JP2859616B2 - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2859616B2
JP2859616B2 JP63116682A JP11668288A JP2859616B2 JP 2859616 B2 JP2859616 B2 JP 2859616B2 JP 63116682 A JP63116682 A JP 63116682A JP 11668288 A JP11668288 A JP 11668288A JP 2859616 B2 JP2859616 B2 JP 2859616B2
Authority
JP
Japan
Prior art keywords
lens
aspherical
lens group
group
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63116682A
Other languages
Japanese (ja)
Other versions
JPH01285911A (en
Inventor
和夫 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP63116682A priority Critical patent/JP2859616B2/en
Publication of JPH01285911A publication Critical patent/JPH01285911A/en
Application granted granted Critical
Publication of JP2859616B2 publication Critical patent/JP2859616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はズームレンズに関するもので、特に画角63゜
の広角を含み3群以上のレンズ群で構成されるコンパク
トなズームレンズに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a compact zoom lens including a wide-angle lens having a field angle of 63 ° and including three or more lens groups. .

〔従来の技術〕[Conventional technology]

従来この種のレンズとしては、物体側より順に正の第
1群、負の第2群、正の第3群、正の第4群より成り、
このうち第1群、第3群、第4群を移動することにより
ズーミングを行い、特に第2群のパワーを強くすること
でコンパクト化を行ったものが特開昭59−57213号公
報、特開昭59−57214号公報等で知られている。
Conventionally, this type of lens includes, in order from the object side, a positive first group, a negative second group, a positive third group, and a positive fourth group.
Of these, zooming is performed by moving the first, third, and fourth groups, and in particular, the one that is made compact by increasing the power of the second group is disclosed in JP-A-59-57213. This is known from, for example, JP-A-59-57214.

また、非球面を用いたものとしては、正の第1群、負
の第2群、正の第3群、そして第4群の4群から成り、
コンパクト化のために第3群のパワーを強め、その時発
生する球面収差及び非点収差を非球面により補正したも
のが特開昭60−178421号公報に示されている。
In addition, a lens using an aspheric surface includes a first lens unit, a second lens unit, a third lens unit, a third lens unit, and a fourth lens unit.
Japanese Patent Application Laid-Open No. Sho 60-178421 discloses an arrangement in which the power of the third lens unit is increased for compactness, and spherical aberration and astigmatism generated at that time are corrected by an aspheric surface.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前者のものでは、広角端の望遠比が3.
6程度であり、既に第2群のパワーを特に強くしている
ため、更にコンパクト化するべくパワーを強めると諸収
差が劣化してしまう。
However, in the former case, the telephoto ratio at the wide-angle end is 3.
Since the power of the second lens unit is already particularly strong, various aberrations are degraded when the power is increased to further reduce the size.

また、後者のものでは、球面収差、非点収差等の諸収
差を一つの非球面で同時に補正する構成になっているた
め、それぞれの収差補正に限界があり、よりコンパクト
化するために各群のパワーを強くすると、収差が補正し
きれなくなってしまう。
In the latter, since various aberrations such as spherical aberration and astigmatism are simultaneously corrected by one aspherical surface, each aberration correction has a limit. If the power of is increased, the aberration cannot be corrected completely.

また、どちらも4群構成のズームレンズであるため、
枠構造が複雑になってしまう。
In addition, since each of them is a four-group zoom lens,
The frame structure becomes complicated.

本発明はこのような問題点に着目してなされたもので
あり、非球面を有効に用いることで、各収差の良好に補
正された高性能でかつコンパクト化が十分に達成された
ズームレンズを提供することを目的とする。
The present invention has been made in view of such problems, and by effectively using an aspherical surface, a zoom lens which is well-corrected for each aberration and has sufficiently achieved compactness and high performance. The purpose is to provide.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に基づくズームレ
ンズでは、物体側より順に、正の第1レンズ群と、負の
第2レンズ群と、明るさ絞りを有した1群以上のレンズ
群より成る全体として正の結像レンズ群とから成り、広
角側から望遠側へズーミングする際に前記第1レンズ群
と前記第2レンズ群の間隔が増加し前記第2レンズ群と
前記結像レンズ群の間隔が減少するとともに、前記正の
結像レンズ群が複数のレンズ群で構成される場合は前記
複数のレンズ群の各々の群間隔が変化するズームレンズ
で、前記結像レンズ群にのみに配置され、前記明るさ絞
りの近傍の面に第1の非球面、前記結像レンズ群の像面
に近い面に第2の非球面を有し、以下の条件を満足する
ズームレンズ。
In order to achieve the above object, in the zoom lens according to the present invention, in order from the object side, a positive first lens group, a negative second lens group, and one or more lens groups having a brightness stop And a positive imaging lens group as a whole. When zooming from the wide-angle side to the telephoto side, the distance between the first lens group and the second lens group increases, and the second lens group and the imaging lens group When the distance between the positive imaging lens groups is reduced, and when the positive imaging lens group is composed of a plurality of lens groups, a zoom lens in which the distance between each of the plurality of lens groups changes, only the imaging lens group A zoom lens that is disposed and has a first aspheric surface on a surface near the aperture stop and a second aspheric surface on a surface near the image plane of the imaging lens unit, and satisfies the following conditions.

但、非球面の式を とおくと、 x;非球面の面頂からの光軸方向の座標 y;光軸の法線方向の座標 R;近軸曲率半径 a2,a4,a6……;非球面係数 A4;第1の非球面における非球面係数a4 B4;第2の非球面における非球面係数a4 である。 However, the aspherical expression is In other words, x; coordinates in the optical axis direction from the top of the aspheric surface y; coordinates in the normal direction of the optical axis R; paraxial radius of curvature a 2 , a 4 , a 6 ……; aspherical coefficient A 4 ; aspherical coefficients a 4 in the second aspherical; first aspherical coefficient in the aspherical surface of a 4 B 4.

また、2つの非球面のうちの像側の非球面が以下の条
件を満足するようにすると、非点収差が良好に補正さ
れ、より好ましい。
It is more preferable that the aspherical surface on the image side of the two aspherical surfaces satisfies the following condition, because the astigmatism is satisfactorily corrected.

0.1×10-5<|B4|<0.1×10-3 ……(2) さて、レンズ全長を短くコンパクトにするには、各レ
ンズ群のパワーを強くすることが行われるが、各収差の
良好な補正を維持するために適切なパワー配分を行うこ
とが重要である。特にコンパクトなレンズ系を得るため
には、以下の条件を満足することが好ましい。
0.1 × 10 −5 <| B 4 | <0.1 × 10 −3 (2) To shorten the overall length of the lens and make it compact, the power of each lens group must be increased. It is important to have a proper power distribution to maintain good correction. In particular, in order to obtain a compact lens system, it is preferable to satisfy the following conditions.

0.4 <fRW/fW<0.8 ……(3) 0.15<e2T/fW<0.75 ……(4) 但、fWは全系の広角端の焦点距離,fRWは結像レンズ群
(4群ズームレンズの場合は第3群と第4群の合成群
が、3群ズームレンズの場合は第3群が対応)の広角端
焦点距離、e2Tは望遠端での第2群の後側主点と結像レ
ンズ群の前側主点との距離である。
0.4 <f RW / f W <0.8 (3) 0.15 <e 2T / f W <0.75 (4) where f W is the focal length at the wide-angle end of the entire system, and f RW is the imaging lens group ( In the case of a four-unit zoom lens, the third lens unit and the fourth unit are combined, and in the case of a three-unit zoom lens, the third lens unit is used.) The focal length at the wide-angle end, and e 2T is after the second lens unit at the telephoto end. This is the distance between the side principal point and the front principal point of the imaging lens unit.

また、第1群を物体側に凸面を向けた負メニスカスレ
ンズ及び両凸レンズ或いはそれらの接合レンズと、物体
側に凸の正メニスカスレンズとから構成し、第1レンズ
群でフォーカシングを行う場合、第1レンズ群の最像側
面の曲率半径をRとおくと、以下の条件を満足すること
が好ましい。
When the first lens unit is composed of a negative meniscus lens and a biconvex lens having a convex surface facing the object side or a cemented lens thereof, and a positive meniscus lens convex to the object side, when focusing is performed by the first lens unit, When the radius of curvature of the most image side surface of one lens group is R, it is preferable that the following condition is satisfied.

1.5<R/fW<3.5 ……(5) 更に、第2群の最物体側面を物体側に凸とし、最像側
面も物体側に凸とすることにより、軸外光線の第2群へ
の入射角及び射出角を小さくしてズーミングによる軸外
収差の変動を小さくすることができる。このとき、4群
構成のものにおいては、この第2レンズ群を物体側より
順に物体側に凸の負メニスカスレンズ,両凹レンズ,接
合正レンズより構成するか、又は正レンズを2枚含むよ
うに構成するとより好ましい。
1.5 <R / f W <3.5 (5) Further, by making the most object side surface of the second group convex to the object side and making the most image side surface convex to the object side as well, the second group of off-axis rays , The fluctuation of off-axis aberration due to zooming can be reduced. At this time, in the case of a four-group configuration, the second lens group may be constituted of a negative meniscus lens, a biconcave lens, and a cemented positive lens which are convex on the object side in order from the object side, or may include two positive lenses. It is more preferable to configure.

また、各レンズ群に正レンズと負レンズとの両方を含
めることにより色収差を良好に補正することができる。
この時、第2群は負のパワーが強いため、複数の負レン
ズを用いることが好ましい。
Further, by including both the positive lens and the negative lens in each lens group, chromatic aberration can be corrected well.
At this time, since the second group has a strong negative power, it is preferable to use a plurality of negative lenses.

そして、レンズ鏡筒構成上、パワーの強い第2群をズ
ーミング中固定にすると、性能を安定して出し易い。ま
た、第1群と第4群を一体にしてズーミングするように
すれば、鏡筒構造が簡単になる。
If the second lens unit having a strong power is fixed during zooming due to the lens barrel configuration, it is easy to achieve stable performance. If zooming is performed by integrating the first and fourth units, the lens barrel structure is simplified.

〔作 用〕(Operation)

次に、前記条件(1)乃至条件(4)についてその作
用を説明する。
Next, the operation of the conditions (1) to (4) will be described.

非球面を用いて非点収差を補正することを考えると、
非球面を絞りよりできるだけ像面に近い位置に配設する
のが望ましい。しかしながら非球面は、球面収差も変化
させてしまうため、単純に非球面を用いて非点収差の補
正を行うと、球面収差が悪化してしまう。また、レンズ
系の像側のレンズの小径化を考えると、射出瞳を像面に
近づけるのが望ましい。ところが、このために絞りを像
面に近づけると、非点収差の補正能力が弱くなりかつ球
面収差の変化が大きくなるため、この状況で1つの非球
面により非点収差を良好に補正しようとすると球面収差
が悪化してしまう。そして、以上のような非球面で発生
する球面収差は高次収差を含むため、これを球面系で補
正するのは困難である。
Considering correcting astigmatism using an aspheric surface,
It is desirable to dispose the aspheric surface as close to the image plane as possible with respect to the stop. However, an aspherical surface also changes the spherical aberration. Therefore, simply correcting astigmatism using the aspherical surface will worsen the spherical aberration. Also, in consideration of reducing the diameter of the lens on the image side of the lens system, it is desirable to make the exit pupil closer to the image plane. However, when the stop is brought closer to the image plane, the ability to correct astigmatism becomes weaker and the change in spherical aberration increases. Therefore, in this situation, if one attempts to satisfactorily correct astigmatism with one aspherical surface, Spherical aberration is worsened. Since the spherical aberration generated on the aspherical surface includes high-order aberrations, it is difficult to correct the spherical aberration on a spherical system.

さて、絞り近傍に非球面を配置すると、上述したよう
に、非点収差の変動は小さく、球面収差の変動が大きく
なる。従って、上述の非点収差を補正する非球面とは別
に、球面収差を補正するための非球面をここに設ける
と、非点収差に影響を与えずに、かつ上述の高次収差を
も含めて球面収差を補正することが可能である。
By the way, if an aspherical surface is arranged near the stop, as described above, the variation of astigmatism is small and the variation of spherical aberration is large. Therefore, in addition to the aspheric surface for correcting the astigmatism described above, if an aspheric surface for correcting the spherical aberration is provided here, without affecting the astigmatism, and including the above-described higher-order aberrations It is possible to correct spherical aberration.

以上の点を考慮して、非点収差補正を中心として像面
近傍に非球面を配置し、更にここで発生する球面収差を
含めた球面収差補正を中心として絞り近傍に非球面を配
置する。そしてこれら2つの非球面を適切に組み合わせ
ることにより各収差を良好に補正するための条件が前述
の条件(1)である。この条件の上限を越えると、像面
側の非球面による球面収差を絞り側の非球面で補正し得
ない。下限を越えると絞り側の非球面での球面収差が過
剰になる。
In consideration of the above points, the aspherical surface is arranged near the image plane centering on the astigmatism correction, and the aspherical surface is arranged near the stop centering on the spherical aberration correction including the spherical aberration generated here. The condition for favorably correcting each aberration by appropriately combining these two aspheric surfaces is the above-mentioned condition (1). If the upper limit of this condition is exceeded, spherical aberration due to the aspherical surface on the image side cannot be corrected by the aspherical surface on the stop side. If the lower limit is exceeded, the spherical aberration of the aspherical surface on the stop side becomes excessive.

尚、前記条件(2)を満足することにより、非点収差
をより良好に補正することができる。この条件の条件を
越えると、非点収差、球面収差が補正過剰となる。下限
を越えると、共に補正不足となる。
By satisfying the above condition (2), astigmatism can be corrected more favorably. If the condition is exceeded, astigmatism and spherical aberration will be overcorrected. If the lower limit is exceeded, the correction will be insufficient.

さて、条件(3)、(4)は前述したように適切なパ
ワー配分を定めるための条件であり、共に上限を越える
とレンズ全長が長くなり、コンパクト化を達成できな
い。下限を越えると、各群のパワーが強くなりすぎ、前
述の非球面を用いても各収差の補正が困難になる。
The conditions (3) and (4) are conditions for determining an appropriate power distribution as described above. If both of them exceed the upper limit, the overall length of the lens becomes longer, and compactness cannot be achieved. If the lower limit is exceeded, the power of each group becomes too strong, and it becomes difficult to correct each aberration even if the above-mentioned aspherical surface is used.

条件(5)は、前述したようにフォーカシングも考慮
してより良好な性能を得るための条件である。条件を越
えると、ズーミングによる歪曲収差の変動が大きくな
る。下限を越えると、フォーカシングの際球面収差の変
動が大きく中心と周辺の良像位置を一致させるのが難し
くなる。
Condition (5) is a condition for obtaining better performance in consideration of focusing as described above. If the condition is exceeded, the fluctuation of distortion due to zooming becomes large. If the lower limit is exceeded, the fluctuation of the spherical aberration during focusing is so large that it is difficult to match the center and the peripheral good image position.

〔実施例〕〔Example〕

実施例1,2,4は第1図に広角端の、第2図に望遠端の
断面図を示すとおりの正・負・正・正の4群構成で、非
球面を2面用いたズームレンズである。実施例3,5は第
3図に広角端の断面図を示すとおりの、上記同様の正・
負・正・正の4群構成で、非球面を2面用いたズームレ
ンズである。これらの実施例1乃至5において、非球面
は絞り近傍の第3レンズ群最像側レンズ像側面及び第4
レンズ群最像側レンズ物体側面に設けられている。
Embodiments 1, 2, and 4 have a positive / negative / positive / positive four-group configuration as shown in the sectional view of the wide-angle end in FIG. 1 and the telephoto end in FIG. 2, and use two aspheric surfaces. Lens. In Examples 3 and 5, as shown in the sectional view of the wide-angle end in FIG.
This is a zoom lens using four aspherical surfaces in a negative / positive / positive four-group configuration. In the first to fifth embodiments, the aspherical surface is the image side lens surface of the third lens group closest to the stop,
The lens group is provided on the object side surface of the lens closest to the image.

実施例6は第4図に広角端の、第5図に望遠端の断面
図を示すとおりの正・負・正の3群構成で、非球面を2
面用いたズームレンズである。実施例7は第6図に広角
端の断面図を示すとおりの、実施例6と同様正・負・正
の3群構成で、非球面を2面用いたズームレンズであ
る。これらの実施例6,7において、非球面は絞り近傍の
第3レンズ群最物体側レンズ物体側面及び第3レンズ群
最像側レンズ像側面に設けられている。
Embodiment 6 has a positive, negative and positive three-group configuration as shown in the sectional view at the wide angle end in FIG. 4 and the telephoto end in FIG.
This is a zoom lens using a surface. Embodiment 7 As shown in the cross-sectional view at the wide angle end in FIG. 6, Embodiment 7 is a zoom lens having three groups of positive, negative, and positive, and using two aspherical surfaces as in Embodiment 6. In these Embodiments 6 and 7, the aspherical surface is provided on the object side surface of the third lens unit closest to the object side and the image side surface of the third lens unit closest image side near the stop.

以下に、各実施例の数値データを示す。 Below, numerical data of each embodiment is shown.

実施例1 f=35.9mm〜101.0mm,F/3.57〜4.85 2ω=62.0゜〜24.2゜ r1=291.8679 d1=2.5000 n1=1.80518 ν=25.43 r2=67.6668 d2=6.8000 n2=1.65160 ν=58.52 r3=−173.7374 d3=0.2000 r4=39.1397 d4=4.3000 n3=1.65160 ν=58.52 r5=94.3469 d5=(可変) r6=361.1701 d6=1.7293 n4=1.77250 ν=49.66 r7=22.8024 d7=4.8000 r8=−32.6627 d8=1.7000 n5=1.74100 ν=52.68 r9=27.9925 d9=0.5000 r10=28.1629 d10=4.2000 n6=1.80518 ν=25.43 r11=−46.7666 d11=1.4000 n7=1.80400 ν=46.57 r12=145.0476 d12=(可変) r13=45.6029 d13=2.4509 n8=1.56873 ν=63.16 r14=−99.9305 d14=0.4200 r15=38.9381 d15=4.3500 n9=1.48749 ν=70.20 r16=−20.6778 d16=1.2000 n10=1.67270 ν10=32.10 r17=−162.4476(非球面) d17=1.0000 r18;絞り d18=(可変) r19=42.3383 d19=2.2400 n11=1.61272 ν11=58.75 r20=−7900.6178 d20=0.2000 r21=35.8796 d21=3.4000 n12=1.60311 ν12=60.70 r22=−67.9577 d22=2.5000 r23=−117.6327 d23=1.8537 n13=1.59551 ν13=39.21 r24=24.7948 d24=3.0000 r25=−117.2207(非球面) d25=2.5000 n14=1.72825 ν14=28.46 r26=−126.3532 非球面レンズデータ(非球面係数) r17;a2=0,a4=0.10492×10-5, a6=0.56608×10-8,a8=−0.12893×10-10 a10=−0.21888×10-12 r25;a2=0,a4=−0.23442×10-4, a6=−0.46934×10-7,a8=−0.32520×10-9 a10=0.18599×10-12 実施例2 f=35.9mm〜101.0mm,F/3.58〜4.85 2ω=62.0゜〜24.2゜ r1=312.2405 d1=2.5000 n1=1.80518 ν=25.43 r2=68.8465 d2=6.8000 n2=1.65160 ν=58.52 r3=−174.8560 d3=0.2000 r4=39.7352 d4=4.4500 n3=1.65830 ν=57.33 r5=98.8411 d5=(可変) r6=383.5690 d6=1.7300 n4=1.77250 ν=49.66 r7=23.2093 d7=4.8000 r8=−34.7608 d8=1.6000 n5=1.74100 ν=52.68 r9=31.2002 d9=0.9600 r10=31.0006 d10=4.3500 n6=1.80518 ν=25.43 r11=−42.9177 d11=1.2500 n7=1.80400 ν=46.57 r12=102.9517 d12=(可変) r13=38.9895 d13=2.6000 n8=1.56873 ν=63.16 r14=−102.4423 d14=0.2000 r15=41.0031 d15=4.4500 n9=1.48749 ν=70.20 r16=−21.8964 d16=1.2000 n10=1.67270 ν10=32.10 r17=−223.1431(非球面) d17=1.0000 r18;絞り d18=(可変) r19=37.8825 d19=2.2500 n11=1.61272 ν11=58.75 r20=1311.3558 d20=0.2000 r21=34.0968 d21=3.3000 n12=1.60311 ν12=60.70 r22=−74.9584 d22=1.6800 r23=−183.6979 d23=1.8537 n13=1.59551 ν13=39.21 r24=22.3495 d24=3.0000 r25=−100.2426(非球面) d25=2.4000 n14=1.72825 ν14=28.46 r26=−126.3532 非球面レンズデータ(非球面係数) r17;a2=0,a4=0.26934×10-5, a6=0.64609×10-8,a8=−0.44736×10-10 a10=−0.22335×10-12 r25;a2=0,a4=−0.24366×10-4, a6=−0.52701×10-7,a8=−0.52501×10-9 a10=0.14229×10-11 実施例3 f=35.9mm〜101.0mm,F/3.56〜4.85 2ω=62.0゜〜24.2゜ r1=295.3209 d1=2.5000 n1=1.80518 ν=25.43 r2=68.0618 d2=7.0000 n2=1.65160 ν=58.52 r3=−178.5938 d3=0.2000 r4=38.9905 d4=4.5000 n3=1.65160 ν=58.52 r5=94.5204 d5=(可変) r6=363.5847 d6=1.7293 n4=1.77250 ν=49.66 r7=22.6581 d7=4.8000 r8=−33.2807 d8=1.7000 n5=1.74100 ν=52.68 r9=34.5108 d9=0.5000 r10=32.7693 d10=4.2000 n6=1.80518 ν=25.43 r11=−36.6247 d11=1.4000 n7=1.80400 ν=46.57 r12=125.9131 d12=(可変) r13=47.6517 d13=2.4509 n8=1.56873 ν=63.16 r14=−96.5400 d14=0.4213 r15=36.4698 d15=4.3082 n9=1.48749 ν=70.20 r16=−21.1809 d16=0.1000 r17=−20.5037 d17=1.2000 n10=1.67270 ν10=32.10 r18=−193.0274(非球面) d18=1.0000 r19;絞り d19=(可変) r20=40.9151 d20=2.6729 n11=1.61272 ν11=58.75 r21=−538.9577 d21=0.2000 r22=31.3769 d22=2.9680 n12=1.60311 ν12=60.70 r23=−65.9045 d23=2.5000 r24=−77.8686 d24=1.8537 n13=1.66998 ν13=39.27 r25=24.8812 d25=3.0000 r26=−183.3897(非球面) d26=2.5000 n14=1.72825 ν14=28.46 r27=−126.3532 非球面レンズデータ(非球面係数) r18;a2=0,a4=−0.66216×10-6, a6=0.43521×10-9,a8=−0.96779×10-11 a10=−0.11208×10-11 r26;a2=0,a4=−0.25648×10-4, a6=−0.47710×10-7,a8=−0.19456×10-9 a10=0.30097×10-12 実施例4 f=36.0mm〜101.0mm,F/3.62〜4.85 2ω=62.0゜〜24.2゜ r1=306.6968 d1=2.5000 n1=1.80518 ν=25.43 r2=68.8581 d2=6.7000 n2=1.65160 ν=58.52 r3=−176.6059 d3=0.2000 r4=39.8074 d4=4.6200 n31.65830 ν=57.33 r5=98.9843 d5=(可変) r6=385.2105 d6=1.7300 n4=1.77250 ν=49.66 r7=23.0232 d7=4.8000 r8=−33.9586 d8=1.6000 n5=1.74100 ν=52.68 r9=30.8857 d9=0.9600 r10=30.8824 d10=4.3500 n6=1.80518 ν=25.43 r11=−42.2395 d11=1.2500 n7=1.80400 ν=46.57 r12=106.4430 d12=(可変) r13=38.1326 d13=2.6000 n8=1.56873 ν=63.16 r14=−95.1425 d14=0.2000 r15=42.9543 d15=4.4500 n9=1.48749 ν=70.20 r16=−21.5600 d16=1.2000 n10=1.67270 ν10=32.10 r17=−223.1585(非球面) d17=1.0000 r18;絞り d18=(可変) r19=39.1054 d19=2.5500 n11=1.61272 ν11=58.75 r20=2166.2549 d20=0.2000 r21=35.0493 d21=3.3000 n12=1.60311 ν12=60.70 r22=−69.0344 d22=1.6800 r23=−174.3032 d23=1.8537 n13=1.59551 ν13=39.21 r24=23.1442 d24=3.0000 r25=−100.0752(非球面) d25=2.4000 n14=1.72825 ν14=28.46 r26=−126.3532 非球面レンズデータ(非球面係数) r17;a2=0,a4=0.29092×10-5, a6=0.70878×10-8,a8=−0.36492×10-10 a10=−0.29267×10-12 r25;a2=0,a4=−0.23987×10-4, a6=−0.52191×10-7,a8=−0.46119×10-9 a10=0.11852×10-11 実施例5 f=36.0mm〜101.0mm,F/3.58〜4.85 2ω=62.0゜〜24.2゜ r1=252.0551 d1=2.5000 n1=1.80518 ν=25.43 r2=65.1512 d2=7.0000 n2=1.65160 ν=58.52 r3=−161.9672 d3=0.2000 r4=37.5457 d4=4.5000 n3=1.65160 ν=58.52 r5=78.9480 d5=(可変) r6=532.5586 d6=1.7293 n4=1.77250 ν=49.66 r7=22.4685 d7=4.8000 r8=−29.7002 d8=1.7000 n5=1.74100 ν=52.68 r9=45.4110 d9=0.5000 r10=40.6119 d10=4.2000 n6=1.80518 ν=25.43 r11=−29.9067 d11=1.4000 n7=1.80400 ν=46.57 r12=192.4248 d12=(可変) r13=40.9001 d13=2.4509 n8=1.56873 ν=63.16 r14=−51.4228 d14=0.4213 r15=46.2648 d15=4.3082 n9=1.48749 ν=70.20 r16=−22.4313 d16=0.5000 r17=−19.8955 d17=1.2000 n10=1.67270 ν10=32.10 r18=−382.3099(非球面) d18=1.0000 r19;絞り d19=(可変) r20=65.3181 d20=2.6729 n11=1.61272 ν11=58.75 r21=−113.4383 d21=0.2000 r22=33.7189 d22=2.9680 n12=1.60311 ν12=60.70 r23=−71.5852 d23=2.5000 r24=−114.3990 d24=1.8537 n13=1.66998 ν13=39.27 r25=25.0369 d25=3.0000 r26=−313.9246(非球面) d26=2.5000 n14=1.72825 ν14=28.46 r27=−126.3532 非球面レンズデータ(非球面係数) r18;a2=0,a4=−0.27217×10-5, a6=0.50299×10-8,a8=−0.18210×10-9 a10=−0.50016×10-12 r26;a2=0,a4=−0.18698×10-4, a6=0.12978×10-7,a8=−0.90959×10-9 a10=0.32874×10-11 実施例6 f=36.3mm〜102.0mm,F/3.50〜4.84 2ω=61.6゜〜24.0゜ r1=393.7230 d1=2.5500 n1=1.80518 ν=25.43 r2=77.2250 d2=7.0100 n2=1.60311 ν=60.70 r3=−118.4586 d3=0.1000 r4=40.5790 d4=4.2500 n3=1.69680 ν=55.52 r5=78.3661 d5=(可変) r6=174.9416 d6=1.3000 n4=1.80610 ν=40.95 r7=20.1043 d7=4.8000 r8=−61.2914 d8=1.1000 n5=1.83481 ν=42.72 r9=66.7247 d9=0.3600 r10=32.6794 d10=3.7900 n6=1.80518 ν=25.43 r11=−38.1815 d11=1.5700 r12=−24.4385 d12=1.0000 n7=1.80400 ν=46.57 r13=−231.5781 d13=(可変) r14;絞り d14=1.1000 r15=25.0368(非球面) d15=2.4100 n8=1.65016 ν=39.39 r16=−908.3515 d16=0.1000 r17=19.9465 d17=2.7600 n9=1.65830 ν=57.33 r18=−264.0968 d18=0.1200 r19=724.5317 d19=6.7000 n10=1.80518 ν10=25.43 r20=13.5026 d20=2.1000 r21=−63.3761 d21=2.2800 n11=1.60311 ν11=60.70 r22=−35.4653 d22=0.8600 r23=24.2857 d23=3.2900 n12=1.53172 ν12=48.90 r24=63.0831(非球面) 非球面レンズデータ(非球面係数) r15;a2=0,a4=−0.88864×10-5, a6=−0.20553×10-7,a8=−0.16039×10-10, a10=−0.36641×10-12 r24;a2=0,a4=0.11255×10-4, a6=−0.10349×10-7,a8=−0.46647×10-10, a10=−0.31622×10-11 実施例7 f=36.3mm〜102.0mm,F/3.50〜4.85 2ω=61.6゜〜24.0゜ r1=−353.1978 d1=2.5500 n1=1.80518 ν=25.43 r2=77.2250 d2=7.0100 n2=1.60311 ν=60.70 r3=−155.4196 d3=0.1000 r4=49.8532 d4=4.2500 n3=1.69680 ν=55.52 r5=272.3135 d5=(可変) r6=202.5582 d6=1.3000 n4=1.80610 ν=40.95 r7=18.6630 d7=4.8000 r8=−123.1804 d8=1.1000 n5=1.83481 ν=42.72 r9=65.1293 d9=0.3600 r10=28.4356 d10=5.6000 n6=1.80518 ν=25.43 r11=−40.4334 d11=1.5700 r12=−27.4208 d12=1.0000 n7=1.80400 ν=46.57 r13=1198.1331 d13=(可変) r14;絞り d14=1.1000 r15=15.5915(非球面) d15=4.1000 n8=1.65016 ν=39.39 r16=−81.3885 d16=0.1000 r17=37.3048 d17=3.4000 n9=1.65830 ν=57.33 r18=−68.3920 d18=0.1200 r19=−76.1286 d19=4.5000 n10=1.80518 ν10=25.43 r20=11.4644 d20=2.1000 r21=15.7645 d21=3.2900 n11=1.53172 ν11=48.90 r22=51.3460(非球面) 非球面レンズデータ(非球面係数) r15;a2=0,a4=−0.25760×10-4, a6=−0.10071×10-6,a8=−0.24203×10-9, a10=−0.21849×10-12 r22;a2=0,a4=0.39273×10-4, a6=0.11228×10-6,a8=−0.54087×10-9, a10=−0.31204×10-11 但、f ;全系の焦点距離 F ;Fナンバー 2ω;画角 ri;物体側より順次に各面の曲率半径 di;物体側より順次に各レンズの肉厚及び空気間隙 ni;物体側より順次に各レンズのd−Iineの屈折率 νi ;物体側より順次に各レンズのアッベ数 fw;広角端における全系の焦点距離 fRw ;広角端における結像レンズ群の焦点距離 e2T ;望遠端における第2群の後側主点と結像レンズ
群の前側主点との距離 R ;第1レンズ群の最像側面の曲率半径 又、上記実施例で用いられている非球面は、光軸方向
をx,光軸の法線方向をy,近軸曲率半径をRとしたとき、 にて表わされる。但、a2,a4,a6,……は非球面係数であ
る。
Example 1 f = 35.9 mm to 101.0 mm, F / 3.57 to 4.85 2ω = 62.0 ゜ to 24.2 ゜ r 1 = 291.8679 d 1 = 2.5000 n 1 = 1.805518 ν 1 = 25.43 r 2 = 67.6668 d 2 = 6.8000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -173.7374 d 3 = 0.2000 r 4 = 39.1397 d 4 = 4.3000 n 3 = 1.65160 ν 3 = 58.52 r 5 = 94.3469 d 5 = ( variable) r 6 = 361.1701 d 6 = 1.7293 n 4 = 1.77250 ν 4 = 49.66 r 7 = 22.8024 d 7 = 4.8000 r 8 = -32.6627 d 8 = 1.7000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 27.9925 d 9 = 0.5000 r 10 = 28.1629 d 10 = 4.2000 n 6 = 1.80518 ν 6 = 25.43 r 11 = −46.7666 d 11 = 1.4000 n 7 = 1.80400 ν 7 = 46.57 r 12 = 145.0476 d 12 = (variable) r 13 = 45.6029 d 13 = 2.4509 n 8 = 1.56873 ν 8 = 63.16 r 14 = -99.9305 d 14 = 0.4200 r 15 = 38.9381 d 15 = 4.3500 n 9 = 1.48749 ν 9 = 70.20 r 16 = -20.6778 d 16 = 1.2000 n 10 = 1.67270 ν 10 = 32.10 r 17 = -162.4476 ( aspherical) d 17 = 1.0000 r 18 ; Aperture d 18 = (variable) r 19 = 42.3383 d 19 = 2.2400 n 11 = 1.61272 ν 11 = 58.75 r 20 = -7900.6178 d 20 = 0.2000 r 21 = 35.8796 d 21 = 3.4000 n 12 = 1.60311 ν 12 = 60.70 r 22 = -67.9577 d 22 = 2.5000 r 23 = -117.6327 d 23 = 1.8537 n 13 = 1.59551 v 13 = 39.21 r 24 = 24.7948 d 24 = 3.000 r 25 = -117.2207 (aspheric surface) d 25 = 2.5000 n 14 = 1.72825 v 14 = 28.46 r 26 = -126.3532 Aspheric lens data (aspheric coefficient) r 17 ; a 2 = 0, a 4 = 0.10492 × 10 -5 , a 6 = 0.56608 × 10 -8 , a 8 = −0.12893 × 10 -10 a 10 = −0.21888 × 10 -12 r 25 ; a 2 = 0, a 4 = −0.23442 × 10 -4 , a 6 = −0.46934 × 10 -7 , a 8 = −0.32520 × 10 -9 a 10 = 0.18599 × 10 -12 Example 2 f = 35.9 mm to 101.0 mm, F / 3.58 to 4.85 2ω = 62.0 ゜ to 24.2 ゜ r 1 = 312.2405 d 1 = 2.5000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 68.8465 d 2 = 6.8000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -174.8560 d 3 = 0.2000 r 4 = 39.7352 d 4 = 4.4500 n 3 = 1.65830 ν 3 = 57.33 r 5 = 98.8411 d 5 = ( variable) r 6 = 383.5690 d 6 = 1.7300 n 4 = 1.77250 ν 4 = 49.66 r 7 = 23.2093 d 7 = 4.8000 r 8 = -34.7608 d 8 = 1.6000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 31.2002 d 9 = 0.9600 r 10 = 31.0006 d 10 = 4.3500 n 6 = 1.80518 ν 6 = 25.43 r 11 = -42.9177 d 11 = 1.2500 n 7 = 1.80400 ν 7 = 46.57 r 12 = 102.9517 d 12 = ( variable) r 13 = 38.9895 d 13 = 2.6000 n 8 = 1.56873 ν 8 = 63.16 r 14 = -102.4423 d 14 = 0.2000 r 15 = 41.0031 d 15 = 4.4500 n 9 = 1.48749 ν 9 = 70.20 r 16 = -21.8964 d 16 = 1.2000 n 10 = 1.67270 ν 10 = 32.10 r 17 = -223.1431 ( aspherical) d 17 = 1.0000 r 18 ; aperture d 18 = (variable) r 19 = 37.8825 d 19 = 2.2500 n 11 = 1.61272 v 11 = 58.75 r 20 = 1311.3558 d 20 = 0.2000 r 21 = 34.0968 d 21 = 3.3000 n 12 = 1.60311 v 12 = 60.70 r 22 = -74.9584 d 22 = 1.6800 r 23 = -183.6979 d 23 = 1.8537 n 13 = 1.59551 ν 13 = 39.21 r 24 = 22.3495 d 24 = 3.0000 r 25 = -100.2426 ( aspherical) d 25 = 2.4000 n 14 = 1.72825 ν 14 = 28.46 r 26 = -126.3532 Aspherical lens data (aspherical coefficient) r 17 ; a 2 = 0, a 4 = 0.26934 × 10 -5 , a 6 = 0.64609 × 10 -8 , a 8 = −0.44736 × 10 -10 a 10 = −0.22335 × 10 -12 r 25 ; a 2 = 0, a 4 = −0.24366 × 10 -4 , a 6 = −0.52701 × 10 -7 , a 8 = −0.52501 × 10 -9 a 10 = 0.14229 × 10 -11 Example 3 f = 35.9 mm to 101.0 mm, F / 3.56 to 4.85 2ω = 62.0 ゜ to 24.2 ゜ r 1 = 295.3209 d 1 = 2.5000 n 1 = 1.805518 ν 1 = 25.43 r 2 = 68.0618 d 2 = 7.0000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -178.5938 d 3 = 0.2000 r 4 = 38.9905 d 4 = 4.5000 n 3 = 1.65160 ν 3 = 58.52 r 5 = 94.5204 d 5 = ( variable) r 6 = 363.5847 d 6 = 1.7293 n 4 = 1.77250 ν 4 = 49.66 r 7 = 22.6581 d 7 = 4.8000 r 8 = -33.2807 d 8 = 1.7000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 34.5108 d 9 = 0.5000 r 10 = 32.7693 d 10 = 4.2000 n 6 = 1.80518 ν 6 = 25.43 r 11 = −36.6247 d 11 = 1.4000 n 7 = 1.80400 ν 7 = 46.57 r 12 = 125.9131 d 12 = (variable) r 13 = 47.6517 d 13 = 2.4509 n 8 = 1.56873 ν 8 = 63.16 r 14 = -96.5400 d 14 = 0.4213 r 15 = 36.4698 d 15 = 4.3082 n 9 = 1.48749 ν 9 = 70.20 r 16 = -21.1809 d 16 = 0.1000 r 17 = -20.5037 d 17 = 1.2000 n 10 = 1.67270 ν 10 = 32.10 r 18 = -193.0274 (aspherical) d 18 = 1.0000 r 19; stop d 19 = (Variable) r 20 = 40.9151 d 20 = 2.6729 n 11 = 1.61272 v 11 = 58.75 r 21 = −538.9577 d 21 = 0.2000 r 22 = 31.3769 d 22 = 2.9680 n 12 = 1.60311 v 12 = 60.70 r 23 = −65.9045 d 23 = 2.5000 r 24 = -77.8686 d 24 = 1.8537 n 13 = 1.66998 v 13 = 39.27 r 25 = 24.8812 d 25 = 3.0000 r 26 = -183.3897 (aspheric surface) d 26 = 2.5000 n 14 = 1.72825 v 14 = 28.46 r 27 = -126.3532 Aspherical lens data (aspherical coefficient) r 18 ; a 2 = 0, a 4 = −0.66216 × 10 −6 , a 6 = 0.43521 × 10 −9 , a 8 = −0.96779 × 10 −11 a 10 = −0.11208 × 10 -11 r 26 ; a 2 = 0, a 4 = −0.25648 × 10 -4 , a 6 = −0.47710 × 10 -7 , a 8 = −0.19456 × 10 -9 a 10 = 0.30097 × 10 -12 Example 4 f = 36.0 mm to 101.0 mm, F / 3.62 to 4.85 2ω = 62.0 ゜ to 24.2 ゜ r 1 = 306.6968 d 1 = 2.5000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 68.8581 d 2 = 6.7000 n 2 = 1.65160 ν 2 = 58.52 r 3 = −176.6059 d 3 = 0.2000 r 4 = 39.8074 d 4 = 4.6200 n 3 1.65830 ν 3 = 57.33 r 5 = 98.9843 d 5 = (variable) r 6 = 385.2105 d 6 = 1.7300 n 4 = 1.77250 v 4 = 49.66 r 7 = 23.0232 d 7 = 4.8000 r 8 = -33.9586 d 8 = 1.6000 n 5 = 1.74 100 v 5 = 52.68 r 9 = 30.8857 d 9 = 0.9600 r 10 = 30.8824 d 10 = 4.3500 n 6 = 1.80518 ν 6 = 25.43 r 11 = -42.2395 d 11 = 1.2500 n 7 = 1.80400 ν 7 = 46.57 r 12 = 106.4430 d 12 = (variable) r 13 = 38.1326 d 13 = 2.6000 n 8 = 1.56873 ν 8 = 63.16 r 14 = −95.1425 d 14 = 0.2000 r 15 = 42.9543 d 15 = 4.4500 n 9 = 1.48749 ν 9 = 70.20 r 16 = −21.5600 d 16 = 1.2000 n 10 = 1.67270 v 10 = 32.10 r 17 = −223.1585 (aspherical surface) d 17 = 1.0000 r 18; throttle d 18 = (variable) r 19 = 39.1054 d 19 = 2.5500 n 11 = 1.61272 ν 11 = 58.75 r 20 = 2166.2549 d 20 = 0.2000 r 21 = 35.0493 d 21 = 3.3000 n 12 = 1.60311 ν 12 = 60.70 r 22 = -69.0344 d 22 = 1.6800 r 23 = -174.3032 d 23 = 1.8537 n 13 = 1.59551 v 13 = 39.21 r 24 = 23.1442 d 24 = 3.0000 r 25 = −100.0752 (aspheric surface) d 25 = 2.4000 n 14 = 1.72825 v 14 = 28.46 r 26 = −126.3532 Aspherical lens data (aspherical coefficient) r 17 ; a 2 = 0, a 4 = 0.29092 × 10 -5 , a 6 = 0.70878 × 10 -8 , a 8 = −0.36492 × 10 -10 a 10 = −0.29267 × 10 -12 r 25 ; a 2 = 0, a 4 = -0.23987 × 10 -4 , a 6 = -0.52191 × 10 -7 , a 8 = -0.46 119 × 10 -9 a 10 = 0.11852 × 10 -11 Example 5 f = 36.0 mm to 101.0 mm, F / 3.58 to 4.85 2ω = 62.0 ゜ to 24.2 ゜ r 1 = 252.0551 d 1 = 2.5000 n 1 = 1.805518 ν 1 = 25.43 r 2 = 65.1512 d 2 = 7.0000 n 2 = 1.65160 ν 2 = 58.52 r 3 = -161.9672 d 3 = 0.2000 r 4 = 37.5457 d 4 = 4.5000 n 3 = 1.65160 ν 3 = 58.52 r 5 = 78.9480 d 5 = ( variable) r 6 = 532.5586 d 6 = 1.7293 n 4 = 1.77250 ν 4 = 49.66 r 7 = 22.4685 d 7 = 4.8000 r 8 = −29.7002 d 8 = 1.7000 n 5 = 1.74100 ν 5 = 52.68 r 9 = 45.4110 d 9 = 0.5000 r 10 = 40.6119 d 10 = 4.2000 n 6 = 1.80518 ν 6 = 25.43 r 11 = −29.9067 d 11 = 1.4000 n 7 = 1.80400 ν 7 = 46.57 r 12 = 192.4248 d 12 = (variable) r 13 = 40.9001 d 13 = 2.4509 n 8 = 1.56873 ν 8 = 63.16 r 14 = -51.4228 d 14 = 0.4213 r 15 = 46.2648 d 15 = 4.3082 n 9 = 1.48749 ν 9 = 70.20 r 16 = -22.4313 d 16 = 0.5000 r 17 = -19.8955 d 17 = 1.2000 n 10 = 1.67270 ν 10 = 32.10 r 18 = -382.3099 (aspherical surface) d 18 = 1.0000 r 19 ; aperture d 19 = (Variable) r 20 = 65.3181 d 20 = 2.6729 n 11 = 1.61272 ν 11 = 58.75 r 21 = -113.4383 d 21 = 0.2000 r 22 = 33.7189 d 22 = 2.9680 n 12 = 1.60311 ν 12 = 60.70 r 23 = -71.5852 d 23 = 2.5000 r 24 = -114.3990 d 24 = 1.8537 n 13 = 1.66998 v 13 = 39.27 r 25 = 25.0369 d 25 = 3.0000 r 26 = -313.9246 (aspheric) d 26 = 2.5000 n 14 = 1.72825 v 14 = 28.46 r 27 = -126.3532 Aspherical lens data (aspherical coefficient) r 18 ; a 2 = 0, a 4 = −0.27217 × 10 −5 , a 6 = 0.50299 × 10 −8 , a 8 = −0.18210 × 10 −9 a 10 = −0.50016 × 10 −12 r 26 ; a 2 = 0, a 4 = −0.18698 × 10 −4 , a 6 = 0.12978 × 10 −7 , a 8 = −0.90959 × 10 −9 a 10 = 0.32874 × 10 −11 Example 6 f = 36.3 mm to 102.0 mm, F / 3.50 to 4.84 2ω = 61.6 ゜ to 24.0 ゜ r 1 = 393.7230 d 1 = 2.5500 n 1 = 1.80518 ν 1 = 25.43 r 2 = 77.2250 d 2 = 7.0100 n 2 = 1.60311 ν 2 = 60.70 r 3 = -118.4586 d 3 = 0.1000 r 4 = 40.5790 d 4 = 4.2500 n 3 = 1.69680 ν 3 = 55.52 r 5 = 78.3661 d 5 = (variable) r 6 = 174.9416 d 6 = 1.3000 n 4 = 1.80610 ν 4 = 40.95 r 7 = 20.1043 d 7 = 4.8000 r 8 = -61.2914 d 8 = 1.1000 n 5 = 1.83481 ν 5 = 42.72 r 9 = 66.7247 d 9 = 0.3600 r 10 = 32.6794 d 10 = 3.7900 n 6 = 1.80518 ν 6 = 25.43 r 11 = −38.1815 d 11 = 1.5700 r 12 = −24.4385 d 12 = 1.0000 n 7 = 1.80400 ν 7 = 46.57 r 13 = −231.5781 d 13 = (variable) r 14 ; aperture d 14 = 1.1000 r 15 = 25.0368 (aspheric surface) d 15 = 2.4100 n 8 = 1.65016 ν 8 = 39.39 r 16 = −908.3515 d 16 = 0.1000 r 17 = 19.9465 d 17 = 2.7600 n 9 = 1.65830 ν 9 = 57.33 r 18 = −264.0968 d 18 = 0.1200 r 19 = 724.5317 d 19 = 6.7000 n 10 = 1.80518 ν 10 = 25.43 r 20 = 13.5026 d 20 = 2.1000 r 21 = -63.3761 d 21 = 2.2800 n 11 = 1.60311 ν 11 = 60.70 r 22 = -35.4653 d 22 = 0.8600 r 23 = 24.2857 d 23 = 3.2900 n 12 = 1.53172 ν 12 = 48.90 r 24 = 63.0831 (non-spherical) Aspherical lens data (aspherical coefficient) r 15 ; a 2 = 0, a 4 = −0.88864 × 10 −5 , a 6 = −0.20553 × 10 −7 , a 8 = −0.16039 × 10 −10 , a 10 = −0.36641 × 10 -12 r 24 ; a 2 = 0, a 4 = 0.11255 × 10 -4 , a 6 = −0.10349 × 10 -7 , a 8 = −0.46647 × 10 -10 , a 10 = −0.31622 × 10 -11 Example 7 f = 36.3 mm to 102.0 mm, F / 3.50 to 4.85 2ω = 61.6 ゜ to 24.0 ゜ r 1 = −353.1978 d 1 = 2.5500 n 1 = 1.80518 ν 1 = 25.43 r 2 = 77.2250 d 2 = 7.0100 n 2 = 1.60311 ν 2 = 60.70 r 3 = -155.4196 d 3 = 0.1000 r 4 = 49.8532 d 4 = 4.2500 n 3 = 1.69680 ν 3 = 55.52 r 5 = 272.3135 d 5 = ( variable) r 6 = 202.5582 d 6 = 1.3000 n 4 = 1.80610 ν 4 = 40.95 r 7 = 18.6630 d 7 = 4.8000 r 8 = -123.1804 d 8 = 1.1000 n 5 = 1.83481 ν 5 = 42.72 r 9 = 65.1293 d 9 = 0.3600 r 10 = 28.4356 d 10 = 5.6000 n 6 = 1.80518 ν 6 = 25.43 r 11 = -40.4334 d 11 = 1.5700 r 12 = -27.4208 d 12 = 1.0000 n 7 = 1.80400 ν 7 = 46.57 r 13 = 1198.1331 d 13 = ( variable) r 14; stop d 14 = 1.1000 r 15 = 15.5915 (aspheric surface) d 15 = 4.1000 n 8 = 1.65016 v 8 = 39.39 r 16 = −81.3885 d 16 = 0.1000 r 17 = 37.3048 d 17 = 3.4000 n 9 = 1.65830 v 9 = 57.33 r 18 = −68.3920 d 18 = 0.1200 r 19 = -76.1286 d 19 = 4.5000 n 10 = 1.80518 ν 10 = 25.43 r 20 = 11.4644 d 20 = 2.1000 r 21 = 15.7645 d 21 = 3.2900 n 11 = 1.53172 ν 11 = 48.90 r 22 = 51.3460 (aspherical surface) Aspherical lens data (aspherical coefficient) r 15 ; a 2 = 0, a 4 = −0.25760 × 10 −4 , a 6 = −0.10071 × 10 −6 , a 8 = −0.24203 × 10 −9 , a 10 = −0.21849 × 10 −12 r 22 ; a 2 = 0, a 4 = 0.39273 × 10 -4 , a 6 = 0.11228 × 10 -6 , a 8 = −0.54087 × 10 -9 , a 10 = −0.31204 × 10 − 11 Where f: focal length of the entire system F; F number 2ω; angle of view r i : radius of curvature d i of each surface sequentially from the object side; wall thickness and air gap of each lens sequentially from the object side n i : object The refractive index of d-Iine of each lens sequentially from the side v i ; Abbe number of each lens sequentially from the object side fw; Focal length of the whole system at the wide-angle end f R w; Focal length of the imaging lens group at the wide-angle end e 2T ; the distance between the rear principal point of the second group at the telephoto end and the front principal point of the imaging lens group R; the radius of curvature of the most image side surface of the first lens group Spherical surface, when the optical axis direction is x, the normal direction of the optical axis is y, and the paraxial radius of curvature is R, Is represented by Here, a 2 , a 4 , a 6 ,... Are aspheric coefficients.

尚、A4;第1の非球面における非球面係数a4 B4;第2の非球面における非球面係数a4 C4,D4;非球面係数a4 である。Incidentally, A 4; aspherical coefficients a 4; first aspherical coefficient in the aspherical surface of a 4 B 4; aspherical coefficients of the second aspherical a 4 C 4, D 4.

〔発明の効果〕〔The invention's effect〕

各実施例の収差曲線図からも明らかなように、本発明
によれば、各収差の良好に補正された高性能でかつコン
パクト化が十分に達成されたズームレンズが提供され
る。
As is clear from the aberration curve diagrams of the respective embodiments, according to the present invention, there is provided a zoom lens in which each aberration is well corrected, has high performance, and is sufficiently compact.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は夫々本発明の実施例1、2、4の広
角端及び望遠端のレンズ構成の断面図、第3図は実施例
3、5の広角端のレンズ構成の断面図、第4図及び第5
図は夫々実施例6の広角端及び望遠端のレンズ構成の断
面図、第6図は実施例7の広角端のレンズ構成の断面
図、第7図乃至第9図、第10図乃至第12図、第13図乃至
第15図、第16図乃至第18図、第19図乃至第21図、第22図
乃至第24図、第25図乃至第27図は夫々実施例1から7ま
での広角端、中間倍率、望遠端の収差曲線図である。
1 and 2 are cross-sectional views of the wide-angle end and telephoto end lens configurations of Examples 1, 2, and 4 of the present invention, respectively. FIG. 3 is a cross-sectional view of the wide-angle end lens configurations of Examples 3 and 5. 4 and 5
The figures are cross-sectional views of the wide-angle end and telephoto end lens configurations of the sixth embodiment, respectively. FIG. 6 is a cross-sectional view of the wide-angle end lens configuration of the seventh embodiment, FIGS. 7 to 9, and FIGS. FIGS. 13 to 15, 16 to 18, 19 to 21, 22 to 24, and 25 to 27 show Embodiments 1 to 7, respectively. FIG. 4 is an aberration curve diagram at a wide-angle end, an intermediate magnification, and a telephoto end.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に、正の第1レンズ群と、負
の第2レンズ群と、明るさ絞りを有した1群以上のレン
ズ群より成る全体として正の結像レンズ群とから成り、
広角側から望遠側へズーミングする際に前記第1レンズ
群と前記第2レンズ群の間隔が増加し前記第2レンズ群
と前記結像レンズ群の間隔が減少するとともに、前記結
像レンズ群が複数のレンズ群で構成される場合は前記複
数のレンズ群の各々の群間隔が変化するズームレンズ
で、前記結像レンズ群にのみに非球面が配置され、前記
明るさ絞りの近傍の面に第1の非球面、前記結像レンズ
群の像面に近い面に第2の非球面を有し、以下の条件を
満足するズームレンズ。 1<|B4|/|A4|<100 ……(1) 但、非球面の式を x=cy2(1+(1−c2y21/2-1+a2y2+a4y4+a6y6+・・・ c=1/R とおくと、 x:非球面の面頂からの光軸方向の座標 y:光軸の法線方向の座標 R:近軸曲率半径 a2,a4,a6・・・・:非球面係数 A4:第1の非球面における非球面係数a4 B4:第2の非球面における非球面係数a4 である
1. An image pickup apparatus comprising: a positive first lens group, a negative second lens group, and one or more lens groups having a brightness stop, and a positive imaging lens group as a whole, in order from the object side. Consisting of
When zooming from the wide-angle side to the telephoto side, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the imaging lens group decreases. When constituted by a plurality of lens groups, a zoom lens in which a group interval of each of the plurality of lens groups changes, an aspheric surface is arranged only in the imaging lens group, and a surface near the aperture stop A zoom lens that has a first aspheric surface and a second aspheric surface on a surface close to the image plane of the imaging lens unit, and satisfies the following conditions. 1 <| B 4 | / | A 4 | <100 (1) where the expression of the aspherical surface is x = cy 2 (1+ (1−c 2 y 2 ) 1/2 ) −1 + a 2 y 2 + a 4 y 4 + a 6 y 6 + ... c = 1 / R, x: coordinates in the optical axis direction from the top of the aspheric surface y: coordinates in the normal direction of the optical axis R: paraxial radius of curvature a 2 , a 4 , a 6 ...: aspherical surface coefficient A 4 : aspherical surface coefficient a 4 B 4 : aspherical surface coefficient a 4 in the second aspheric surface
JP63116682A 1988-05-13 1988-05-13 Zoom lens Expired - Lifetime JP2859616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116682A JP2859616B2 (en) 1988-05-13 1988-05-13 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116682A JP2859616B2 (en) 1988-05-13 1988-05-13 Zoom lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10563996A Division JPH08271790A (en) 1996-04-25 1996-04-25 Zoom lens

Publications (2)

Publication Number Publication Date
JPH01285911A JPH01285911A (en) 1989-11-16
JP2859616B2 true JP2859616B2 (en) 1999-02-17

Family

ID=14693265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116682A Expired - Lifetime JP2859616B2 (en) 1988-05-13 1988-05-13 Zoom lens

Country Status (1)

Country Link
JP (1) JP2859616B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3104227B2 (en) * 1989-08-18 2000-10-30 株式会社ニコン Zoom lens
JP3387687B2 (en) * 1995-03-13 2003-03-17 キヤノン株式会社 Zoom lens
JP3569473B2 (en) * 1999-12-27 2004-09-22 ペンタックス株式会社 Zoom lens system
EP3474059A4 (en) * 2016-06-21 2020-03-11 Nittoh Inc. Image-capturing optical system and image-capturing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183514A (en) * 1984-10-01 1986-04-28 Canon Inc Variable power method of zoom lens
JPS61140913A (en) * 1984-12-13 1986-06-28 Matsushita Electric Ind Co Ltd High variable power system zoom lens

Also Published As

Publication number Publication date
JPH01285911A (en) 1989-11-16

Similar Documents

Publication Publication Date Title
JP2619632B2 (en) Compact high-magnification zoom lens
JP2628633B2 (en) Compact zoom lens
JP3365835B2 (en) Compact 3-group zoom lens
JPH07253542A (en) Zoom lens
JP3162114B2 (en) Two-group zoom lens
JPH1020193A (en) Zoom lens
JPH05150161A (en) Variable power lens
JPH11109229A (en) Soft focus zoom lens system including wide angle
JP3018742B2 (en) Zoom lens
JPH0830783B2 (en) High magnification zoom lens for compact cameras
JP3331011B2 (en) Small two-group zoom lens
JP3369598B2 (en) Zoom lens
JPH07120678A (en) Focusing method of three-group zoom lens
JPH06294932A (en) Zoom lens
JP3678522B2 (en) Camera with zoom lens
JP3445413B2 (en) Lens system
JP3268824B2 (en) Small two-group zoom lens
JPH08334693A (en) Variable power lens
JP2859616B2 (en) Zoom lens
JPH05346542A (en) Small-sized two-group zoom lens
JP3183047B2 (en) Zoom lens
JP2579215B2 (en) Zoom lens
JPH0634883A (en) Super wide-angle variable power zoom lens
JP3162113B2 (en) Small and bright zoom lens
JP3514851B2 (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10