JPH01285911A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH01285911A
JPH01285911A JP11668288A JP11668288A JPH01285911A JP H01285911 A JPH01285911 A JP H01285911A JP 11668288 A JP11668288 A JP 11668288A JP 11668288 A JP11668288 A JP 11668288A JP H01285911 A JPH01285911 A JP H01285911A
Authority
JP
Japan
Prior art keywords
lens group
lens
aspherical surface
aspherical
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11668288A
Other languages
Japanese (ja)
Other versions
JP2859616B2 (en
Inventor
Kazuo Igari
和夫 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63116682A priority Critical patent/JP2859616B2/en
Publication of JPH01285911A publication Critical patent/JPH01285911A/en
Application granted granted Critical
Publication of JP2859616B2 publication Critical patent/JP2859616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the zoom lens which is well corrected in various aberrations, has high performance and is sufficiently reduced in size by effectively using aspherical surfaces. CONSTITUTION:This lens has a 1st aspherical surface at least on the surface near a diaphragm and the 2nd aspherical surface on the surface near the image plane of an imaging lens group and is so constituted as to satisfy the conditions expressed by equation I. In equation I, the equation of the aspherical surface is expressed as equations II, III, then (x) is the coordinates in the optical axis direction from the peak of the aspherical surface; y is the coordinate in the normal direction of the optical axis; R is the radius of paraxial curvature; a3, a4, a6... are aspherical surface coeffts.; A4 is the aspherical surface coefft. a4 at the 1st aspherical surface; B4 is the aspherical surface coefft. a4 at the 2nd aspherical surface. The zoom lens which is well corrected in the respective aberrations, has the high performance and is sufficiently reduced in size is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はズームレンズに関するもので、特に画角63°
の広角を含み3群以上のレンズ群で構成されるコンパク
トなズームレンズに関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a zoom lens, particularly a zoom lens with an angle of view of 63°.
The present invention relates to a compact zoom lens that includes a wide-angle lens and is composed of three or more lens groups.

〔従来の技術〕[Conventional technology]

従来この種のレンズとしては、物体側より順に正の第1
群、負の第2群、正の第3群、正の第4群より成り、こ
のうち第1群、第3群、第4群を移動することによりズ
ーミングを行い、特に第2群のパワーを強くすることで
コンパクト化を行ったものが特開昭59−57213号
公報、特開昭59−57214号公報等で知られている
Conventionally, this type of lens has a positive first lens in order from the object side.
zooming is performed by moving the first, third, and fourth groups, and especially the power of the second group. JP-A-59-57213, JP-A-59-57214, etc. are known in which the structure is made more compact by increasing the strength.

また、非球面を用いたものとしては、正の第1群、負の
第2群、正の第3群、そして第4群の4群から成り、コ
ンパクト化のために第3群のパワーを強め、その時発生
する球面収差及び非点収差を非球面により補正したもの
が特開昭60−178421号公報に示されている。
In addition, the one using an aspheric surface consists of four groups: a positive first group, a negative second group, a positive third group, and a fourth group, and the power of the third group is reduced for compactness. Japanese Patent Application Laid-Open No. 178421/1983 shows an example in which the spherical aberration and astigmatism that occur at that time are corrected by an aspheric surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前者のものでは、広角端の望遠比が3.
6程度であり、既に第2群のパワーを特に強くしている
ため、更にコンパクト化するベくパワーを強めると諸収
差が劣化してしまう。
However, in the former case, the telephoto ratio at the wide-angle end is 3.
6, and the power of the second group has already been particularly strong, so if the power is increased to further downsize, various aberrations will deteriorate.

また、後者のものでは、球面収差、非点収差等の諸収差
を一つの非球面で同時に補正する構゛ 成になっている
ため、それぞれの収差補正に限界があり、よりコンパク
ト化するために各群のパワーを強くすると、収差が補正
しきれなくなってしまう。
Furthermore, in the latter case, various aberrations such as spherical aberration and astigmatism are corrected at the same time using a single aspherical surface, so there is a limit to the correction of each aberration, so it is necessary to make it more compact. If the power of each group is increased, aberrations cannot be corrected completely.

また、どちらも4群構成のズームレンズであるため、枠
構造が複雑になってしまう。
Furthermore, since both are zoom lenses with a four-group configuration, the frame structure becomes complicated.

本発明はこのような問題点に着目してなされたものであ
り、非球面を有効に用いることで、各収差の良好に補正
された高性能でかつコンパクト化が十分に達成されたズ
ームレンズを提供することを目的とする。
The present invention was made with attention to these problems, and by effectively using aspherical surfaces, it is possible to create a zoom lens that is high-performance, has all aberrations well corrected, and is sufficiently compact. The purpose is to provide.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記目的を達成するために、本発明に基づくズームレン
ズでは、物体側より順に正の第1レンズ群と負の第2レ
ンズ群と絞りを有し1群以上のレンズ群より成る全体と
して正の結像レンズ群とから成り、広角側から望遠側へ
ズーミン−6= グする際にi訂記第ルンズ群と前記第2レンズ群の間隔
が増加し前記第2レンズ群と前記結像レンズ群の間隔が
減少するズームレンズで、少なくとも前記絞りの近傍の
面に第1の非球面、前記結像レンズ群の像面に近い面に
第2の非球面を有し、以下の条件を満足するズームレン
ズ。
In order to achieve the above object, the zoom lens according to the present invention has a positive first lens group, a negative second lens group, and an aperture in order from the object side, and has a positive lens group as a whole consisting of one or more lens groups. When zooming from the wide-angle side to the telephoto side, the distance between the second lens group and the second lens group increases, and the distance between the second lens group and the second lens group increases. A zoom lens in which the distance between the diaphragm and the diaphragm decreases, the zoom lens having at least a first aspherical surface on a surface near the aperture, and a second aspherical surface on a surface near the image plane of the imaging lens group, satisfying the following conditions. zoom lens.

但、非球面の式を χ−cyす(1+f−ヨ1♂【15+azy2+ aa
y’ +abV6十とおくと、 × ;非球面の面頂からの光軸方向の座標y ;光軸の
法線方向の座標 R;近軸曲率半径 8!+ 84+ aa−””−−−’−;非球面係数A
4i第1の非球面における非球面係数a4B4;第2の
非球面における非球面係数a4である。
However, the formula for the aspheric surface is χ-cy (1+f-yo1♂[15+azy2+ aa
When y' + abV6 is set as 10, ×; Coordinate y in the optical axis direction from the apex of the aspheric surface; Coordinate R in the normal direction of the optical axis; Paraxial radius of curvature 8! + 84+ aa-""---'-; Aspherical coefficient A
4i Aspherical coefficient a4B4 of the first aspherical surface; aspherical coefficient a4 of the second aspherical surface.

また、ズームレンズを4群構成にした場合には、物体側
より順に正の第11/ンズ群と負の第2レンズ群と正の
第3レンズ群と絞りと正の第4レンズ群とから成り、広
角側から望遠側へズーミングする際に前記第1レンズ群
と前記第2レンズ群の間隔が増加し前記第2レンズ群と
前記第3レンズ群の間隔が減少し前記第3レンズ群と前
記第4レンズ群の間隔が減少するズームレンズで、前記
第4レンズ群が少なくとも1面の非球面を有し、以下の
条件を満足するズームレンズ。
In addition, when a zoom lens has a four-group configuration, from the object side the positive 11th lens group, the negative second lens group, the positive third lens group, the diaphragm, and the positive fourth lens group. When zooming from the wide-angle side to the telephoto side, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and the distance between the third lens group and the third lens group increases. A zoom lens in which the distance between the fourth lens group is reduced, the fourth lens group having at least one aspherical surface, and satisfying the following conditions.

0.1  xlO−’<  I C41<  0.1 
 xlO”’  −+21但し、非球面の式を X= ’−y’ (1+、7σ「p−,5+8272+
  84V”a 6y 6 +−−−−−−°゛− とおくと、 X ;非球面の面頂からの光軸方向の座標y :光軸の
法線方向の座標 R;近軸曲率半径 aZ+ al+ 86’−’−”’−・−;非球面係数
C4;非球面係数84 とすることによりその効果を得ることができる。
0.1 xlO-'<IC41< 0.1
xlO"' -+21 However, the formula of the aspheric surface is
84V”a 6y 6 +−−−−−−°゛−, then, This effect can be obtained by setting al+86'-'-''-.-; aspherical coefficient C4; aspherical coefficient 84.

更にまた、ズームレンズを3群構成にした場合には、物
体側より順に正の第1レンズ群と負の第2レンズ群と少
なくとも1枚の両四単レンズ及び最も像面側に配置され
た物体側に凸の正メニスカスレンズを有する結像レンズ
群との3群から成り、前記正メニスカスレンズの少なく
とも1面が非球面であり、該非球面の形状が光軸から離
れるに従って正の作用が弱まる形状であり、以下の条件
を満足するズームレンズ。
Furthermore, when the zoom lens has a three-group configuration, in order from the object side, a positive first lens group, a negative second lens group, at least one biquad lens, and a lens disposed closest to the image plane. It consists of three groups: an imaging lens group having a positive meniscus lens convex to the object side, and at least one surface of the positive meniscus lens is an aspherical surface, and the positive effect weakens as the shape of the aspherical surface moves away from the optical axis. A zoom lens that has a shape that satisfies the following conditions.

0、I  Xl0−’<   l  D4.1  < 
 0.I  Xl0−3−−−−−−・−−−−−+3
)但し、非球面の式を x=cy’ (1+、/TTc”7 + azY2+ 
 aay’  +a 6y 6 +   −−−−〜゛ とおくと、 X ;非球面の面頂からの光軸方向の座標y ;光軸の
法線方向の座標 R;近軸曲率半径 aZ+ 84t ah−”’−’:非球面係数D4;り
球面係数84 とすることによりその効果を得ることができる。
0, I Xl0-'< l D4.1 <
0. I Xl0-3−−−−−−・−−−−−+3
) However, the formula of the aspheric surface is x=cy' (1+, /TTc"7 + azY2+
aay' + a 6y 6 + ----- ~ ゛, then X; Coordinate y in the optical axis direction from the apex of the aspheric surface; Coordinate R in the normal direction of the optical axis; Paraxial radius of curvature aZ+ 84t ah- ``'-'': Aspherical coefficient D4; By setting the spherical coefficient to 84, this effect can be obtained.

尚、前述した非球面を2面用いるものにおいては、2つ
の非球面のうちの像側の非球面が以下の条件を満足する
ようにすると、非点収差が良好に補正され、より好まし
い。
In the case where two aspherical surfaces are used as described above, it is more preferable that the image-side aspherical surface of the two aspherical surfaces satisfies the following conditions because astigmatism can be well corrected.

0.1  x 10−5<  l B4 i < 0.
1  x 10−3−− (alざて、レンズ全長を短
くコンパクトにするには、各レンズ群のパワーを強くす
ることが行われるが、各収差の良好な補正を維持するた
めに適切なパワー配分を行うことが重要である。特にコ
ンパクトなレンズ系を得るために(J、以−ト−l  
O−− の条件を満足することが好ましい。
0.1 x 10-5 < l B4 i < 0.
1 It is important to carry out the distribution, especially in order to obtain a compact lens system (J, hereafter
It is preferable to satisfy the condition O--.

0 、4  < f * w / f u  < 0 
、8 −−−−−−−−−−−−−−−一−−−−−−
(510,15<ett/fw<0.75−−−−−−
−−−−−(6)但、九は全系の広角端の焦点距離+ 
 flll+1は結像レンズ群(4群ズームレンズの場
合は第3群と第4群の合成群が、3群ズームレンズの場
合は第3群が対応)の広角端焦点距離、eZT は望遠
端での第2群の後側主点と結像レンズ群の前側主点との
距離である。
0, 4 < f * w / f u < 0
, 8 −−−−−−−−−−−−−−−−−−−−−−−
(510,15<ett/fw<0.75-----
−−−−−(6) However, 9 is the focal length of the entire system at the wide-angle end +
flll+1 is the focal length at the wide-angle end of the imaging lens group (in the case of a 4-group zoom lens, the composite group of the 3rd and 4th groups corresponds, and in the case of a 3-group zoom lens, the 3rd group corresponds), and eZT is the focal length at the telephoto end. is the distance between the rear principal point of the second group and the front principal point of the imaging lens group.

また、第1群を物体側に凸面を向けた負メニスカスレン
ズ及び両凸レンズ或いはそれらの接合レンズ、と、物体
側に凸の正メニスカスレンズとから構成し、第1レンズ
群でフォーカシングを行う場合、第1レンズ群の層像側
面の曲率半径をRとおくと、以下の条件を満足すること
が好ましい。
Further, when the first lens group is composed of a negative meniscus lens with a convex surface facing the object side, a biconvex lens, or a cemented lens thereof, and a positive meniscus lens with a convex surface facing the object side, and focusing is performed with the first lens group, Assuming that the radius of curvature of the layer image side surface of the first lens group is R, it is preferable that the following conditions are satisfied.

1.5 < R/ f t、 < 3.5   −−−
−−−−−−(71更に、第2群の最物体側面を物体側
に凸とし、層像側面も物体側に凸とすることにより、軸
外光線の第2群への入射角及び射出角を小さくしてズー
ミングによる軸外収差の変動を小さくすることができる
。このとき、4群構成のものにおいては、この第2レン
ズ群を物体側より順に物体側に凸の負メニスカスレンズ
1 両凹レンズ。
1.5 < R/ f t, < 3.5 ---
-------- (71 Furthermore, by making the most object side surface of the second group convex toward the object side and also making the layer image side surface convex toward the object side, the incident angle and exit of the off-axis rays to the second group By making the angle smaller, it is possible to reduce fluctuations in off-axis aberrations due to zooming.At this time, in a four-group structure, this second lens group is sequentially constructed from the object side with one negative meniscus lens convex toward the object side. concave lens.

接合正レンズより構成するか、又は正レンズを2枚含む
ように構成するとより好まL7い。
It is more preferable to use a cemented positive lens or to include two positive lenses.

また、各レンズ群に正レンズと負レンズとの両方を含め
ることにより色収差を良好に補正することができる。こ
の時、第2群は狛のパワーが強いため、複数の負レンズ
を用いろことが好ましい。
Further, by including both a positive lens and a negative lens in each lens group, chromatic aberration can be corrected well. At this time, it is preferable to use a plurality of negative lenses because the second group has a strong shield power.

そして、レンズ鏡筒構成上、パワーの強い第2群をズー
ミング中固定にすると、性能を安定して出し易い。また
、第1群と第4群を−・体にしてズーミングするように
すれば、鏡筒構造が簡単になる。
In addition, due to the lens barrel configuration, if the second group, which has a strong power, is fixed during zooming, it is easier to achieve stable performance. Furthermore, if the first group and the fourth group are used as a body for zooming, the lens barrel structure can be simplified.

〔作 用〕[For production]

次に前記条件(11乃至条件(6)についてその作用を
説明する。
Next, the effects of the conditions (11 to (6)) will be explained.

非球面を用いて非点収差を補正することを考えると、非
球面を絞りよりできるだけ像面に近い位1に配設するの
が望ましい。しかしながら非球面は、球面収差も変化さ
せてしまうため、単純に非球面を用いて非点収差の補正
を行うと、球面収差が悪化してしまう。また、レンズ系
の像側のレンズの小径化を考えると、射出瞳を像面に近
づけるのが望ましい。ところが、このために絞りを像面
に近づけると、非点収差の補正能力が弱くなりかつ球面
収差の変化が大きくなるため、この状況で1つの非球面
により非点収差を良好に補正しようとすると球面収差が
悪化してしまう。そして、以上のような非球面で発生す
る球面収差は高次収差を含むため、これを球面系で補正
するのは困鑓である。
When considering correcting astigmatism using an aspherical surface, it is desirable to arrange the aspherical surface as close as possible to the image plane than the aperture. However, since the aspherical surface also changes the spherical aberration, if the astigmatism is simply corrected using the aspherical surface, the spherical aberration will worsen. Furthermore, in consideration of reducing the diameter of the lens on the image side of the lens system, it is desirable to bring the exit pupil closer to the image plane. However, if the aperture is brought closer to the image plane for this reason, the ability to correct astigmatism becomes weaker and the change in spherical aberration increases. Spherical aberration worsens. Since the spherical aberrations generated by the aspherical surfaces as described above include higher-order aberrations, it is difficult to correct them using a spherical system.

さて、絞り近傍に非球面を配置すると、上述したように
、非点収差の変動は小さく、球面収差の変動が大きくな
る。従って、上述の非点収差を補正する非球面とは別に
、球面収差を補正するための非球面をここに設けると、
非点収差に影響を与えずに、かつ上述の高次収差をも含
めて球面収差を補正することが可能である。
Now, when an aspherical surface is placed near the aperture, as described above, the variation in astigmatism becomes small and the variation in spherical aberration becomes large. Therefore, if an aspherical surface for correcting spherical aberration is provided here in addition to the aspherical surface for correcting astigmatism mentioned above,
It is possible to correct spherical aberration including the above-mentioned higher-order aberrations without affecting astigmatism.

以上の点を考慮して、非点収差補正を中心として像面近
傍に非球面を配置し、更にここで発生する球面収差を含
めた球面収差補正を中心として絞り近傍に非球面を配置
する。そしてこれら2つの非球面を適切に組み合わせる
ことにより各収差を良好に補正するための条件が前述の
条件(1)である。この条件の上限を越えると、像面側
の非球面による球面収差を絞り側の非球面で補正し得な
い。下限を越えると絞り側の非球面での球面収差が過剰
になる。
Considering the above points, an aspherical surface is placed near the image plane mainly for astigmatism correction, and an aspherical surface is placed near the aperture stop mainly for spherical aberration correction including the spherical aberration that occurs here. The above-mentioned condition (1) is a condition for properly correcting each aberration by appropriately combining these two aspheric surfaces. If the upper limit of this condition is exceeded, the spherical aberration caused by the aspherical surface on the image side cannot be corrected by the aspherical surface on the aperture side. If the lower limit is exceeded, spherical aberration on the aspherical surface on the aperture side becomes excessive.

次に、条件(2)について説明するとこれはズームレン
ズを4群構成とした場合に、非球面を適切に用いること
により、少なくとも1つの非球面により全長を短かくコ
ンパクトにした上で各収差とも良好に補正するための条
件である。この条件は、非球面を第4群の像面に近い面
に用いることにより、各像高の光束が分離する傾向にな
り、かつ非球面への入射角が大きくなり、更に軸上光線
高が低くなることを利用して、球面収差への影響を小さ
くしながら、コマ収差、非点収差の補正を良好に行うた
めのものである。
Next, to explain condition (2), this means that when a zoom lens has a four-group configuration, by appropriately using aspherical surfaces, the overall length can be shortened and compacted by at least one aspherical surface, and each aberration can be reduced. This is a condition for good correction. This condition is based on the fact that by using an aspherical surface near the image plane of the fourth group, the light beams at each image height tend to separate, the angle of incidence on the aspherical surface increases, and the axial ray height increases. This is to take advantage of the fact that the aberration is lower and to effectively correct coma aberration and astigmatism while reducing the influence on spherical aberration.

この条件の上限を越えると、コマ収差、非点収差が補正
過剰となり、また軸上光線にも影響を与え球面収差が劣
下する。下限を越えると、非球面の効果が弱くなりすぎ
収差補正が困難になる。
If the upper limit of this condition is exceeded, coma aberration and astigmatism will be overcorrected, and axial rays will also be affected, resulting in a decrease in spherical aberration. If the lower limit is exceeded, the effect of the aspheric surface becomes too weak, making it difficult to correct aberrations.

尚、前述の非球面を2面用いる場合にも、像面側の非球
面の作用としては上記条件(2)の説明と共通する面も
多く、従って前記条件(4)を満足することにより、非
点収差をより良好に補正することができる。この条件の
上限を越えると、非点収差、球面収差が補正過剰となる
。下限を越えると、共に補正不足となる。
Note that even when using the two aspherical surfaces described above, the action of the aspherical surface on the image side has many surfaces that are common to the explanation of condition (2) above, and therefore, by satisfying the condition (4) above, Astigmatism can be better corrected. If the upper limit of this condition is exceeded, astigmatism and spherical aberration will be overcorrected. If the lower limit is exceeded, both will be under-corrected.

また、条件(3)はズームレンズを3群構成とした場合
の像側に設けられた非球面の形状に関する条件式である
。条件式そのものは条件(2)と同じであり、その上、
下限越えの傾向も同様である。但し、結像レンズ群を1
群で構成しているので、この結像レンズ群で発生する像
面湾曲の補正をこの非球面で補正すると球面収差及び:
1マフレアーが補正しきれなくなるため、これを結像レ
ンズ群中に両凹レンズを設けることにより補正している
。また、4群と同様絞り近傍に更に非球面を設けてこれ
により補正することも可能である。
Furthermore, condition (3) is a conditional expression regarding the shape of the aspheric surface provided on the image side when the zoom lens has a three-group configuration. The conditional expression itself is the same as condition (2), and furthermore,
The same goes for the tendency to exceed the lower limit. However, if the imaging lens group is
Since it is composed of a lens group, if the field curvature generated in this imaging lens group is corrected by this aspheric surface, spherical aberration and:
Since one muff flare cannot be completely corrected, this is corrected by providing a biconcave lens in the imaging lens group. Further, as with the fourth group, it is also possible to further provide an aspherical surface near the diaphragm for correction.

さて、条件(5)、(6)は前述したように通切なパワ
ー配分を定めるための条件であり、共に上限を越えると
レンズ全長が長くなり、コンパクト化を達成できない。
Now, as mentioned above, conditions (5) and (6) are conditions for determining a perfect power distribution, and if both exceed the upper limit, the overall length of the lens becomes longer and compactness cannot be achieved.

下限を越えると、各BYのパワーが強くなりすぎ、前述
の非球面を用いても各収差の補正が困難になる。
If the lower limit is exceeded, the power of each BY becomes too strong, and it becomes difficult to correct each aberration even if the above-mentioned aspherical surface is used.

条件(7)は、前述したようにフォーカシングも考慮し
てより良好な性能を得るための条件である。上限を越え
ると、ズーミングによる歪曲収差の変動が大きくなる。
Condition (7) is a condition for obtaining better performance in consideration of focusing as described above. When the upper limit is exceeded, fluctuations in distortion due to zooming become large.

下限を越えると、フォーカシングの際球面収差の変動が
大きく中心と周辺の良像位置を−・致させるのが難しく
なる。
If the lower limit is exceeded, the spherical aberration will fluctuate greatly during focusing, making it difficult to align good image positions at the center and periphery.

〔実施例〕〔Example〕

実施例1,2.4は第1図に広角端の、第2図に望遠端
の断面図を示すとおりの正・負・正・正の4群構成で、
非球面を2面用いたズームレンズである。実施例3.5
は第3図に広角端の断面図を示すとおりの、上記同様の
正・負・正・正の4群構成で、非球面を2面用いたズー
ムレンズである。ごれらの実施例1乃至5において、非
球面は絞り近傍の第3レンズ群最像側レンズ像側面及び
第4レンズ群最像側レンズ物体側面に設けられている。
Examples 1 and 2.4 have a four-group configuration of positive, negative, positive, and positive, as shown in the cross-sectional view of the wide-angle end in Fig. 1 and the telephoto end in Fig. 2.
This is a zoom lens that uses two aspherical surfaces. Example 3.5
As shown in FIG. 3, which is a cross-sectional view at the wide-angle end, this zoom lens has the same four-group configuration of positive, negative, positive, and positive as described above, and uses two aspheric surfaces. In Examples 1 to 5, the aspheric surfaces are provided on the image side surface of the lens of the third lens group closest to the image side and on the object side surface of the lens of the fourth lens group closest to the image side near the aperture stop.

実施例6は第4図に広角端の、第5図に望遠端の断面図
を示すとおりの正・負・正の3群構成で、非球面を2面
用いたズームレンズである。
Embodiment 6 is a zoom lens having a three-group configuration of positive, negative, and positive, as shown in cross-sectional views at the wide-angle end in FIG. 4 and at the telephoto end in FIG. 5, and using two aspheric surfaces.

実施例7は第6図に広角端の断面図を示すとおりの、実
施例6と同様圧・負・正の3群構成で、非球面を2面用
いたズームレンズである。これらの実施例6,7におい
て、非球面は絞り近傍の第3レンズ群最物体側レンズ物
体側面及び第3レンズ群最像側レンズ像側面に設けられ
ている。
Embodiment 7 is a zoom lens, as shown in FIG. 6, which is a cross-sectional view at the wide-angle end, and has a three-group structure of pressure, negative, and positive lenses, and uses two aspheric surfaces, as in Embodiment 6. In these embodiments 6 and 7, the aspherical surfaces are provided on the object side of the lens closest to the object side of the third lens group and on the image side of the lens closest to the image side of the third lens group near the aperture stop.

実施例8.10は夫々第7,9図に広角端の断面図を示
すとおりの正・負・正・正の4群構成で、非球面を1面
用いたズームレンズである。
Examples 8 and 10 are zoom lenses having a positive, negative, positive, and positive four-group configuration, as shown in cross-sectional views at the wide-angle end in FIGS. 7 and 9, respectively, and using one aspheric surface.

これらの実施例8.10において、非球面は第4レンズ
群最像側レンズ物体側面に設けられている。実施例9は
第8図に広角端の断面図を示すとおりの実施例8,10
と同様圧・負・正・正の4群構成で非球面を1面用いた
ズームレンズである。ここで、非球面は第4レンズ群最
像側レンズ像側面に設けられている。実施例II、 1
2は第10図に広角端の断面図を示すとおりの実施例1
0と同様圧・負・正の3群構成で、非球面を1面用いた
ズームレンズである。ここで、非球面は第3レンズ群最
像側レンズである正メニスカスレンズの像側面に設けら
れている。
In these Examples 8 and 10, the aspheric surface is provided on the object side of the lens closest to the image side of the fourth lens group. Example 9 is Example 8 and 10 as shown in FIG. 8, which is a cross-sectional view at the wide-angle end.
It is a zoom lens that uses one aspherical surface and has a four-group configuration (pressure, negative, positive, positive). Here, the aspherical surface is provided on the image side surface of the lens closest to the image side of the fourth lens group. Example II, 1
2 is Example 1 as shown in FIG. 10, which is a cross-sectional view at the wide-angle end.
Like the 0, it is a zoom lens with a three-group configuration of pressure, negative, and positive groups, and one aspherical surface. Here, the aspherical surface is provided on the image side surface of the positive meniscus lens, which is the lens closest to the image side of the third lens group.

以下に、各実施例の数値データを示す。Numerical data for each example is shown below.

実施例I f=35.9+u+〜101.0mm、F/3.57〜
4.852ω−62,0°〜24.2゜ r、、 291.13679 d+=2.5000  n+・1.80518  ν、
=25.43rz=  67.6668 d2=6.8000   nz=1.65160  1
’ 2=58.52rs=−173,7374 d3・0.2000 r4・ 39.1397 d4゜4.3000  r+3=1.65160  1
’ −=58.52rs=  94.3469 d、・ (可変) rb=  361.1701 cL=1.7293   n4=1.77250   
v −=49.66rフ=  22.8024 d7・4.8000 r8・−32゜6627 ds=1.7000   n5=1.74100   
v 、=52.68r9. 27.9925 dql=0.5000 r+o=  28.1629 c+、、=4.2000   na=1.80518 
  v 、=25.43r、、、−46,7666 d++−1,4000n7=1.80400   シフ
=46.57r1□−145,0476 Lz=  (可変) r+*=  45.6029 d、s□  2.4509   ne=1.56873
   シ、=63.16r+4=−99.9305 dl 4=0.4200 r+s”  38.9381 d+s=4.3500   r+q=1.48749 
  v 9=70.2Or、 6=−20,6778 d+b□1.2000  rzo□1.67270  
 ν1O=32.1Orat・−162,4476(非
球面)dl’l・i、ooo。
Example I f=35.9+u+~101.0mm, F/3.57~
4.852ω-62,0°~24.2°r,, 291.13679 d+=2.5000 n+・1.80518 ν,
=25.43rz= 67.6668 d2=6.8000 nz=1.65160 1
'2=58.52rs=-173,7374 d3・0.2000 r4・39.1397 d4゜4.3000 r+3=1.65160 1
' -=58.52rs=94.3469 d,・(variable) rb=361.1701 cL=1.7293 n4=1.77250
v -=49.66rf=22.8024 d7・4.8000 r8・−32°6627 ds=1.7000 n5=1.74100
v,=52.68r9. 27.9925 dql=0.5000 r+o= 28.1629 c+,,=4.2000 na=1.80518
v , =25.43r,,, -46,7666 d++-1,4000n7=1.80400 Schiff=46.57r1□-145,0476 Lz= (variable) r+*= 45.6029 d, s□ 2.4509 ne=1.56873
=63.16r+4=-99.9305 dl 4=0.4200 r+s" 38.9381 d+s=4.3500 r+q=1.48749
v 9=70.2Or, 6=-20,6778 d+b□1.2000 rzo□1.67270
ν1O=32.1 Orat·−162,4476 (aspherical surface) dl'l·i, ooo.

’I11:  絞り 6+11・ (可変) r+q=  42.3383 d+q□2.240o   r+++=1..6127
2   シ++=58.75r2゜。−7900,61
78 dzo・0.2000 r2□・ 35.8796 dz+=3.400O□n、2=1.60311  1
’  1z・らO、’/ 0rzz=−67,9577 dzt=2.5000 r2ニー−117,6327 dz3・1.8537  r++、I=1.59551
   シ、、=39.21rt−−24,7948 dz4=3.0000 rzs=−117,2207(非球面)dzs=2.5
000   nz=1.72B25   u 14=2
8.46rt−=−126,3532 非球面レンズデータ(非球面係数) r+フ; az=o+  a<=0.10492  X
 10−5゜ab=0.56608 Xl0−”、 a
e=−0,12893Xl0−IOa 1o=−0,2
1888X 10− ’ ”rts: ax−0+ a
a=−0,23442X 10−’。
'I11: Aperture 6+11・ (variable) r+q=42.3383 d+q□2.240o r+++=1. .. 6127
2 shi++=58.75r2°. -7900,61
78 dzo・0.2000 r2□・35.8796 dz+=3.400O□n, 2=1.60311 1
'1z・raO,'/0rzz=-67,9577 dzt=2.5000 r2 knee-117,6327 dz3・1.8537 r++, I=1.59551
,, =39.21rt--24,7948 dz4=3.0000 rzs=-117,2207 (aspherical surface) dzs=2.5
000 nz=1.72B25 u 14=2
8.46rt-=-126,3532 Aspherical lens data (aspherical coefficient) r+f; az=o+ a<=0.10492 X
10-5゜ab=0.56608Xl0-", a
e=-0,12893Xl0-IOa 1o=-0,2
1888X 10-'”rts: ax-0+ a
a=-0,23442X 10-'.

a6ヤー0.46934 x 10−’、 ae=−0
,32520X 10−9ago・ 0.18599 
 Xl0−”fll              f讐
実施例2 f ・  35.9 fl 〜 101.0   m富
 、    F/3.58  〜4.852ω= 62
.0°〜24.2゜ r+−312,2405 dl、2.5000  n1=1.805]、8  シ
、=25.43r2= 68.8465 dz=6.8000  nz□1.65160  v 
2□58.52rs=−174,8560 d3=0.2000 rイ・39.7352 d4.4.4500  n5=1.65830 1’ 
3□57.33rs= 98.8411 d5・ (可変) r−= 383.5690 d6=1.730o  n、=1.77250  p 
、 =49.66r7=  23.2093 d?=4.8000 ra=−34,7608 ds=1.6000   n5=1.74100   
p 5=52.68r−−31,2002 d9J、9600 rIo=  31.0006 d+o=4.3500   n6=1.80518  
 v 6=25.43r日・−42,9177 dz=1.2500   nt□1.80400  1
’ ?=46.57rIt・ 102.9517 d目= (可変) rr!□  38.9895 drs=  2.6000  na=1.56873 
 1/ 5=63,16rI4=−102,4423 d l4=0.2000 r+s=  41.0031 d、、=4.450On、+=1.48749   v
 q=10.2Or+6=−21,8964 d+a・1.2000  r++o=1.67270 
  v +o=32.10rl’7・−223,143
1(非球面)d17・1.0000 r18;  絞り dlll・ (可変) r19・ 37.8825 d+q=2.5500   rz+=1.61272 
  ν l+=!58.75r2゜・1311.355
8 dto・0.2000 r!I=  34.0968 dz+=3.3000   rxz=1.60311 
 1’ +z=60.70r2□−−74.9584 d2□−1,6800 rz3・−183,6979 dz:+=1.8537   r++*=1.5955
1   ν +3□39.21rz−=  22.34
95 dzn=3.0000 rZs・−100,2426(非球面)dzs=2.4
00o   n、a=1.72825   v +a=
28.46rg6=−126,3532 非球面レンズデータ(非球面係数) r+?; a*=o、 a<=0.26934 X 1
0−’。
a6 y 0.46934 x 10-', ae=-0
,32520X 10-9ago・0.18599
Xl0-"fll fenemy Example 2 f・35.9 fl ~ 101.0 m wealth, F/3.58 ~ 4.852 ω = 62
.. 0°~24.2°r+-312,2405 dl, 2.5000 n1=1.805], 8 shi, =25.43r2= 68.8465 dz=6.8000 nz□1.65160 v
2□58.52rs=-174,8560 d3=0.2000 r i・39.7352 d4.4.4500 n5=1.65830 1'
3□57.33rs= 98.8411 d5・ (variable) r-= 383.5690 d6=1.730on,=1.77250 p
, =49.66r7=23.2093d? =4.8000 ra=-34,7608 ds=1.6000 n5=1.74100
p5=52.68r--31,2002 d9J, 9600 rIo=31.0006 d+o=4.3500 n6=1.80518
v 6=25.43r days・-42,9177 dz=1.2500 nt□1.80400 1
' ? =46.57rIt・102.9517 dth = (variable) rr! □ 38.9895 drs= 2.6000 na=1.56873
1/5=63,16rI4=-102,4423 d l4=0.2000 r+s= 41.0031 d,,=4.450On,+=1.48749 v
q=10.2Or+6=-21,8964 d+a・1.2000 r++o=1.67270
v +o=32.10rl'7・-223,143
1 (aspherical surface) d17・1.0000 r18; Aperture dllll・ (variable) r19・ 37.8825 d+q=2.5500 rz+=1.61272
ν l+=! 58.75r2゜・1311.355
8 dto・0.2000 r! I= 34.0968 dz+=3.3000 rxz=1.60311
1' +z=60.70r2□--74.9584 d2□-1,6800 rz3・-183,6979 dz:+=1.8537 r++*=1.5955
1 ν +3□39.21rz-= 22.34
95 dzn=3.0000 rZs・-100,2426 (aspherical surface) dzs=2.4
00on, a=1.72825 v +a=
28.46rg6=-126,3532 Aspheric lens data (aspheric coefficient) r+? ; a*=o, a<=0.26934 X 1
0-'.

a6=o、64609 Xl0−”、 as=−0,4
4736XIO伺0a1゜=−0,22335x 10
畳2rts: at=o、 aa□−0,24366X
 10−’。
a6=o, 64609 Xl0-”, as=-0,4
4736XIO 0a1゜=-0,22335x 10
Tatami 2rts: at=o, aa□-0,24366X
10-'.

ah =−0,52701X 10−’、 a−=−0
,52501X 1O−9a+a= 0.14229 
×1Q−11実施例3 f = 35.9mm 〜101.Ot*、  F/3
.56〜4.852ω−62,0°〜24.2゜ r++ 295.3209 d+=2.5000    n、=1.80518  
 y +=25.43r2=  68.0618 dz=7.0000    nミニ1.65160  
 V 2・5B、52r3=−178,5938 d3=0.2000 ra”  38.9905 da、4.5000   n5−1.651(io  
 v s、5B、52r5、94.5204 d、・ (可変) r6・ 363.5847 d6=1.7293   n4=1.77250   
v a=49.6Gr、・ 22.6581 d、=4.8000 r−=−33,2807 da=1.7000    ns□1.74]00  
 シ5=52.68rq=  34.5108 d9=0.5000 r、、=  32.7693 d、o=4.2000    na=1.80518 
  シロ=25.43r1 +=−36.6247 d、、=1.4000    n、y=1.80400
   v 、=46.57r目= 125.9131 dl2・ (可変) r1コ・ 47.6517 dl:+□  2.4509   na=1.5687
3   シ!=63.16r14=−96,5400 d+a=0.4213 rl5・ 36.4698 d+s=4.3082   nq=1.48749  
9 q□70.2Or+6=−21,1809 dl b=0.1000 rl、□−20,5037 d+t□1.200o   nto=1.67270 
  v +a□32.10r1a=493.0274 
(非球面)dls=1.ooo。
ah =-0,52701X 10-', a-=-0
, 52501X 1O-9a+a= 0.14229
×1Q-11 Example 3 f = 35.9mm ~101. Ot*, F/3
.. 56~4.852ω-62,0°~24.2°r++ 295.3209 d+=2.5000 n,=1.80518
y +=25.43r2=68.0618 dz=7.0000 n mini 1.65160
V 2・5B, 52r3=-178,5938 d3=0.2000 ra" 38.9905 da, 4.5000 n5-1.651 (io
v s, 5B, 52r5, 94.5204 d, (variable) r6 363.5847 d6=1.7293 n4=1.77250
v a=49.6Gr, 22.6581 d, =4.8000 r-=-33,2807 da=1.7000 ns□1.74]00
5 = 52.68 rq = 34.5108 d9 = 0.5000 r,, = 32.7693 d, o = 4.2000 na = 1.80518
White = 25.43r1 + = -36.6247 d,, = 1.4000 n, y = 1.80400
v, = 46.57rth = 125.9131 dl2・ (variable) r1ko・ 47.6517 dl:+□ 2.4509 na=1.5687
3 Shi! =63.16r14=-96,5400 d+a=0.4213 rl5・36.4698 d+s=4.3082 nq=1.48749
9 q□70.2Or+6=-21,1809 dl b=0.1000 rl, □-20,5037 d+t□1.200o nto=1.67270
v +a□32.10r1a=493.0274
(Aspherical surface) dls=1. ooooo.

r−9:  絞り dl、・ (可変) rto□40.9151 dgo、=2.6729   n++=1.61272
   v z=58.75rz+=−538,9577 d、l・0.2000 r2□=  31.3769 dzz=2.968o  n、z=1.60311  
 v 1z=GO,10rz3□−65,9045 d2322.5000 rza=−77,8686 dza□1.8537  n+3□1.66998  
 ’ +z□39.27rzs424.8812 dzs=3.ooo。
r-9: Aperture dl, (variable) rto□40.9151 dgo, = 2.6729 n++ = 1.61272
v z=58.75rz+=-538,9577 d, l・0.2000 r2□= 31.3769 dzz=2.968on, z=1.60311
v 1z=GO, 10rz3□-65,9045 d2322.5000 rza=-77,8686 dza□1.8537 n+3□1.66998
' +z□39.27rzs424.8812 dzs=3. ooooo.

rtb・−183,3897(非球面)dza=2.5
00On+a・1.72825  νz□28.4(i
r17・−126,3532 非球面レンズデータ(非球面係数) rlm; az=0. an=−0,66216X10
−6゜a6=0.43521 Xl0−’、 ae・−
0,96779Xl0−”a  +o−−0.1120
8  X 10−”rzhi  az=o、  a4=
−0,25648×IO−’+ab=−0.47710
 X 10−’、  as□−0,19456X 1O
−9a+o=−0,30097X 10−”実施例4 f=36.0m1〜101.Otm、  P/3.62
〜4.852ω−62,0°〜24.2゜ rlm 306.6968 d+=2.5000  n1=1.80518 1’ 
1=25.43rt= 68.8581 dz−6,7000nz=1.65160  シg=5
8.52ra=−176.6059 d3・0.2000 r4= 39.8074 d、、、 4.6200  n==1.65830  
y −=57.331J* 98.9843 d5−(可変) r6=  385.2105 da=1.7300    n4・1.77250  
 y −=49.66r7=  23.0232 d、=4.8000 re=−33,9586 de=1.6000   n5=1.74100   
v 5=52.68rq−30,8857 dq=0.9600 rl。=  30.8824 d lo・4.3500   na=1.80518 
  νa・25.43r、・−42,2395 d++□1.2500   ny=1.80400  
9 、=46.57r+2−106.4430 d1□−(可変) r1*=  38.1326 dl、I=  2.6000   nミニ1.5687
3   ν 6゜6:(,1,6rI 4−−95.1
425 dl 4=0.2000 rl5・ 42.9543 d、S=4.4500    n、=1.48749 
  v 、、70.20r、6=−21,5600 dz、=1.2000   r++o□1.67270
   ν 、、=32.1.0rlff・−223,1
585(非球面)dz、・1.0000 「18;  絞り d+s=  (可変) r+q−39,1051 054d1.5500   nz□1.61272  
 v z=58.75r2゜・2166.2549 d2゜・0.2000 rz+=  35.0493 dz+□3.3000   n+z=1.60311 
  シ+z=60.70rtz=−69.0344 d2□・1.6800 rts−−1”14.3032 dzi□1.8537   n1s□1.59551 
  ν 1*=39.21rt4・ 23.1442 dz4=3.ooo。
rtb・-183,3897 (aspherical surface) dza=2.5
00On+a・1.72825 νz□28.4(i
r17・-126,3532 Aspheric lens data (aspheric coefficient) rlm; az=0. an=-0,66216X10
-6゜a6=0.43521 Xl0-', ae・-
0,96779Xl0-”a +o--0.1120
8 X 10-”rzhi az=o, a4=
-0,25648×IO-'+ab=-0.47710
X 10-', as□-0, 19456X 1O
-9a+o=-0,30097X 10-"Example 4 f=36.0m1~101.Otm, P/3.62
~4.852ω-62,0°~24.2°rlm 306.6968 d+=2.5000 n1=1.80518 1'
1=25.43rt= 68.8581 dz-6,7000nz=1.65160 sig=5
8.52ra=-176.6059 d3・0.2000 r4= 39.8074 d,,, 4.6200 n==1.65830
y -=57.331J* 98.9843 d5- (variable) r6= 385.2105 da=1.7300 n4・1.77250
y −=49.66r7= 23.0232 d,=4.8000 re=−33,9586 de=1.6000 n5=1.74100
v 5 = 52.68 rq - 30,8857 dq = 0.9600 rl. = 30.8824 d lo・4.3500 na=1.80518
νa・25.43r,・−42,2395 d++□1.2500 ny=1.80400
9, =46.57r+2-106.4430 d1□-(variable) r1*= 38.1326 dl, I= 2.6000 n mini 1.5687
3 ν 6゜6:(,1,6rI 4--95.1
425 dl 4=0.2000 rl5・42.9543 d, S=4.4500 n, =1.48749
v ,,70.20r,6=-21,5600 dz,=1.2000 r++o□1.67270
ν ,,=32.1.0rlff・−223,1
585 (aspherical surface) dz, ・1.0000 "18; Aperture d+s= (variable) r+q-39,1051 054d1.5500 nz□1.61272
v z=58.75r2゜・2166.2549 d2゜・0.2000 rz+= 35.0493 dz+□3.3000 n+z=1.60311
shi+z=60.70rtz=-69.0344 d2□・1.6800 rts--1"14.3032 dzi□1.8537 n1s□1.59551
ν 1*=39.21rt4・23.1442 dz4=3. ooooo.

rz5=−100,0752(非球面)r26−426
.3532 非球面レンズデータ(非球面係数) r+7i az=o+ i14.= 0.29092 
X 10−’。
rz5=-100,0752 (aspherical surface) r26-426
.. 3532 Aspheric lens data (aspheric coefficient) r+7i az=o+ i14. = 0.29092
X 10-'.

ab=0.10818 X 10−”、 ag7−0.
36492 X IQ−t。
ab=0.10818×10-”, ag7-0.
36492 X IQ-t.

al。・−〇、29267 Xl0−”rzs;az=
o+ a4・−0,23987X 10−’。
al.・-〇, 29267 Xl0-”rzs;az=
o+ a4・-0,23987X 10-'.

a6=−0,52191XlO−’、 ae=−0,4
6119Xl0−98+o、0.11852 X 10
−”実施例5 f=36.o菖彌〜101.0重電、F/3.58〜4
.852ω・ 62.0° 〜 24.2゜ rl、 252.0551 d+=2.5000   n1=1.80518   
νI=25.43rz=  65.1512 dz=7.oooo   nz=1.65160   
v z□5B、52r3=−161,9672 d3=0.2000 r4=  37.5457 dt−4,5000ni□1.65160   νz=
58.52r5=  78.9480 d、・ (可変) r6・ 532.5586 d6=1.7293   n4=1.77250   
v 4=49.66rフ= 22.4685 dt・4.8000 r、ヨー29.7002 da=1.7000   n、=1.74100  1
’ 5=52.68rq−45,4110 dt・0.5000 rl。=  40.6119 d+o=4.2000   16=1.80518  
 νb・25.43r+ 11−−29.9067 dz=1.4000    r+v=1.80400 
  v 、r=46.51r+2”  192.424
8 d、t−(可変) 1’+3”  40.9001 dz、=  2.4509   na=1.56873
   シo=63.1Cir口・−51,4228 dz=0.4213 r15=  46.2648 d+s=4.3082   nq−4,48749シ、
=70.2Or、6=−22,4313 dt6・0.5000 rl7・−19,8955 dz7=1.200Onto・1.67270   ν
 +o”32.10rIo=−382,3099(非球
面〕d18・1.0000 rl9;  絞り dt9・ (可変) r2゜・65.3181 dzo=2.6729  1’l+ +=1.6127
2   ν + 、=58.75rffi1・−113
,4383 dz+−0,2000 r2□=  33.7189 dzz=2.968o   n+z=1.60311 
 1’ +2=60.70rzs=−71,5852 d2z=2.5000 rzs=−114,3990 dzn・1.8537   n+i=1.66998 
 11  +z=39.27rts−25,0369 dzs=3.0000 r26=−313,9246(非球面)dza=2.5
00o   r++4=1.72825  1’ +4
=28.46r27−−126.3532 非球面レンズデータ(非球面係数) r+e;  at=0.an−−0,2721,7Xl
O−5+a6=o、50299  x 10−’、  
a、=−0,18210x 1O−9alO=−0,5
0016X 10−”rzb:  a2=0.an−−
0,18698X 10−’。
a6=-0,52191XlO-', ae=-0,4
6119Xl0-98+o, 0.11852 X 10
-”Example 5 f=36.o Iris ~101.0 heavy electric, F/3.58~4
.. 852ω・62.0° ~ 24.2°rl, 252.0551 d+=2.5000 n1=1.80518
νI=25.43rz=65.1512 dz=7. oooo nz=1.65160
v z□5B, 52r3=-161,9672 d3=0.2000 r4= 37.5457 dt-4,5000ni□1.65160 νz=
58.52r5= 78.9480 d,・ (variable) r6・ 532.5586 d6=1.7293 n4=1.77250
v 4 = 49.66r f = 22.4685 dt・4.8000 r, yaw 29.7002 da = 1.7000 n, = 1.74100 1
'5=52.68rq-45,4110dt・0.5000rl. = 40.6119 d+o=4.2000 16=1.80518
νb・25.43r+ 11−−29.9067 dz=1.4000 r+v=1.80400
v, r=46.51r+2” 192.424
8 d, t- (variable) 1'+3" 40.9001 dz, = 2.4509 na = 1.56873
shi = 63.1 Cir mouth・-51,4228 dz=0.4213 r15= 46.2648 d+s=4.3082 nq-4,48749 shi,
=70.2Or, 6=-22,4313 dt6・0.5000 rl7・−19,8955 dz7=1.200Onto・1.67270 ν
+o"32.10rIo=-382,3099 (aspherical surface) d18・1.0000 rl9; aperture dt9・ (variable) r2゜・65.3181 dzo=2.6729 1'l+ +=1.6127
2 ν + , =58.75rffi1・-113
,4383 dz+-0,2000 r2□= 33.7189 dzz=2.968o n+z=1.60311
1' +2=60.70rzs=-71,5852 d2z=2.5000 rzs=-114,3990 dzn・1.8537 n+i=1.66998
11 +z=39.27rts-25,0369 dzs=3.0000 r26=-313,9246 (aspherical surface) dza=2.5
00o r++4=1.72825 1' +4
=28.46r27--126.3532 Aspherical lens data (aspherical coefficient) r+e; at=0. an--0,2721,7Xl
O-5+a6=o, 50299 x 10-',
a,=-0,18210x 1O-9alO=-0,5
0016X 10-”rzb: a2=0.an--
0,18698X 10-'.

ab=  0.12978 X 10−7.aa=−0
,90959X Io−’a+o=  0.32874
 X 10−”実施例6 f= 36.3m〜102.0 m、  F/3.50
−4.842ω= 61.6°〜24,0゜ rl= 393.7230 d+=2.5500  rx=1.8051B  y 
+=25.43r2= 77.2250 dz4.0100  nz=1.6031L  シz□
60.7゜r3・−118,4586 d3−0゜1000 r、= 40.5790 d、、、  4.250On*=1.69680   
v 、=55.52r、・ 78.3661 d、−(可変) rb−174,9416 da−1,3000n4=1.80610   v 、
、=40.95r7=  20.1043 dt=4.8000 re−−61,2914 da=1.1000   n5=1.83481   
v s・42.72r、、66.7247 dq−0,3600 r、、−32,6794 む。欺3.7900   n6=1.80518   
シロ・25.43rl +−−38,1815 dl l=L!5’7o。
ab=0.12978×10-7. aa=-0
,90959X Io-'a+o=0.32874
X 10-” Example 6 f=36.3m~102.0m, F/3.50
-4.842ω= 61.6°~24,0°rl= 393.7230 d+=2.5500 rx=1.8051B y
+=25.43r2= 77.2250 dz4.0100 nz=1.6031L z□
60.7゜r3・-118,4586 d3-0゜1000 r, = 40.5790 d,,, 4.250On*=1.69680
v, = 55.52r, 78.3661 d, - (variable) rb-174,9416 da-1,3000n4 = 1.80610 v,
, =40.95r7=20.1043 dt=4.8000 re--61,2914 da=1.1000 n5=1.83481
v s・42.72r,,66.7247 dq-0,3600 r,,-32,6794 M. Deception 3.7900 n6=1.80518
Shiro・25.43rl +--38,1815 dl l=L! 5'7o.

r目=−24,4385 d、、=  1.000On、=1.80400   
シ、=46.57r+3=−231.5781 dls−(可変) r、4;  絞り d+a=1.1000 r、s= 25.0368  (非球面)d、、=2.
410On、=]、65016   y 、=39.3
9r1b=−908,3515 dl b=0.1000 TI7=  19.9465 d+t=2.7600  119=1.65830  
 シ9=57.33r+ 5=−264,0968 d Iso、1200 r+v=724.5317 dl、□6.700Onto=1.80518   シ
、、=25.43r2゜・13.5026 d2゜・2.1000 rzl=−63,3761 d、、=2.2800   nz=1.60311  
 シ、、=60.70r2□−−35.4653 d2□−0,8600 rz*=  24.2857 dz3,3’、290Or++z=1.53172  
 ν、□、48.90rta= 63.0831  (
非球面)非球面レンズデータ(非球面係数) rls; at=o、 a4□−0,88864X 1
0−5゜a6=−0,20553X10−’、aa=−
0.16039 Xl0−”。
rth = -24,4385 d,, = 1.000On, = 1.80400
shi, =46.57r+3=-231.5781 dls-(variable) r,4; aperture d+a=1.1000 r,s=25.0368 (aspherical) d,,=2.
410On,=],65016y,=39.3
9r1b=-908,3515 dl b=0.1000 TI7= 19.9465 d+t=2.7600 119=1.65830
Shi9=57.33r+ 5=-264,0968 d Iso, 1200 r+v=724.5317 dl, □6.700 Onto=1.80518 Shi,, =25.43r2゜・13.5026 d2゜・2.1000 rzl =-63,3761 d,, =2.2800 nz=1.60311
,,=60.70r2□--35.4653 d2□-0,8600 rz*= 24.2857 dz3,3', 290Or++z=1.53172
ν, □, 48.90rta= 63.0831 (
Aspherical surface) Aspherical lens data (aspherical coefficient) rls; at=o, a4□-0,88864X 1
0-5゜a6=-0, 20553X10-', aa=-
0.16039 Xl0-”.

aIo=0.36641X10−” rtal at=0. aa=o、11255 x 1
0−’。
aIo=0.36641X10-” rtal at=0. aa=o, 11255 x 1
0-'.

a68−0.10349 X 10−7.  ae=−
0,46647X 10” ’ o。
a68-0.10349 X 10-7. ae=-
0,46647X 10” 'o.

a+o、−0,31622X10−” f紳      九       f11実施例7 r= 36.3mm〜102.Oxs、  F/3.5
0−4.852ω・61.6°〜24.0゜ r宜・−351,1978 d、、2.5500  n、=1.80518  v 
、=25.43d、−7,010On、=1.6031
1   ν 2=60.70r3=−155,4196 d、=0.1000 r4=  49.8532 L=   4.2500    r++□1.6968
0   9  :I=55.52rs=  272.3
135 d、・ (可変〕 rb=  202.5582 d6=1.300o   n、=1.80610   
v 4=40.95r7=  18.6630 d、=4.8000 r、=−123,1804 d8=1.100On、=1.8348]   v 、
=42.72rq−65,1293 d、=0.3600 rl+1・ 28.4356 d、a=5.(iooOna=1.80518  1’
 6”25.43r目=−40,4334 d、I=1.5700 r+z=−27,4208 d+t−1,0000n7=1.80400   シフ
=46.51r+3”  1198.1331 d1コ= (可変) r14;  絞り dz=1.Iooo rls−15,5915(非球面) d+s1.1000   ne=1.65016   
L’a=39.39r+−□−81,3885 d+ b−0,1000 r+7=  37.3048 d+tJ、4000   n、=1.65830   
p q=51.33r+ a=−68,3920 dIll・0.1200 r19・−76,1286 d+q#4.500o  n+o=1.80518  
1’ +o=25.43rta=11.4644 dto=2.1000 r、、=  15.7645 dz+=3.2900  nz=1.53172   
νz=48.90r2□−51,3460(非球面) 非球面レンズデータ(非球面係数) r+s+ 81・0.an=−0,25760X 10
−’+aa=−0.10071 X 1.0−6. a
s=−0,24203X 10−9゜a、。・0.21
849 x 10− ’ ”rBi az=o+ am
= 0.39273 X 10−’。
a+o, -0,31622X10-” f 9 f11 Example 7 r= 36.3mm~102.Oxs, F/3.5
0-4.852ω・61.6°~24.0°r yi・-351,1978 d,, 2.5500 n,=1.80518 v
, =25.43d, -7,010On, =1.6031
1 ν 2=60.70r3=-155,4196 d,=0.1000 r4= 49.8532 L= 4.2500 r++□1.6968
0 9 :I=55.52rs=272.3
135 d,・(variable) rb=202.5582 d6=1.300on,=1.80610
v 4 = 40.95 r7 = 18.6630 d, = 4.8000 r, = -123,1804 d8 = 1.100 On, = 1.8348] v ,
=42.72rq-65,1293 d, =0.3600 rl+1・28.4356 d, a=5. (iooOna=1.80518 1'
6" 25.43rd rth = -40,4334 d, I = 1.5700 r + z = -27,4208 d + t - 1,0000 n7 = 1.80400 Schiff = 46.51r + 3" 1198.1331 d1 co = (variable) r14; Aperture dz=1. Iooo rls-15,5915 (aspherical surface) d+s1.1000 ne=1.65016
L'a=39.39r+-□-81,3885 d+ b-0,1000 r+7= 37.3048 d+tJ, 4000 n, =1.65830
p q=51.33r+ a=-68,3920 dIll・0.1200 r19・-76,1286 d+q#4.500o n+o=1.80518
1' +o=25.43rta=11.4644 dto=2.1000 r,,=15.7645 dz+=3.2900 nz=1.53172
νz=48.90r2□-51,3460 (aspherical surface) Aspherical lens data (aspherical coefficient) r+s+ 81・0. an=-0,25760X 10
-'+aa=-0.10071 X 1.0-6. a
s=-0,24203X 10-9°a,.・0.21
849 x 10-' ”rBi az=o+ am
= 0.39273 x 10-'.

ab= 0.11228 X 10−”、 an=−0
,54087X 10−9゜alo=−0,31204
X 10− ”A41 実施例8 f=36.0mm〜101.0 ** 、  F/3.
55〜4.852ω−62,0’  〜 2イ、2゜ r、= 302.6384 =42−一 d、=2.1578    n1=1.76182  
 ν 、=26.52j2=  49.5172 d、・0.0019 r*=  48.3934 d3=7.4999    n24.66672   
νz・48.32r4=−178,2271 d、、  0.2028 r511 37.1977 ds=  4.4000   r++=1.65160
  1’ =□58.52r6゜ 83.5369 d6・ (可変) r、・ 287.6988 dq□1.1680   n4=1.6400    
v 4=60.09r8・ 21.8080 d、=5.0029 rv=−38,0524 a、=2.4000    ns□1.80518  
1’ 5=25.43r目=−18,4836 d+o=1.1707   ni、=1.72916 
  シ、=54.68rll−39,0369 dll・1.9989 rl==  26.1346 d+z=  2.4000 117=1.80518 
 1’ 7=25.41rlff”  29.7372 dl、・ (可変) r1s=  98.’1)06 dl4=  2.4509  ns・]、56873 
  ν、、=(i3.16r1s=−64,5651 dis・0.2870 r+1.−21.7173 d、b=4.500o   n、=1.48149  
 v 、=70.2Or+7・−24,0000 dl7=1.3000  nlo□]、72000  
シ、o=/13.7Or+a”  236.2274 d、、−1,oooO r19;  絞り dl9゜(可変) r2゜=  28.6431 dzo=2.’120Or+++=1.56873  
 シz□63.Hirz+−1066,5050 dt+=0.2000 r2□=  49.1304 dgz=3.2097   n+z=1.62041 
 1’ +2=60.27rzz−−101,,439
6 dts=2.5000 rz4−−594.4244 dt4=  1.8476  r+++=1.6644
6   シ、3=35.81r2s=  28.377
9 (hs・1.6246 rt== 457.2996 (非球面)dza=2.
5000  r++a=1.72B25   y +a
=28.46rz、=  レンズ3.8581 非球面レンズデータ(非球面係数) red;ax=0+ am・−0,33217Xl0−
’。
ab=0.11228×10-”, an=-0
,54087X 10-9゜alo=-0,31204
X 10-”A41 Example 8 f=36.0mm~101.0**, F/3.
55~4.852ω-62,0'~2i,2゜r, = 302.6384 =42-1d, =2.1578 n1=1.76182
ν,=26.52j2=49.5172 d,・0.0019 r*=48.3934 d3=7.4999 n24.66672
νz・48.32r4=-178,2271 d,, 0.2028 r511 37.1977 ds= 4.4000 r++=1.65160
1' = □58.52r6゜ 83.5369 d6・ (variable) r,・ 287.6988 dq□1.1680 n4=1.6400
v 4=60.09r8・21.8080 d,=5.0029 rv=-38,0524 a,=2.4000 ns□1.80518
1' 5=25.43rth=-18,4836 d+o=1.1707 ni,=1.72916
shi, =54.68rll-39,0369 dll・1.9989 rl== 26.1346 d+z= 2.4000 117=1.80518
1'7=25.41rlff" 29.7372 dl,・ (variable) r1s=98.'1)06 dl4= 2.4509 ns・], 56873
ν,,=(i3.16r1s=-64,5651 dis・0.2870 r+1.-21.7173 d, b=4.500on,=1.48149
v, =70.2Or+7・-24,0000 dl7=1.3000 nlo□], 72000
shi,o=/13.7Or+a" 236.2274 d,,-1,oooO r19; Aperture dl9゜(variable) r2゜= 28.6431 dzo=2.'120Or+++=1.56873
Shiz□63. Hirz+-1066,5050 dt+=0.2000 r2□= 49.1304 dgz=3.2097 n+z=1.62041
1' +2=60.27rzz--101,,439
6 dts=2.5000 rz4--594.4244 dt4=1.8476 r+++=1.6644
6 shi, 3=35.81r2s=28.377
9 (hs・1.6246 rt== 457.2996 (aspherical surface) dza=2.
5000 r++a=1.72B25 y +a
=28.46rz, = Lens 3.8581 Aspherical lens data (aspherical coefficient) red; ax=0+ am・-0, 33217Xl0-
'.

ah”−0゜10545 X 10−6. aa=−0
,25371X 10−9゜a+o=−0,12G35
 X 10−”実施例9 r= 36.Om++〜102.O重量、  F/3.
68〜4.822ω=62.0°〜24.0゜ r+= 181.7590 d1=2.0000  n1=1.78470  シ、
=26.22r2・45.9183 dz=7.0000  nz=1.72600  νg
□53.5(ir3・−627,4269 d、=0.2000 r、= 37.9932 da−4,0000n3=1.72000 1/ a=
50.25r5= 87.8571 d、=(可変) r6= 1261.1377 d6=1.2000  n4=1.78590  ν、
=44.18−46= ry=  18.0110 d、・5.0000 ra=−33,4090 de・2.oooo    n5=1.80518  
 v s□25.43r9=−20,9855 d、=1.2000 rl。、、−20,4225 d1o=1.2000    na□1.77250 
 1/ a=49.66r目= 24.5290 d+ +=2.5000    n7=1.80518
   v 7=25.43r1□・ 76.8874 d+t=  1.5000 r+i・ 38.0892 d+i=  2.0000   na=1.69895
  1/ e=30.12r14・ 85.9796 d+4・ (可変) rl8・ 42.7340 d+s=2.500On、=1.51633   y 
9=64.15r16・−63,4158 d+640.2000 d+7=4.5000  r++o=1.51633 
 1/ +oJ4.]5r1a=−19.6426 d+a=1.3000  nz=1.6B250   
νz”44.65r+q=  206.3415 d19=  0.5000 r2゜; 絞り d2o=  (可変) r21=  112.0861 dz+−3,000On+z=]、52249   シ
1g□59.79rt2=−32,4239 dzz−0,2000 r2ff=  27.6866 dz:+−7,0000r++x=1.51633  
 ν+z2[i4.15rza・−22,8333 dza・ 2.000On+a=1.80440  1
1 +4□39.58rzs=33.6584  (非
球面)非球面レンズデータ(非球面係数) r□; at、、0. aa= 0.27831 X 
10−’。
ah"-0°10545 X 10-6. aa=-0
,25371X 10-9゜a+o=-0,12G35
X 10-” Example 9 r=36.Om++~102.O weight, F/3.
68~4.822ω=62.0°~24.0°r+= 181.7590 d1=2.0000 n1=1.78470 shi,
=26.22r2・45.9183 dz=7.0000 nz=1.72600 νg
□53.5(ir3・-627,4269 d, = 0.2000 r, = 37.9932 da-4,0000n3=1.72000 1/ a=
50.25r5= 87.8571 d, = (variable) r6= 1261.1377 d6=1.2000 n4=1.78590 ν,
=44.18-46=ry=18.0110 d,・5.0000 ra=−33,4090 de・2. oooo n5=1.80518
v s□25.43r9=-20,9855 d,=1.2000 rl. ,, -20,4225 d1o=1.2000 na□1.77250
1/ a=49.66rth=24.5290 d+ +=2.5000 n7=1.80518
v 7=25.43r1□・76.8874 d+t=1.5000 r+i・38.0892 d+i=2.0000 na=1.69895
1/ e=30.12r14・85.9796 d+4・(variable) rl8・42.7340 d+s=2.500On,=1.51633 y
9=64.15r16・-63,4158 d+640.2000 d+7=4.5000 r++o=1.51633
1/ +oJ4. ]5r1a=-19.6426 d+a=1.3000 nz=1.6B250
νz"44.65r+q= 206.3415 d19= 0.5000 r2°; Aperture d2o= (variable) r21= 112.0861 dz+-3,000On+z=], 52249 1g□59.79rt2=-32,4239 dz z- 0,2000 r2ff= 27.6866 dz:+-7,0000r++x=1.51633
ν+z2[i4.15rza・-22,8333 dza・2.000On+a=1.80440 1
1 +4□39.58rzs=33.6584 (Aspherical surface) Aspherical lens data (aspherical coefficient) r□; at, 0. aa=0.27831X
10-'.

ab= 0.29941 X 10−’、 aa=−0
,38690X 1O−I08+o=−0,13006
X 10−”「−f− 実施例10 fよ36.On〜101.0菖重、  F/3.68〜
4.832ω= 62.0°〜24.2゜ r1= 278.0571 d+=2.2109  r++=1.80518  p
 +=25.43r2・64.2523 dz=7.3000  nz=1.61405  p 
t・54.95r:+=−145.3627 d、:0.2028 r4=  33.9610 d4− 4.4000   nz=]、65]60  
1/ 3=58.52r5=  73.4447 d、・ (可変) r6=  227.2921 d−=  1.168On==1.64000   シ
、=60.09r7゜ 16.8484 dt=4.9951 ra=−36,9833 dll=2.4551    n5=1.846(i6
   シ!、=23.78rq=−24.1831 d、=1.oooO r+o=−21,2347 dz+=1.1707    n6=1.72916 
  シv=54.6Or、、=  48.3081 d、、=0.4884 r、2− 29.8490 d、、=3.0000   nミニ1.84666  
 シフ=23.78r13=  54.3309 d+x=  (可変) r14・ 69.6586 d+4=2.5000   na=1.51728  
 シe=69.56r+5=−40.4085 d + a=0.2000 rlb=  23.5987 d+a=4.5000   nq=1.51728  
 v 9=69.56r1.=−26,5000 d+t=1.300On、、=1.70154   ν
、。、41.24rre=  118.1083 d+a=1.oooo ’+9+  絞り d19・ (可変) r2゜・32.4240 dzo□3.oooo   n++=1.60311 
 1’ z□60.70rz+□−96,68I3 dz+=0.2000 r2□= 48.7873 dzz=3.000o   n+□=1.56873 
  シ+z□63.16ruff・ 968.9901 d23・2.0000 r24・−41,9955 dz4=1.9097   rxy=1.12041 
  ν Iz−34,12r25・ 27.4776 d2s・2.6164 r26.暑709.3440  (非球面)dz6=2
.600On+n=1.61293  1’  14−
37.0Or2t2−36.5500 非球面レンズデータ(非球面係数) rza; az=o、 a4−0.1+l953X1θ
−4゜a6−0.65576 X]0−7. au−0
,15217XIO9alO・0.36986 x 1
10−12f             f、1実施例
11 f=36.3n〜102.Otm、  P/3.56〜
4.872ω、 61.6°〜24.0゜ r+= 2157.3510 d、=2.550On+□1.80518  シ、=2
5.43r2ヨ77.2250 dz・7.oloo  nz□1.60311  +’
 z・60.70r3=−97,6780 d、・0.1000 r4.= 42.1265 d4.4.2500  n5=1.69680 9−=
55.52r、・84.5493 ds=  (可変) r6・227.9828 d、=1.300o  n、=1.80610  v 
、=40.95r7= 19.0366 d、=4.8000 r、・−59,0564 do=1.l000    n5=1.83481  
 シイ−42,フ2rq=  52.1969 d、=0.3600 r目−31,3963 dlo−3,7900n6”1.80518    シ
、=25.43r、、=−45.6222 d、・1.5700 r1□−−23,レンズ7 d1z=  1.0000   n7=1.80400
   シ、=46.57rI−=−76,2904 d+s=  (可変) r、; 絞り dz=1.1000 rIs= 39.8324 d+s、−2,4100nミニ1.65016  ν、
=39.39r16・−251,3243 d+6・0.1000 rl?= 27.1172 d、□−2!、76oo   ng=1.65830 
 νq□51.33r+l+= レンズ.5496 d + a=0.1200 rl9・ 34.7864 d+q=3.830On+o=1.60311   v
 +o□60.70r2゜=  1489.2406 d2゜−2,0400 rz+=−70,2050 d2+=6.7000   r+++=1.80518
   シz−25.43rtt=  18.3645 d2□・2.1000 rz*=−156,1180 dzs・2.280On+z=1.60311   ν
 12=60.7゜r、・−34,1925 dzg=0.8600 rzs・ 23.2912 dzs=3.290o   n+z=1.53172 
 1’ +:+=48.9Or2b・63.3541 
 (非球面)非球面レンズデーク(非球面係数) r2b: a2=(L a4・0.15029 X 1
0−’ 。
ab=0.29941X10-', aa=-0
,38690X 1O-I08+o=-0,13006
X 10-"-f- Example 10 f 36.On~101.0 Iris weight, F/3.68~
4.832ω = 62.0° ~ 24.2° r1 = 278.0571 d+ = 2.2109 r++ = 1.80518 p
+=25.43r2・64.2523 dz=7.3000 nz=1.61405 p
t・54.95r:+=-145.3627 d, :0.2028 r4= 33.9610 d4- 4.4000 nz=], 65]60
1/3=58.52r5=73.4447 d,・(variable) r6=227.2921 d-=1.168On==1.64000 shi,=60.09r7° 16.8484 dt=4.9951 ra= -36,9833 dll=2.4551 n5=1.846(i6
Shi! , =23.78rq=-24.1831d, =1. oooO r+o=-21,2347 dz+=1.1707 n6=1.72916
Si v = 54.6Or,, = 48.3081 d,, = 0.4884 r, 2- 29.8490 d,, = 3.0000 n mini 1.84666
Schiff=23.78r13=54.3309 d+x= (variable) r14・69.6586 d+4=2.5000 na=1.51728
She=69.56r+5=-40.4085 d+a=0.2000 rlb=23.5987 d+a=4.5000 nq=1.51728
v9=69.56r1. =-26,5000 d+t=1.300On,,=1.70154 ν
,. , 41.24rre= 118.1083 d+a=1. oooo '+9+ Aperture d19・ (variable) r2゜・32.4240 dzo□3. oooo n++=1.60311
1' z□60.70rz+□-96,68I3 dz+=0.2000 r2□= 48.7873 dzz=3.000o n+□=1.56873
し+z□63.16ruff・968.9901 d23・2.0000 r24・−41,9955 dz4=1.9097 rxy=1.12041
ν Iz-34,12r25・27.4776 d2s・2.6164 r26. Heat 709.3440 (Aspherical surface) dz6=2
.. 600On+n=1.61293 1' 14-
37.0Or2t2-36.5500 Aspherical lens data (aspherical coefficient) rza; az=o, a4-0.1+l953X1θ
-4゜a6-0.65576 X]0-7. au-0
,15217XIO9alO・0.36986 x 1
10-12f f, 1 Example 11 f=36.3n~102. Otm, P/3.56~
4.872ω, 61.6°~24.0°r+=2157.3510 d,=2.550On+□1.80518 shi,=2
5.43r2yo77.2250dz・7. oloo nz□1.60311 +'
z・60.70r3=-97,6780 d,・0.1000 r4. = 42.1265 d4.4.2500 n5=1.69680 9-=
55.52r, ・84.5493 ds= (variable) r6・227.9828 d, = 1.300on, = 1.80610 v
, =40.95r7=19.0366 d, =4.8000 r, -59,0564 do=1. l000 n5=1.83481
C-42, F2rq=52.1969 d,=0.3600 rth-31,3963 dlo-3,7900n6"1.80518 C,=25.43r,,=-45.6222 d,・1.5700 r1□--23, lens 7 d1z= 1.0000 n7=1.80400
shi, =46.57rI-=-76,2904 d+s= (variable) r,; Aperture dz=1.1000 rIs= 39.8324 d+s,-2,4100n mini 1.65016 ν,
=39.39r16・-251,3243 d+6・0.1000 rl? = 27.1172 d, □-2! ,76oo ng=1.65830
νq□51.33r+l+= Lens. 5496 d + a = 0.1200 rl9・ 34.7864 d + q = 3.830 On + o = 1.60311 v
+o□60.70r2゜=1489.2406 d2゜-2,0400 rz+=-70,2050 d2+=6.7000 r+++=1.80518
z−25.43rtt= 18.3645 d2□・2.1000 rz*=−156,1180 dzs・2.280On+z=1.60311 ν
12=60.7゜r, -34,1925 dzg=0.8600 rzs・23.2912 dzs=3.290o n+z=1.53172
1' +:+=48.9Or2b・63.3541
(Aspherical surface) Aspherical lens disk (aspherical coefficient) r2b: a2=(L a4・0.15029 X 1
0-'.

a6・0.17717 X 10−’、 aa= 0.
26414  X 10’′“′a+o=−0,305
85X 10−”実施例12 f = 36.3mm〜102.0mm   F/3.
68〜4.872ω−61.6°〜24.0’ r1=−3951,1688 d、=2.550On、=1.80518  v 、=
25.43r2・77゜2250 dz=7.010o  n、=1.60311  v 
、=60.70rz=−99,3398 ds=0.1000 r4= 43.5530 d4.4.2500  n5=1.69680 1/ 
3=55.52r5・107.1875 d、・ (可変) rb=  レンズ.2378 da=1.3000   nミニ1.80610   
 v 、、=40.95r7・ 19.6682 d7=4.8000 rs=−58,5154 ds=1.1000    n5=1.83481  
 シ5=42.72rq=  49.4487 d、=0.3600 rl。=  31.4924 d+o=3.7900   na=1.80518  
  シロ=25.43rl +=−39.8707 d、=1.5700 r+g・−22,9601 d+z□  1.0000   n7=1.80400
  1’t−46,57r13・−103,9685 d13・ (可変) r14:  絞り d14・1.1000 rl、=  39.7399 〜57− d1s=2.4100   no=1.65016  
 ν、=39.39r 0.=−220,6437 d + a=0.1000 f’+、=  25.3782 d+t=2.7600   nq=1.65830  
 νq・51.33r+s=  237.5652 d+ s=0.1200 rlq=  35.4197 d+q=3.8300  r++o=1.60311 
  シIG=60.70r2゜=  961.7115 d2゜=2.0400 rz+=−63,3939 az+=6.7000  nミニ1.80518   
νz=25.43rz=−16,9825 d2□=2.1000 r23ツー58.9277 d23=2.2800  r++z81.60311 
 +’ +z=(io、70rzn=−31,0354 d、4=0.8600 r2.=  24.8572 dzs=3.2900   r+++=1.53172
  1/ +5=48.90rth= 183.997
6 (非球面)非球面レンズデータ(非球面係数) rtb; azJ、 aa= 0.12308 X 1
0−’。
a6・0.17717 X 10-', aa=0.
26414 X 10''"'a+o=-0,305
85X 10-” Example 12 f = 36.3mm~102.0mm F/3.
68~4.872ω-61.6°~24.0' r1=-3951,1688 d,=2.550On,=1.80518v,=
25.43r2・77°2250 dz=7.010on,=1.60311v
, =60.70rz=-99,3398 ds=0.1000 r4= 43.5530 d4.4.2500 n5=1.69680 1/
3=55.52r5・107.1875 d,・(variable) rb=lens. 2378 da=1.3000 n mini 1.80610
v ,,=40.95r7・19.6682 d7=4.8000 rs=-58,5154 ds=1.1000 n5=1.83481
5 = 42.72 rq = 49.4487 d, = 0.3600 rl. = 31.4924 d+o=3.7900 na=1.80518
White=25.43rl +=-39.8707 d,=1.5700 r+g・-22,9601 d+z□ 1.0000 n7=1.80400
1't-46,57r13・-103,9685 d13・(variable) r14: Aperture d14・1.1000 rl, = 39.7399 ~ 57- d1s=2.4100 no=1.65016
ν,=39.39r 0. =-220,6437 d+a=0.1000 f'+,=25.3782 d+t=2.7600 nq=1.65830
νq・51.33r+s= 237.5652 d+ s=0.1200 rlq= 35.4197 d+q=3.8300 r++o=1.60311
siIG=60.70r2゜=961.7115 d2゜=2.0400 rz+=-63,3939 az+=6.7000 n mini 1.80518
νz=25.43rz=-16,9825 d2□=2.1000 r23 two 58.9277 d23=2.2800 r++z81.60311
+' +z=(io, 70rzn=-31,0354 d, 4=0.8600 r2.= 24.8572 dzs=3.2900 r+++=1.53172
1/+5=48.90rth=183.997
6 (Aspherical surface) Aspherical lens data (aspherical coefficient) rtb; azJ, aa= 0.12308 X 1
0-'.

a6・0.13270 xlo−’、 ae= 0.3
7489 Xl0−”al。=−0,29362x 1
0− ”但、f;全系の焦点距離 F;Fナンバー 2ω;画角 r、;物体側より順次に各面の曲率半径di i物体側
より順次に各レンズの肉厚及び空気間隔 n、; 物体側より順次に各レンズのd lin+七の
屈折率 ν8;物体側より順次に各レンズのア、−5数f、、;
 広角端における全系の焦点距離f□;広角端における
結像レンズ群の焦点距離 e 2 T ;望遠端における第2群の後側主点と結像
レンズ群の前側主点との距離 R;第ルンズ群の最像側面の曲率半径 又、上記実施例で用いられている非球面は、光軸方向を
X、光軸の法線方向をy、近軸曲率半径をRとしたとき
、 x=  cy” (1+、7   + a2y2−+ 
asy4 + a6y6 →−c=   −□ にて表わされる。但、az+aa+a6+ ”””’−
は非球面係数である。
a6・0.13270 xlo-', ae=0.3
7489 Xl0-”al.=-0,29362x 1
0-" However, f; Focal length of the entire system F; ; From the object side, the refractive index of each lens is d lin + 7, ν8; From the object side, each lens' a, -5 number f, .
Focal length of the entire system at the wide-angle end f□; Focal length e 2 T of the imaging lens group at the wide-angle end; Distance R between the rear principal point of the second group and the front principal point of the imaging lens group at the telephoto end; The radius of curvature of the most image side surface of the lens group, and the aspheric surface used in the above embodiment, is x = cy” (1+, 7 + a2y2−+
It is expressed as asy4 + a6y6 →-c=-□. However, az+aa+a6+ """'-
is the aspheric coefficient.

尚、A4;第1の非球面における非球面係数a4B4i
第2の非球面における非球面係数a4Ca、D4;非球
面係数84 である。
In addition, A4; aspherical coefficient a4B4i of the first aspherical surface
Aspherical coefficient a4Ca, D4 for the second aspherical surface; aspherical coefficient 84.

〔発明の効果〕〔Effect of the invention〕

各実施例の収差曲線図からも明らかなように、本発明に
よれば、各収差の良好に補正された高性能でかつコンパ
クト化が十分に達成されたズームレンズが提供される。
As is clear from the aberration curve diagrams of the respective examples, according to the present invention, a zoom lens is provided that has a high performance in which each aberration is well corrected, and is sufficiently compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本発明の実施例1゜2.4の広
角端及び望遠端のレンズ構成の断面図、第3図は実施例
3.5の広角端のレンズ構成の断面図、第4図及び第5
図は夫々実施例6の広角端及び望遠端のレンズ構成の断
面図5第6.7,8.9図は夫々実施例?、8.9.1
0の広角端のレンズ構成の断面図、第10図は実施例1
1.12の広角端のレンズ構成の断面図、第11図乃至
第13図、第14図乃至第16図、第17図乃至第19
図、第20図乃至第22図、第23図乃至第25図。 第26図乃至第28図、第29図乃至第31図、第32
図乃至第34図、第35図乃至第37図、第38図乃至
第40図、第41図乃至第43図、第44図乃至第46
図は夫々実施例1から12までの広角端、中間倍率。 望遠端の収差曲線図である。
1 and 2 are cross-sectional views of the lens configuration at the wide-angle end and telephoto end of Example 1°2.4 of the present invention, and FIG. 3 is a cross-sectional view of the lens configuration at the wide-angle end of Example 3.5. , Figures 4 and 5
The figure is a cross-sectional view of the lens configuration at the wide-angle end and the telephoto end of Example 6. Figures 6.7 and 8.9 are each an example. , 8.9.1
A cross-sectional view of the lens configuration at the wide-angle end of 0, FIG. 10 is Example 1
1.12 cross-sectional views of the lens configuration at the wide-angle end, FIGS. 11 to 13, FIGS. 14 to 16, and FIGS. 17 to 19
20 to 22, and 23 to 25. Figures 26 to 28, Figures 29 to 31, and 32
Figures to 34, Figures 35 to 37, Figures 38 to 40, Figures 41 to 43, Figures 44 to 46
The figures show Examples 1 to 12 at the wide-angle end and at intermediate magnification. It is an aberration curve diagram at the telephoto end.

Claims (1)

【特許請求の範囲】 (1)物体側より順に正の第1レンズ群と負の第2レン
ズ群と絞りを有し1群以上のレンズ群より成る全体とし
て正の結像レンズ群とから成り、広角側から望遠側へズ
ーミングする際に前記第1レンズ群と前記第2レンズ群
の間隔が増加し前記第2レンズ群と前記結像レンズ群の
間隔が減少するズームレンズで、少なくとも前記絞りの
近傍の面に第1の非球面、前記結像レンズ群の像面に近
い面に第2の非球面を有し、以下の条件を満足するズー
ムレンズ。 1<|B_4|/|A_4|<100………………(1
)但、非球面の式を ▲数式、化学式、表等があります▼ とおくと、 x:非球面の面頂からの光軸方向の座標 y;光軸の法線方向の座標 R;近軸曲率半径 a_2、a_4、a_6………;非球面係数A_4;第
1の非球面における非球面係数a_4B_4;第2の非
球面における非球面係数a_4である。 (2)物体側より順に正の第1レンズ群と負の第2レン
ズ群と正の第3レンズ群と絞りと正の第4レンズ群とか
ら成り、広角側から望遠側へズーミングする際に前記第
1レンズ群と前記第2レンズ群の間隔が増加し前記第2
レンズ群と前記第3レンズ群の間隔が減少し前記第3レ
ンズ群と前記第4レンズ群の間隔が減少するズームレン
ズで、前記第4レンズ群が少なくとも1面の非球面を有
し、以下の条件を満足するズームレンズ。 0.1×10^−^4<|C_4|<0.1×10^−
^3……………(2)但し、非球面の式を ▲数式、化学式、表等があります▼ とおくと、 x;非球面の面頂からの光軸方向の座標 y;光軸の法線方向の座標 R;近軸曲率半径 a_2、a_4、a_6………;非球面係数C_4;非
球面係数a_4 である。 (3)物体側より順に正の第1レンズ群と負の第2レン
ズ群と少なくとも1枚の両凹単レンズ及び最も像面側に
配置された物体側に凸の正メニスカスレンズを有する結
像レンズ群との3群から成り、前記正メニスカスレンズ
の少なくとも1面が非球面であり、該非球面の形状が光
軸から離れるに従って正の作用が弱まる形状であり、以
下の条件を満足するズームレンズ。 0.1×10^−^4<|D_4|<0.1×10^−
^3……………(3)但し、非球面の式を ▲数式、化学式、表等があります▼ とおくと、 x;非球面の面頂からの光軸方向の座標 y;光軸の法線方向の座標 R;近軸曲率半径 a_2、a_4、a_6………;非球面係数D_4;非
球面係数a_4 である。
[Claims] (1) Consisting of, in order from the object side, a positive first lens group, a negative second lens group, and an overall positive imaging lens group that has an aperture and one or more lens groups. , a zoom lens in which the distance between the first lens group and the second lens group increases and the distance between the second lens group and the imaging lens group decreases when zooming from the wide-angle side to the telephoto side, and at least the aperture A zoom lens having a first aspherical surface on a surface near the image forming lens group and a second aspherical surface on a surface near the image plane of the imaging lens group, and satisfying the following conditions. 1<|B_4|/|A_4|<100………………(1
) However, if the formula of the aspheric surface is ▲ There are mathematical formulas, chemical formulas, tables, etc. Radius of curvature a_2, a_4, a_6......; aspherical coefficient A_4; aspherical coefficient a_4B_4 in the first aspherical surface; aspherical coefficient a_4 in the second aspherical surface. (2) Consisting of a positive first lens group, a negative second lens group, a positive third lens group, an aperture, and a positive fourth lens group in order from the object side, when zooming from the wide-angle side to the telephoto side The distance between the first lens group and the second lens group increases, and the distance between the first lens group and the second lens group increases.
A zoom lens in which the distance between the lens group and the third lens group is reduced and the distance between the third lens group and the fourth lens group is reduced, the fourth lens group having at least one aspherical surface, and the following: A zoom lens that satisfies the following conditions. 0.1×10^-^4<|C_4|<0.1×10^-
^3…………(2) However, if the formula of the aspherical surface is ▲There are mathematical formulas, chemical formulas, tables, etc.▼, then x; coordinate in the optical axis direction from the top of the aspherical surface y; Coordinates R in the normal direction; paraxial radii of curvature a_2, a_4, a_6...; aspheric coefficient C_4; aspheric coefficient a_4. (3) Imaging that includes, in order from the object side, a positive first lens group, a negative second lens group, at least one biconcave single lens, and a positive meniscus lens that is convex on the object side and is located closest to the image plane. A zoom lens consisting of three lens groups, wherein at least one surface of the positive meniscus lens is an aspherical surface, the shape of the aspherical surface is such that the positive effect weakens as the distance from the optical axis increases, and the zoom lens satisfies the following conditions. . 0.1×10^-^4<|D_4|<0.1×10^-
^3…………(3) However, if the formula of the aspherical surface is ▲There are mathematical formulas, chemical formulas, tables, etc.▼, then x; coordinate in the optical axis direction from the top of the aspherical surface y; Coordinates R in the normal direction; paraxial radii of curvature a_2, a_4, a_6...; aspherical coefficient D_4; aspherical coefficient a_4.
JP63116682A 1988-05-13 1988-05-13 Zoom lens Expired - Lifetime JP2859616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116682A JP2859616B2 (en) 1988-05-13 1988-05-13 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116682A JP2859616B2 (en) 1988-05-13 1988-05-13 Zoom lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10563996A Division JPH08271790A (en) 1996-04-25 1996-04-25 Zoom lens

Publications (2)

Publication Number Publication Date
JPH01285911A true JPH01285911A (en) 1989-11-16
JP2859616B2 JP2859616B2 (en) 1999-02-17

Family

ID=14693265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116682A Expired - Lifetime JP2859616B2 (en) 1988-05-13 1988-05-13 Zoom lens

Country Status (1)

Country Link
JP (1) JP2859616B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375712A (en) * 1989-08-18 1991-03-29 Nikon Corp Zoom lens
JPH08248319A (en) * 1995-03-13 1996-09-27 Canon Inc Zoom lens
JP2001188169A (en) * 1999-12-27 2001-07-10 Asahi Optical Co Ltd Zoom lens system
JPWO2017221949A1 (en) * 2016-06-21 2019-03-07 株式会社nittoh Imaging optical system and imaging apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183514A (en) * 1984-10-01 1986-04-28 Canon Inc Variable power method of zoom lens
JPS61140913A (en) * 1984-12-13 1986-06-28 Matsushita Electric Ind Co Ltd High variable power system zoom lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183514A (en) * 1984-10-01 1986-04-28 Canon Inc Variable power method of zoom lens
JPS61140913A (en) * 1984-12-13 1986-06-28 Matsushita Electric Ind Co Ltd High variable power system zoom lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375712A (en) * 1989-08-18 1991-03-29 Nikon Corp Zoom lens
JPH08248319A (en) * 1995-03-13 1996-09-27 Canon Inc Zoom lens
JP2001188169A (en) * 1999-12-27 2001-07-10 Asahi Optical Co Ltd Zoom lens system
JPWO2017221949A1 (en) * 2016-06-21 2019-03-07 株式会社nittoh Imaging optical system and imaging apparatus

Also Published As

Publication number Publication date
JP2859616B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
US5042927A (en) Compact zoom lens
US5568321A (en) Zoom lens
JPH04293007A (en) Zoom lens
JP3296876B2 (en) Zoom lens
US4907866A (en) Objective of variable focal length
US5270866A (en) Compact zoom lens
JPH01201614A (en) Variable power lens
JPH05150161A (en) Variable power lens
US6002526A (en) Zoom lens system
WO2019131749A1 (en) Lens system and imaging device
US4732459A (en) Fast telephoto lens
US4641928A (en) Four-group telephoto zoom lens
JPS6026312A (en) Zoom lens
JPH09197271A (en) Zoom lens
JPH02135312A (en) Compact zoom lens of high variable magnification
JP3331223B2 (en) Small two-group zoom lens
JP3538354B2 (en) Zoom lens system
JP3387687B2 (en) Zoom lens
JPH11352400A (en) Zoom lens system
JP3057921B2 (en) Zoom lens
JPH0850245A (en) Zoom lens
JPH01285911A (en) Zoom lens
WO2019131750A1 (en) Lens system and imaging device
JPS61275712A (en) Telephoto zoom lens
JP2002006218A (en) Zoom lens system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10