groups, a negative group and a positive group, arranged in order from the object side, and further has an aperture stop in the middle, the positive group including three positive lens components, and the most image side among them. A rear focus lens in which the positive lens component of is composed of a single lens, and the positive lens component is moved for focusing, a lens system characterized by satisfying the following conditions. −20 <f 1 / f <−1 (1) 0.14 <D AS /f<0.8 (2) −2.0 <(r R1 + r R2 ) / (r R1 − r R2 ) <0 ・ ・ ・ (3 ′) 2.5 <f R / f <10 ・ ・ ・ (4) 0.12 <D 23 / f <1 ・ ・ ・ (5) where f is the whole system , F 1 is the focal length of the negative group, D AS is the air-equivalent distance on the optical axis of the aperture stop and the surface of the positive group closest to the object side, and r R1 is the positive lens component closest to the image side. Is the radius of curvature of the surface closest to the object, r R2 is the radius of curvature of the surface closest to the image of the positive lens component closest to the image, and f R is the focal length of the group moved for focusing, D 23 Is the distance at the time of focusing on an object point at infinity on the optical axis between the most object-side surface of the group moved for focusing and the most image-side surface of the lens on the object side.
【請求項3】 前記負群は、物体側から順に、正レン
ズ、負レンズの2枚から構成され、前記正群は、物体側
から順に、負レンズ、正レンズ3枚の合計4枚から構成
され、前記の正レンズ3枚の中、最も像側の1枚の正レ
ンズのみが合焦のために可動であり、以下の条件を満た
すことを特徴とする請求項2記載のレンズ系。 0.1<n1 −n2 <0.4 ・・・(6) ν1 <35 ・・・(7) 1.65≦nR <1.80の範囲において、 −2.0<(rR1+rR2)/(rR1−rR2)<−0.75 ・・(3'-1) 1.55≦nR <1.65の範囲において、 −0.95<(rR1+rR2)/(rR1−rR2)<−0.25・・(3'-2) 1.45≦nR <1.55の場合 −0.45<(rR1+rR2)/(rR1−rR2)<0 ・・(3'-3) ただし、nR は前記の最も像側の1枚の正レンズの媒質
屈折率、n1 は前記負群の正レンズの媒質屈折率、n2
は前記負群の負レンズの媒質屈折率、ν1 は前記負群の
正レンズの媒質アッベ数である。
3. The negative group is composed of two positive lenses and negative lenses in order from the object side, and the positive group is composed of four negative lenses and three positive lenses in order from the object side. The lens system according to claim 2, wherein only one of the three positive lenses closest to the image side is movable for focusing, and the following condition is satisfied. 0.1 <n 1 −n 2 <0.4 (6) ν 1 <35 (7) In the range of 1.65 ≦ n R <1.80, −2.0 <(r R1 + r R2) / (r R1 -r R2) <- at 0.75 · (range of 3'-1) 1.55 ≦ n R <1.65, -0.95 <(r R1 + r R2) / (R R1 −r R2 ) <− 0.25 · (3′−2) 1.45 ≦ n R <1.55 −0.45 <(r R1 + r R2 ) / (r R1 −r R2 ) <0 ··· (3′-3) where n R is the medium refractive index of the one positive lens closest to the image side, n 1 is the medium refractive index of the negative lens positive lens, and n 2
Is the medium refractive index of the negative lens of the negative group, and ν 1 is the medium Abbe number of the positive lens of the negative group.
JP19969795A 1995-08-04 1995-08-04 Lens system Expired - Fee Related JP3445413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19969795A JP3445413B2 (en) 1995-08-04 1995-08-04 Lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19969795A JP3445413B2 (en) 1995-08-04 1995-08-04 Lens system

Publications (2)

Publication Number Publication Date
JPH0949968A true JPH0949968A (en) 1997-02-18
JP3445413B2 JP3445413B2 (en) 2003-09-08

Family

ID=16412115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19969795A Expired - Fee Related JP3445413B2 (en) 1995-08-04 1995-08-04 Lens system

Country Status (1)

Country Link
JP (1) JP3445413B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923479A (en) * 1997-08-22 1999-07-13 Olympus Optical Co., Ltd. Wide-angle lens system
JP2010101979A (en) * 2008-10-22 2010-05-06 Sigma Corp Imaging optical system
JP2015111192A (en) * 2013-12-06 2015-06-18 キヤノン株式会社 Optical system and imaging device having the same
CN104730684A (en) * 2013-12-18 2015-06-24 富士胶片株式会社 Imaging Lens And Imaging Apparatus
US9405106B2 (en) 2012-02-06 2016-08-02 Fujifilm Corporation Imaging lens and imaging apparatus
US9726857B2 (en) 2014-12-30 2017-08-08 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing device and electronic device
JP2020109469A (en) * 2018-12-31 2020-07-16 エーエーシー テクノロジーズ ピーティーイー リミテッド Imaging optical lens
JP2021009329A (en) * 2019-06-30 2021-01-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN114176483A (en) * 2021-12-16 2022-03-15 重庆西山科技股份有限公司 Polarized light endoscope device camera optical system, camera and endoscope device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567715A (en) * 1978-11-15 1980-05-22 Nippon Kogaku Kk <Nikon> Wide angle photographic lens
JPS63149618A (en) * 1986-12-15 1988-06-22 Olympus Optical Co Ltd Wide angle lens having long back focus
JPS63161421A (en) * 1986-12-24 1988-07-05 Nikon Corp Retrofocus type lens
JPS6461714A (en) * 1987-09-01 1989-03-08 Olympus Optical Co Wide-angle lens with long back focus
JPH01319009A (en) * 1988-06-20 1989-12-25 Nikon Corp Retro-focus type lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567715A (en) * 1978-11-15 1980-05-22 Nippon Kogaku Kk <Nikon> Wide angle photographic lens
JPS63149618A (en) * 1986-12-15 1988-06-22 Olympus Optical Co Ltd Wide angle lens having long back focus
JPS63161421A (en) * 1986-12-24 1988-07-05 Nikon Corp Retrofocus type lens
JPS6461714A (en) * 1987-09-01 1989-03-08 Olympus Optical Co Wide-angle lens with long back focus
JPH01319009A (en) * 1988-06-20 1989-12-25 Nikon Corp Retro-focus type lens

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923479A (en) * 1997-08-22 1999-07-13 Olympus Optical Co., Ltd. Wide-angle lens system
JP2010101979A (en) * 2008-10-22 2010-05-06 Sigma Corp Imaging optical system
US9405106B2 (en) 2012-02-06 2016-08-02 Fujifilm Corporation Imaging lens and imaging apparatus
JP2015111192A (en) * 2013-12-06 2015-06-18 キヤノン株式会社 Optical system and imaging device having the same
CN104730684B (en) * 2013-12-18 2018-07-10 富士胶片株式会社 Imaging lens system and photographic device
CN104730684A (en) * 2013-12-18 2015-06-24 富士胶片株式会社 Imaging Lens And Imaging Apparatus
JP2015118212A (en) * 2013-12-18 2015-06-25 富士フイルム株式会社 Image capturing lens and image capturing device
US9726857B2 (en) 2014-12-30 2017-08-08 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing device and electronic device
US10613302B2 (en) 2014-12-30 2020-04-07 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing device and electronic device
US11391923B2 (en) 2014-12-30 2022-07-19 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing device and electronic device
US11675170B2 (en) 2014-12-30 2023-06-13 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing device and electronic device
JP2020109469A (en) * 2018-12-31 2020-07-16 エーエーシー テクノロジーズ ピーティーイー リミテッド Imaging optical lens
JP2021009329A (en) * 2019-06-30 2021-01-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN114176483A (en) * 2021-12-16 2022-03-15 重庆西山科技股份有限公司 Polarized light endoscope device camera optical system, camera and endoscope device
CN114176483B (en) * 2021-12-16 2023-08-29 重庆西山科技股份有限公司 Polarized light endoscope device camera optical system, camera and endoscope device

Also Published As

Publication number Publication date
JP3445413B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
JP3478643B2 (en) Photographing lens and imaging camera using the same
JP3625923B2 (en) Retro focus lens
JP3769373B2 (en) Bright wide-angle lens
JPH10148756A (en) Compact wide-angle zoom lens
JPH05150161A (en) Variable power lens
JP2000089112A (en) Zoom lens and image pickup device using the same
JP4550970B2 (en) Floating photography lens
JP3445413B2 (en) Lens system
JP2003149545A (en) Front-shutter type single focal point lens
JP3394624B2 (en) Zoom lens
JP2715385B2 (en) Compact zoom lens
JPH0727976A (en) Small-sized two-group zoom lens system
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP3432050B2 (en) High zoom 3 group zoom lens
JP3268824B2 (en) Small two-group zoom lens
JPH10197793A (en) Zoom lens
JPH10293246A (en) Retrofocus type lens
JP4817551B2 (en) Zoom lens
JPH05188296A (en) Small-sized three-group zoom lens
JPH06230284A (en) Focusing system for zoom lens
JPH11194268A (en) Rear converter lens and camera provided therewith
JP2001133684A (en) Photographic lens
JPH05346542A (en) Small-sized two-group zoom lens
JP4444416B2 (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030611

LAPS Cancellation because of no payment of annual fees