JPH08269968A - Sheathing method - Google Patents

Sheathing method

Info

Publication number
JPH08269968A
JPH08269968A JP7215695A JP7215695A JPH08269968A JP H08269968 A JPH08269968 A JP H08269968A JP 7215695 A JP7215695 A JP 7215695A JP 7215695 A JP7215695 A JP 7215695A JP H08269968 A JPH08269968 A JP H08269968A
Authority
JP
Japan
Prior art keywords
wall
mountain retaining
ground
retaining wall
constructed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7215695A
Other languages
Japanese (ja)
Other versions
JP3521363B2 (en
Inventor
Shin Uchiyama
伸 内山
Yutaka Katsura
豊 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13481120&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08269968(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP07215695A priority Critical patent/JP3521363B2/en
Publication of JPH08269968A publication Critical patent/JPH08269968A/en
Application granted granted Critical
Publication of JP3521363B2 publication Critical patent/JP3521363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PURPOSE: To prevent a sheathing wall from deformation by constructing an exterior.wall parallel with a sheathing wall with a certain gap reserved, providing a plurality of intermediate walls between them at a certain spacing, excavating the area for construction, and supporting the exposed sheathing wall by the timbering work. CONSTITUTION: A sheathing wall 10 consisting of an underground continuous wall of pillar train type using H-steel as core is constructed along the construction area R of the ground J. Then an exterior wall 20 is constructed parallel with the sheathing wall 10 in the ground J outside the construction area R. Intermediate walls 30 are at a certain spacing constructed in such a way as bridging cover the sheathing wall 10 and exterior wall 20. The side with the area R is excavated, and the exposed sheathing wall 10 is supported on the timbering 40 so that a sheath structure 50 is established. This increases the thickness in vertical direction of the sheathing wall 10 to cause increase in the thickness of the sheath structure 50, and likely deformation of the sheathing wall 10 associated with excavation is suppressed, and the surrounding ground J can be supported certainly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地下掘削工事の際に周
囲の地盤を支え、崩壊や有害な変形を防止するために必
要な山留めの構築方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a mountain cleat necessary to support the surrounding ground and prevent collapse or harmful deformation during underground excavation work.

【0002】[0002]

【従来の技術】山留めは、地下掘削工事の際に周囲の地
盤を支え、崩壊や有害な変形を防止するために必要な構
造物である。山留めは、図8に示すように、山留め壁1
と、切梁2や腹起こし3等の支保工4とから構成され
る。山留め壁1には背面の地盤Jからの外力(土圧と水
圧)が作用するが、山留め壁1は内側の掘削地盤や支保
工4によって支持されている。
2. Description of the Related Art A mountain retaining structure is a structure necessary to support the surrounding ground and prevent collapse and harmful deformation during underground excavation work. The mountain retaining wall is, as shown in FIG. 8, a mountain retaining wall 1
And a supporting member 4 such as a cross beam 2 and an abdomen upright 3. An external force (earth pressure and water pressure) from the ground J on the back surface acts on the mountain retaining wall 1, but the mountain retaining wall 1 is supported by the excavated ground on the inside and the supporting works 4.

【0003】ところで、このような山留めを施したうえ
で地下掘削を行っても、周囲の地盤が軟弱な粘性土地盤
等であれば、山留め壁の変形、周囲の地盤の沈下といっ
た現象が顕著に表れる。図9に掘削時の山留め壁変位例
を示す。これらの現象を防止するためには、山留め壁自
体の剛性を高めて変形を抑えることが非常に有効であ
る。従来よく行われているのは、山留め壁として壁厚の
大きな鉄筋コンクリート地中連続壁を用い、さらに剛性
の高い強固な支保工を用いる方法である。
By the way, even if underground excavation is performed after such mountain retaining, if the surrounding ground is a soft cohesive soil, phenomena such as deformation of the mountain retaining wall and subsidence of the surrounding ground are remarkable. appear. Fig. 9 shows an example of displacement of the retaining wall during excavation. In order to prevent these phenomena, it is very effective to increase the rigidity of the mountain retaining wall itself to suppress deformation. A well-known method is a method of using a reinforced concrete underground continuous wall having a large wall thickness as a retaining wall and using a strong supporting structure having higher rigidity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の工法によれば、次のような課題をも抱えて
いる。 (1)大深度下で壁厚の大きな鉄筋コンクリート地中連
続壁を施工することはコストがかかる。 (2)図9に示した山留め壁の変位例から、周囲の地盤
から山留め壁に作用する外力を考慮すれば、深度方向に
同一の壁厚を有する鉄筋コンクリート地中連続壁を施工
するのは合理的とはいえない。しかし、作用する外力に
応じて壁厚を変化させた鉄筋コンクリート地中連続壁を
施工するのは技術的に非常に困難である。 (3)鉄筋コンクリート地中連続壁はそのままに、切梁
の段数を増やす、部材を大型化する等して支保工を強固
な構造とすると、支保工の施工にもコストがかかる。ま
た、大規模な切削工事においては支保工自体が工事の妨
げとなる。さらに、解体時に多くの手間が必要となる。
However, the conventional construction method as described above also has the following problems. (1) It is costly to construct a reinforced concrete underground continuous wall having a large wall thickness at a large depth. (2) From the displacement example of the retaining wall shown in Fig. 9, considering the external force acting on the retaining wall from the surrounding ground, it is reasonable to construct a reinforced concrete underground continuous wall having the same wall thickness in the depth direction. It cannot be said to be the target. However, it is technically very difficult to construct a reinforced concrete underground wall whose wall thickness is changed according to the external force acting. (3) If the supporting work is made to have a strong structure by increasing the number of steps of the beam and increasing the size of the member while keeping the reinforced concrete underground wall as it is, the cost of the supporting work will be high. Also, in large-scale cutting work, the supporting work itself hinders the work. Furthermore, much effort is required when disassembling.

【0005】本発明は上記の事情に鑑みてなされたもの
であり、施工が簡単でしかも低コストにて施工可能な山
留め工法を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a mountain retaining method which is simple in construction and can be constructed at low cost.

【0006】[0006]

【課題を解決するための手段】本発明においては、上記
の課題を解決するために以下の手段を講じるものであ
る。請求項1に記載の山留め工法は、地盤に、地下構造
物の構築領域に沿って柱列式地中連続壁からなる山留め
壁を構築し、前記構築領域の外側の地盤に、山留め壁に
沿って柱列式地中連続壁もしくは深層混合処理工法によ
る改良体からなる外壁を間隔を空けて平行に配設し、こ
れら平行に配設された壁の間に掛け渡すように、柱列式
地中連続壁もしくは深層混合処理工法による改良体から
なる中間壁を間隔を空けて複数配設し、その後前記構築
領域を掘削するとともに構築領域側に露出する山留め壁
を支保工により支持することを特徴とする。
In order to solve the above problems, the present invention takes the following measures. The earth retaining method according to claim 1 constructs a mountain retaining wall consisting of a column-type underground continuous wall along a construction area of an underground structure in the ground, and a soil outside the construction area along the mountain retaining wall. Column-type ground continuous walls or outer walls consisting of improved bodies made by the deep-mixing method are arranged in parallel at intervals, and they are laid between these parallel walls. Characterized by arranging a plurality of intermediate walls made of a medium continuous wall or an improved body by a deep layer mixing treatment method at intervals, and then excavating the building area and supporting the mountain retaining wall exposed to the building area side by supporting work And

【0007】請求項2に記載の山留め工法は、地盤に、
地下構造物の構築領域に沿って柱列式地中連続壁からな
る山留め壁を構築し、前記構築領域の内側の地盤に、山
留め壁の水平方向の延在方向に沿って深層混合処理工法
による改良体からなる支持壁を間隔を空けて複数配設
し、その後前記構築領域を掘削するとともに構築領域側
に露出する山留め壁を支保工により支持することを特徴
とする。
According to the mountain retaining method of claim 2, the ground is
By constructing a mountain retaining wall consisting of column-type underground continuous walls along the construction area of the underground structure, on the ground inside the construction area, along the horizontal extending direction of the mountain retaining wall It is characterized in that a plurality of support walls made of the improved body are arranged at intervals, and thereafter the building area is excavated and the mountain retaining wall exposed to the building area side is supported by supporting work.

【0008】請求項3に記載の山留め工法は、請求項2
に記載の山留め工法における山留め壁の内側に、柱列式
地中連続壁もしくは深層混合処理工法による改良体から
なる補助壁を併設して山留め壁を2重構造とすることを
特徴とする。
The mountain retaining method according to claim 3 is the method according to claim 2.
The mountain retaining wall in the mountain retaining method described in (3) is characterized in that the mountain retaining wall has a double structure by additionally providing an auxiliary wall consisting of a column-type underground continuous wall or an improved body by the deep layer mixing treatment method.

【0009】請求項4に記載の山留め工法は、請求項2
または3に記載の山留め工法における支持壁に、山留め
壁と平行に深層混合処理工法による改良体からなる内壁
を配設することを特徴とする。
The mountain retaining method according to claim 4 is the method according to claim 2.
Alternatively, an inner wall made of an improved body obtained by the deep layer mixing treatment method is arranged in parallel with the mountain retaining wall in the support wall in the mountain retaining method described in 3.

【0010】[0010]

【作用】請求項1に記載の山留め工法によれば、山留め
壁と外壁とを間隔を空けて平行に配設し、これらの壁体
の間に中間壁を複数配設することにより、山留め壁およ
び外壁と、その間に存在する原地盤土とを一体化してひ
とつの構造物とする。この構造物は壁厚の大きな山留め
壁となって断面剛性が高まるので、周辺の地盤から作用
する側圧によっても変形、倒壊することなく周囲の地盤
を支えることができる。
According to the mountain retaining method of the first aspect, the mountain retaining wall and the outer wall are arranged in parallel with a space therebetween, and a plurality of intermediate walls are disposed between these wall bodies, whereby the mountain retaining wall is provided. And the outer wall and the underlying ground soil existing between them are integrated into one structure. Since this structure becomes a mountain retaining wall having a large wall thickness and the cross-sectional rigidity is enhanced, the surrounding ground can be supported without being deformed or collapsed even by the lateral pressure applied from the surrounding ground.

【0011】請求項2に記載の山留め工法によれば、山
留め壁に沿って支持壁を間隔を空けて櫛状に並設するこ
とにより、山留め壁および支持壁と、その間に存在する
原地盤土とを一体化してひとつの構造物とする。この構
造物は壁厚の大きな山留め壁となって断面剛性が高まる
ので、周辺の地盤から作用する側圧によっても変形、倒
壊することなく周囲の地盤を支えることができる。
According to the earth retaining method of the second aspect of the present invention, the retaining walls and the supporting walls and the underlying ground soil existing between the retaining walls are provided by arranging the supporting walls in a comb shape at intervals along the retaining walls. And are integrated into one structure. Since this structure becomes a mountain retaining wall having a large wall thickness and the cross-sectional rigidity is enhanced, the surrounding ground can be supported without being deformed or collapsed even by the lateral pressure applied from the surrounding ground.

【0012】請求項3に記載の山留め工法によれば、請
求項2に記載の山留め工法における山留め壁の内側に補
助壁を併設したうえで支持壁を間隔を空けて櫛状に並設
することにより、山留め壁の断面剛性をさらに高めるこ
とができる。
According to the earth retaining method of the third aspect, an auxiliary wall is provided inside the mountain retaining wall in the second aspect of the invention, and the supporting walls are arranged in a comb shape with a space therebetween. Thereby, the cross-sectional rigidity of the mountain retaining wall can be further increased.

【0013】請求項4に記載の山留め工法によれば、請
求項2または3に記載の山留め工法における支持壁に山
留め壁と平行に内壁を箱状に配設することにより、山留
め壁および内壁と、その間の原地盤土との一体化をさら
に強めることができる。
According to the earth retaining method according to claim 4, the inner wall is arranged in a box shape parallel to the mountain retaining wall on the supporting wall in the mountain retaining method according to claim 2 or 3, whereby the mountain retaining wall and the inner wall are formed. , In the meantime, the integration with the ground soil can be further strengthened.

【0014】[0014]

【実施例】本発明の山留め工法の第1実施例を図1を参
照して説明する。図1は、本実施例の山留め工法により
施工された山留めを示している。この山留めは、地盤J
に、地下構造物の構築領域Rに沿って構築された柱列式
地中連続壁からなる山留め壁10と、構築領域Rの外側
の地盤Jに、山留め壁10に沿って平行に構築された深
層混合処理工法による改良体からなる外壁20と、山留
め壁10と外壁20との間に掛け渡すように間隔を空け
て複数構築された深層混合処理工法による改良体からな
る中間壁30と、構築領域R側に露出する山留め壁10
を支持する支保工40とから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the mountain retaining method of the present invention will be described with reference to FIG. FIG. 1 shows a mountain retaining wall constructed by the mountain retaining method of this embodiment. This pile is ground J
In addition, the earth retaining wall 10 composed of a column-type underground continuous wall constructed along the construction area R of the underground structure and the ground J outside the construction area R were constructed in parallel along the earth retaining wall 10. An outer wall 20 made of an improved body made by the deep-mixing processing method, an intermediate wall 30 made of an improved body made by the deep-mixing processing method, which is constructed with a plurality of spaces at intervals so as to be bridged between the mountain retaining wall 10 and the outer wall 20, Mountain retaining wall 10 exposed on the region R side
And a supporting member 40 for supporting the

【0015】ここで、深層混合処理工法とは、地盤改良
工法のうちの固結工法の一種で、壁体を設けるべき地盤
に石灰、セメント等の安定材を攪拌翼等で攪拌し、土を
化学的に固結させる方法である。この深層混合処理工法
によれば、地中のある領域に壁体を構築することが可能
である。
Here, the deep layer mixing treatment method is one of the consolidation methods of the ground improvement method, and the stabilizers such as lime and cement are stirred with stirring blades on the ground where the wall is to be provided, and the soil is removed. It is a method of chemically solidifying. According to this deep layer mixing processing method, it is possible to construct a wall body in a certain area in the ground.

【0016】山留めを施工するには、まず、地盤Jの構
築領域Rに沿ってH鋼を芯材とする柱列式地中連続壁を
構築して山留め壁10とする。山留め壁10の下端は、
地中の岩盤等の支持地盤Gに達するものとする。
In order to construct the mountain retaining wall, first, a column-column type underground continuous wall having H steel as a core material is constructed along the construction region R of the ground J to form the mountain retaining wall 10. The lower end of the mountain retaining wall 10
It shall reach the supporting ground G such as underground rock.

【0017】次に、構築領域Rの外側の地盤Jに、山留
め壁10に沿って平行に外壁20を構築する。これによ
り、構築領域Rは二重の壁体で囲まれた状態となる。
Next, on the ground J outside the construction area R, the outer wall 20 is constructed in parallel along the mountain retaining wall 10. As a result, the construction region R is in a state of being surrounded by the double wall body.

【0018】続いて、山留め壁10と外壁20との間に
残る地盤J1に、山留め壁10と外壁20との間に掛け
渡すように間隔を空けて中間壁30を複数構築する。こ
れにより、構築領域Rの周囲には、上方から見て箱形に
仕切られた壁体が構築された状態となる。
Subsequently, a plurality of intermediate walls 30 are constructed on the ground J1 remaining between the mountain retaining wall 10 and the outer wall 20 with a space provided so as to be bridged between the mountain retaining wall 10 and the outer wall 20. As a result, around the building region R, a box-shaped wall body is built when viewed from above.

【0019】ここで、外壁20および中間壁30は、周
囲の地盤Jの土質や土圧等の影響により予想される山留
め壁10の変形を考慮して効果的な長さとする。山留め
掘削施工中の山留め壁10の壁変位は、前述した図9の
ように表れるので、外壁20および中間壁30の下端
は、壁変位が最大となる床付け面Tよりもさらに深く構
築する。
Here, the outer wall 20 and the intermediate wall 30 have an effective length in consideration of the deformation of the retaining wall 10 which is expected to be caused by the soil properties of the surrounding ground J and the earth pressure. Since the wall displacement of the mountain retaining wall 10 during the earth retaining excavation construction appears as shown in FIG. 9 described above, the lower ends of the outer wall 20 and the intermediate wall 30 are constructed deeper than the flooring surface T where the wall displacement is maximum.

【0020】山留め壁10、外壁20および中間壁30
の構築が完了した後、構築領域R側の掘削を開始し、露
出した山留め壁10を支保工40を配設することにより
支持する。
Mountain retaining wall 10, outer wall 20 and intermediate wall 30
After the construction is completed, excavation on the construction region R side is started, and the exposed mountain retaining wall 10 is supported by disposing the supporting work 40.

【0021】上記のような山留め工法を採用すれば、山
留め壁10と外壁20との間に中間壁30を構築するこ
とにより、山留め壁10および外壁20と、それらの壁
体の間に残る地盤J1とが一体化した構造物となる。こ
の山留め構造50をひとつの壁体とみなすと山留め壁1
0の垂直方向の厚さが増加するので、山留め構造50の
剛性が増加し、掘削に伴う山留め壁10の変形が抑えら
れるとともに周辺の地盤Jが確実に支えられる。
If the earth retaining method as described above is adopted, by constructing the intermediate wall 30 between the earth retaining wall 10 and the outer wall 20, the earth retaining wall 10 and the outer wall 20 and the ground remaining between those wall bodies. The structure is integrated with J1. Considering this mountain retaining structure 50 as one wall, the mountain retaining wall 1
Since the vertical thickness of 0 increases, the rigidity of the mountain retaining structure 50 increases, the deformation of the mountain retaining wall 10 due to excavation is suppressed, and the ground J in the periphery is reliably supported.

【0022】ここで、山留め壁のみを構築した場合と、
上記の山留め工法による山留め構造50を構築した場合
とで断面係数の比較を行う。 (a)山留め壁10および外壁20の壁厚ともに85c
m、中間壁30同士の間隔200cmとして山留め構造
50を構築すると、その断面係数は、 ・壁厚85cmの柱列式地中連続壁のみを構築した場合
の78倍 ・壁厚85cmの鉄筋コンクリート連壁のみを構築した
場合の52倍 ・壁厚100cmの鉄筋コンクリート連壁のみを構築し
た場合の28倍 ・壁厚150cmの鉄筋コンクリート連壁のみを構築し
た場合の5倍となる。 (b)山留め壁10および外壁20の壁厚ともに85c
m、中間壁30同士の間隔100cmとして山留め構造
50を構築すると、その断面係数は、 ・壁厚85cmの柱列式地中連続壁のみを構築した場合
の10倍 ・壁厚85cmの鉄筋コンクリート連壁のみを構築した
場合の7倍 ・壁厚100cmの鉄筋コンクリート連壁のみを構築し
た場合の3倍 ・壁厚150cmの鉄筋コンクリート連壁のみを構築し
た場合の0.7倍となる。
Here, when only the mountain retaining wall is constructed,
The section modulus is compared with the case where the mountain retaining structure 50 is constructed by the above mountain retaining method. (A) Both of the mountain retaining wall 10 and the outer wall 20 have a thickness of 85c
When the mountain retaining structure 50 is constructed with the space between the intermediate walls 30 being 200 cm, the section modulus is: 78 times that when only a column-column underground continuous wall with a wall thickness of 85 cm is constructed. It is 52 times higher than the case where only the reinforced concrete connecting wall with a wall thickness of 100 cm is built up. 28 times that when only the reinforced concrete connecting wall with a wall thickness of 150 cm is built up. (B) Both the wall thickness of the mountain retaining wall 10 and the outer wall 20 is 85c
When the mountain retaining structure 50 is constructed with the distance between the intermediate walls 30 being 100 cm, the section modulus is: 10 times as large as the column-column type underground continuous wall with a wall thickness of 85 cm. The reinforced concrete connecting wall with a wall thickness of 85 cm. It is 7 times the case where only the reinforced concrete connecting wall with a wall thickness of 100 cm is built. 3 times the case where only the reinforced concrete connecting wall with a wall thickness of 150 cm is built.

【0023】上記の比較結果から、本実施例にて説明し
た山留め工法により構築した山留め構造50は、従来の
山留めに比べて断面剛性を飛躍的に高めることができ
る。
From the above comparison results, the mountain retaining structure 50 constructed by the mountain retaining method described in this embodiment can remarkably increase the sectional rigidity as compared with the conventional mountain retaining method.

【0024】さらに、上記の比較の対称となった鉄筋コ
ンクリート連壁の単位面積あたりの施工コストは、柱列
式地中連続壁の単位面積あたりの施工コストのほぼ4倍
であるので、例えば壁厚100cmの鉄筋コンクリート
連壁の3倍の断面剛性を備える柱列式地中連続壁の山留
め構造50を構築すると、山留め壁10と外壁20の深
さを同等に施工しても施工コストは2分の1程度であ
る。したがって、山留めの施工コストを大幅に削減する
ことができる。
Further, since the construction cost per unit area of the reinforced concrete connecting wall, which is symmetrical to the above comparison, is almost four times the construction cost per unit area of the column-column type underground continuous wall, for example, the wall thickness By constructing a pillar-type underground continuous wall retaining structure 50 having a cross-sectional rigidity three times that of a 100 cm reinforced concrete connecting wall, the construction cost is 2 minutes even if the retaining walls 10 and the outer wall 20 have the same depth. It is about 1. Therefore, the construction cost of the mountain retaining can be significantly reduced.

【0025】さらに、支保工40に必要とされる剛性を
低減できるので、支保工40の施工コストを削減するこ
とができる。
Further, since the rigidity required for the support work 40 can be reduced, the construction cost of the support work 40 can be reduced.

【0026】外壁20と中間壁30との間の空間は、構
築領域R部分に構造躯体が完成した後、地下通路、駐車
場等を構築することによって有効に利用可能である。
The space between the outer wall 20 and the intermediate wall 30 can be effectively used by constructing an underground passage, a parking lot, etc. after the structural body is completed in the construction area R part.

【0027】本実施例においては、外壁20および中間
壁30に深層混合処理工法による改良体を採用した。そ
の理由は、周囲の地盤Jの土質や土圧等の影響によって
山留め壁10には大きな引張り応力が作用するためH鋼
を配設して応力をもたせるが、山留め壁10と外壁20
との間には拘束された地盤J1が存在するため外壁20
には大きな引張り応力が作用しないからである。よっ
て、設計の都合によっては外壁20に柱列式地中連続壁
を採用してもかまわない。
In this embodiment, the outer wall 20 and the intermediate wall 30 are modified by the deep layer mixing method. The reason is that a large tensile stress acts on the mountain retaining wall 10 due to the influence of the soil quality and the earth pressure of the surrounding ground J, so that H steel is arranged to provide the stress, but the mountain retaining wall 10 and the outer wall 20.
Since there is a restrained ground J1 between the outer wall 20 and
This is because a large tensile stress does not act on. Therefore, depending on the design, the pillar-type underground continuous wall may be adopted as the outer wall 20.

【0028】次に、本発明の第2実施例を図2ないし図
5を参照して説明する。図2は、本実施例の山留め工法
により施工された山留めを示している。この山留めは、
地盤Jに、地下構造物の構築領域Rに沿って構築された
柱列式地中連続壁からなる山留め壁110と、山留め壁
110の内側に密接して構築された深層混合処理工法に
よる改良体からなる補助壁111と、構築領域Rの内側
の地盤Jに、山留め壁110の水平方向の延在方向に沿
って平行に構築された深層混合処理工法による改良体か
らなる内壁120と、山留め壁110と内壁120との
間に掛け渡すように間隔を空けて複数構築された深層混
合処理工法による改良体からなる支持壁130と、構築
領域R側に露出する山留め壁110を支持する支保工4
0とから構成されている。
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 2 shows a mountain retaining wall constructed by the mountain retaining method of this embodiment. This mountain retaining
On the ground J, a mountain retaining wall 110 composed of a column-type underground continuous wall constructed along the construction region R of the underground structure, and an improved body by the deep-mixing processing method constructed in close contact with the inside of the mountain retaining wall 110. And an inner wall 120 made of an improved body constructed by the deep layer mixing processing method, which is constructed parallel to the ground J inside the building region R along the horizontal extension direction of the mountain retaining wall 110, and the mountain retaining wall. 110 and the inner wall 120. A support wall 130 composed of an improved body constructed by a deep layer mixing processing method, which is constructed with a space provided so as to be bridged between the inner wall 120 and the inner wall 120, and a supporting work 4 for supporting the mountain retaining wall 110 exposed to the construction region R side.
0.

【0029】山留めを施工するには、まず、地盤Jの構
築領域Rに沿ってH鋼を芯材とする柱列式地中連続壁を
構築して山留め壁110とする。山留め壁110の下端
は、地中の岩盤等の支持地盤Gに達するものとする。
In order to construct the mountain retaining wall, first, a pillar-line type underground continuous wall having H steel as a core material is constructed along the construction region R of the ground J to form the mountain retaining wall 110. It is assumed that the lower end of the mountain retaining wall 110 reaches the supporting ground G such as underground rock.

【0030】次に、構築領域Rの内側の地盤Jに、山留
め壁110に沿って密接する深層混合処理工法により補
助壁111を構築する。補助壁111の下端は山留め壁
110の下端と同じ深度に達するものとし、上端は床付
け面Tが構築される深度に達するまで構築する。
Next, on the ground J inside the building area R, the auxiliary wall 111 is built by the deep layer mixing processing method in which the ground wall J is closely contacted. It is assumed that the lower end of the auxiliary wall 111 reaches the same depth as the lower end of the mountain retaining wall 110, and the upper end of the auxiliary wall 111 is built up to the depth at which the flooring surface T is built.

【0031】続いて、補助壁111よりもさらに内側の
地盤Jに、山留め壁110に沿って平行に、深層混合処
理工法により内壁120を構築する。内壁120の下端
および上端はそれぞれ補助壁111と同等の深度まで構
築する。これにより、構築領域Rは二重の壁体で囲まれ
た状態となる。
Subsequently, the inner wall 120 is constructed on the ground J further inside the auxiliary wall 111 along the mountain retaining wall 110 in parallel by the deep layer mixing processing method. The lower end and the upper end of the inner wall 120 are constructed to the same depth as the auxiliary wall 111, respectively. As a result, the construction region R is in a state of being surrounded by the double wall body.

【0032】さらに、補助壁111と内壁120との間
に残る地盤J2に、補助壁111と内壁120との間に
掛け渡すように間隔を空けて、深層混合処理工法により
支持壁130を複数構築する。これにより、構築領域R
の周囲には、上方から見て箱形に仕切られた壁体が構築
された状態となる。
Further, the ground J2 remaining between the auxiliary wall 111 and the inner wall 120 is spaced so as to be bridged between the auxiliary wall 111 and the inner wall 120, and a plurality of support walls 130 are constructed by the deep layer mixing processing method. To do. As a result, the construction area R
Around the area, a wall body that is partitioned in a box shape is constructed when viewed from above.

【0033】山留め壁110、補助壁111、内壁12
0および支持壁130の構築が完了した後、構築領域R
側の掘削を開始し、露出した山留め壁110を支保工1
40を配設することにより支持する。
Mountain retaining wall 110, auxiliary wall 111, inner wall 12
0 and the construction of the support wall 130 is completed, the construction region R
Start excavation on the side and support the exposed retaining wall 110
It is supported by disposing 40.

【0034】上記のような山留め工法を採用すれば、補
助壁111と内壁120との間に支持壁130を構築す
ることにより、山留め壁110および内壁120と、そ
れらの壁体の間に残る地盤J2とが一体化した構造物と
なる。この山留め構造150をひとつの壁体とみなす
と、前記第1実施例と同様に、山留め壁110の垂直方
向の厚さが増加するので山留め構造150の剛性が増加
し、掘削に伴う山留め壁体110の変形が抑えられると
ともに、周辺の地盤Jが確実に支えられる。
If the earth retaining method as described above is adopted, by constructing the support wall 130 between the auxiliary wall 111 and the inner wall 120, the ground remaining between the earth retaining wall 110 and the inner wall 120 and their wall bodies. It becomes a structure integrated with J2. If the mountain retaining structure 150 is regarded as one wall, the vertical thickness of the mountain retaining wall 110 increases, so that the rigidity of the mountain retaining structure 150 increases and the mountain retaining wall body accompanying excavation increases, as in the first embodiment. The deformation of 110 is suppressed and the surrounding ground J is reliably supported.

【0035】山留め構造150には、図3に示すよう
に、主働、受働の側圧力Sが作用し、さらに底面には反
力Hが作用する(図中矢印方向)。しかし、山留め構造
150を回転させようとする力Lは、底面に作用する反
力Hによって打ち消すことができる。
As shown in FIG. 3, the mountain retaining structure 150 is acted on by the main and receiving side pressures S, and the reaction force H acts on the bottom surface (in the direction of the arrow in the figure). However, the force L that attempts to rotate the mountain retaining structure 150 can be canceled by the reaction force H that acts on the bottom surface.

【0036】掘削が進行したとき、山留め壁110は根
切り底付近が最も変形し(図9参照)、これによって山
留め構造150には、図4に示すように、山留め壁11
0と補助壁111との間にせん断力Fが発生する。しか
し、補助壁111、支持壁130を構築することより、
発生するせん断力を打ち消して山留め壁110の変形量
を低減することができる。
When the excavation proceeds, the earth retaining wall 110 is most deformed near the root cutting bottom (see FIG. 9), which causes the earth retaining structure 150 to have the earth retaining wall 11 as shown in FIG.
A shearing force F is generated between 0 and the auxiliary wall 111. However, by constructing the auxiliary wall 111 and the support wall 130,
The amount of deformation of the mountain retaining wall 110 can be reduced by canceling the generated shearing force.

【0037】補助壁111、内壁120、支持壁130
を構成する深層混合処理工法による改良体の材料につい
ては、2次元FEM解析の結果、内部に発生する最大ひ
ずみは、実際の強度試験により得られる破壊ひずみの3
分の1程度であるので、改良体の材料自体は3倍程度の
安全率をもって変形に耐えることができる。
Auxiliary wall 111, inner wall 120, support wall 130
As for the material of the improved body by the deep-layer mixing treatment method that composes, the maximum strain generated inside is 3% of the fracture strain obtained by the actual strength test as a result of the two-dimensional FEM analysis.
Since it is about one-third, the improved material itself can withstand deformation with a safety factor of about three times.

【0038】なお、本実施例においては、補助壁111
に深層混合処理工法による改良体を採用したが、設計の
都合によっては外壁110と同様に柱列式地中連続壁を
採用してもかまわない。
In this embodiment, the auxiliary wall 111
Although the improved body obtained by the deep-layer mixing processing method is adopted for the above, a column-row underground continuous wall may be adopted like the outer wall 110 depending on the design.

【0039】さらに、設計条件に応じて、補助壁11
1、内壁120のいずれか一方、もしくは両方を構築せ
ず、図5の(A)、(B)に示すような山留め構造15
0a、150bを構築することも可能である。
Further, depending on the design conditions, the auxiliary wall 11
1, one or both of the inner wall 120 is not constructed, and the mountain retaining structure 15 as shown in FIGS. 5 (A) and 5 (B).
It is also possible to construct 0a and 150b.

【0040】ところで、上記の実施例にて説明した柱列
式地中連続壁など原位置攪拌系山留め壁においては、そ
の壁面に作用する側圧(土圧、水圧等)の測定が非常に
重要となるが、従来の原位置攪拌系山留め壁における側
圧測定は次のような問題を有する。 (1)原位置攪拌系山留め壁の断面が円形なので、円弧
状の地盤側面に土圧計を当接させるのが困難である。 (2)原位置攪拌系山留め壁では、攪拌混合された原位
置土の中に、土圧計を取り付けた構造部材を配し、密度
および粘性の大きな材料のなかをジャッキングするた
め、地盤側面に密着させ難い。 (3)土圧計受圧面と地盤側面との間に攪拌混合した改
良地盤が挟み込まれたり、これを避けるために過度に土
圧計を地盤側面に押し付けることにより押し込み応力集
中が発生する等、土圧計に極めて大きな圧力が発生する
ことが多い。
By the way, it is very important to measure the lateral pressure (earth pressure, water pressure, etc.) acting on the wall surface of the in-situ agitation system mountain retaining wall such as the column-row underground continuous wall described in the above embodiment. However, the conventional lateral pressure measurement in the in-situ stirring system earth retaining wall has the following problems. (1) Since the cross section of the in-situ stirring system earth retaining wall is circular, it is difficult to bring the earth pressure gauge into contact with the arc-shaped ground side surface. (2) In the in-situ stirring system earth retaining wall, the structural member with the earth pressure gauge is placed in the in-situ soil that has been stirred and mixed, and in order to jack the material with high density and viscosity, It's difficult to get close contact. (3) Earth pressure gauge The soil pressure gauge is sandwiched between the pressure receiving surface and the ground side surface, or the earth pressure gauge is pressed excessively against the ground side surface in order to avoid this, which causes indentation stress concentration. Very high pressure is often generated in the.

【0041】そこで、これらの問題をふまえて次のよう
な側圧測定方法を採用すると、壁面に作用する側圧を正
確に測定することが可能である。まず、図6に示すよう
に、土圧計60の受圧面に原位置攪拌系山留め壁の断面
Dの形状に合致する形状の取り付け板61を採用し、こ
の取り付け板61には原位置攪拌系混合土が通過できる
穴を複数設ける。なお、ジャッキ70そのものの形状容
量は従来と同等のものを採用する。これにより、取り付
け板61に設けられた穴を原位置攪拌土が通過して地盤
の断面Dに取り付け板61が密着する。
Therefore, if the following lateral pressure measuring method is adopted based on these problems, the lateral pressure acting on the wall surface can be accurately measured. First, as shown in FIG. 6, a mounting plate 61 having a shape that matches the shape of the cross section D of the in-situ stirring system mountain retaining wall is adopted on the pressure receiving surface of the earth pressure gauge 60. Provide multiple holes through which soil can pass. The jack 70 itself has the same shape capacity as the conventional one. As a result, the in-situ stirred soil passes through the holes provided in the mounting plate 61, and the mounting plate 61 comes into close contact with the cross section D of the ground.

【0042】図7に上記の側圧測定方法による測定結果
を示す。図7においては、異なる平面位置の2地点にて
実施した測定結果を示している。この測定結果から、深
度が増すにつれて側圧が増加するとともに、側圧の大き
さも双方でほぼ同程度の値を示していることから、本側
圧測定方法が有効であると考えられる。なお、図7に
は、既往の測定方法による測定結果も示しており、この
測定結果から、比較的浅い位置で大きな側圧値を示すな
ど応力集中の影響が認められる。
FIG. 7 shows the measurement results obtained by the above lateral pressure measuring method. FIG. 7 shows the measurement results performed at two points on different plane positions. From this measurement result, the lateral pressure increases as the depth increases, and the magnitudes of the lateral pressures are almost the same, so it is considered that the lateral pressure measuring method is effective. Note that FIG. 7 also shows the measurement results by the existing measurement method, and from this measurement result, the influence of stress concentration is recognized such as showing a large lateral pressure value at a relatively shallow position.

【0043】[0043]

【発明の効果】本発明の山留め工法によれば、山留め構
造を、間隔をあけて配置された壁体と、その壁体間に存
在する地盤とを一体化し、ひとつの構造体とすることに
よって、構築領域の掘削に伴う山留め壁の変形、および
周辺地盤の変状を効果的に抑制することができる。従来
の山留め壁よりも断面剛性を飛躍的に高め、かつ山留め
壁の施工コストを大幅に削減することができる。しか
も、山留め壁の断面剛性が高まることによって支保工に
必要とされる剛性を低減できるので、支保工の施工コス
トをも削減することができる。地下掘削工事においては
必ず山留めが行われるので、この山留め工法を取り入れ
て設計、施工を行うことで、周辺地盤の変状防止、施工
コストの削減のみならず、完成後の構築物を含めた周辺
基盤の整備、付帯設備の構築等を有効に進めることがで
きる。
According to the mountain retaining method of the present invention, the mountain retaining structure is formed by integrating the wall bodies arranged at intervals and the ground existing between the wall bodies into one structure body. It is possible to effectively suppress the deformation of the mountain retaining wall due to the excavation of the construction area and the deformation of the surrounding ground. It is possible to dramatically increase the cross-sectional rigidity as compared with the conventional mountain retaining wall, and to significantly reduce the construction cost of the mountain retaining wall. Moreover, since the rigidity required for supporting work can be reduced by increasing the cross-sectional rigidity of the mountain retaining wall, the construction cost of supporting work can be reduced. Since earth retaining work is always performed in underground excavation work, designing and implementing this earth retaining method not only prevents deformation of the surrounding ground and reduces construction costs, but also the surrounding foundation including the completed structure. It is possible to effectively proceed with the maintenance and construction of incidental equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の山留め工法の第1実施例を示す断面斜
視図である。
FIG. 1 is a sectional perspective view showing a first embodiment of a mountain retaining method of the present invention.

【図2】本発明の山留め工法の第2実施例を示す断面斜
視図である。
FIG. 2 is a sectional perspective view showing a second embodiment of the mountain retaining method of the present invention.

【図3】第2実施例の山留め構造に働く外力、反力の状
態を示す断面図である。
FIG. 3 is a cross-sectional view showing a state of an external force and a reaction force acting on the mountain retaining structure of the second embodiment.

【図4】第2実施例の山留め構造に働くせん断力の状態
を示す断面図である。
FIG. 4 is a cross-sectional view showing a state of shearing force acting on the mountain retaining structure of the second embodiment.

【図5】第2実施例の他の実施態様を示す断面斜視図で
ある。
FIG. 5 is a sectional perspective view showing another embodiment of the second embodiment.

【図6】周辺地盤の側圧測定方法を実施する装置の平面
図である。
FIG. 6 is a plan view of an apparatus for performing a lateral ground lateral pressure measuring method.

【図7】上記側圧測定方法により測定された地盤断面の
側圧値を示すグラフである。
FIG. 7 is a graph showing a lateral pressure value of a ground cross section measured by the lateral pressure measuring method.

【図8】従来の山留め構造を示す断面斜視図である。FIG. 8 is a cross-sectional perspective view showing a conventional mountain retaining structure.

【図9】掘削時の山留め壁の変位例を示すグラフであ
る。
FIG. 9 is a graph showing an example of displacement of the retaining wall during excavation.

【符号の説明】[Explanation of symbols]

10 山留め壁 20 外壁 30 中間壁 40 支保工 110 山留め壁 111 補助壁 120内壁 130支持壁 140支保工 R 構築領域 J 地盤 G 支持地盤 10 mountain retaining wall 20 outer wall 30 intermediate wall 40 supporting work 110 mountain retaining wall 111 auxiliary wall 120 inner wall 130 supporting wall 140 supporting work R construction area J ground G supporting ground

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 地盤に、地下構造物の構築領域に沿って
柱列式地中連続壁からなる山留め壁を構築し、 前記構築領域の外側の地盤に、山留め壁に沿って柱列式
地中連続壁もしくは深層混合処理工法による改良体から
なる外壁を間隔を空けて平行に配設し、 これら平行に配設された壁の間に掛け渡すように、柱列
式地中連続壁もしくは深層混合処理工法による改良体か
らなる中間壁を間隔を空けて複数配設し、 その後前記構築領域を掘削するとともに構築領域側に露
出する山留め壁を支保工により支持することを特徴とす
る山留め工法。
1. A ground retaining wall consisting of a column-type underground continuous wall is constructed in the ground along a construction region of an underground structure, and a column-type ground is constructed along the mountain retaining wall in the ground outside the construction region. A column-column type underground continuous wall or deep layer is constructed by arranging parallel walls with an outer wall consisting of a medium continuous wall or an improved body obtained by the deep layer mixing treatment method at intervals, and spanning between the walls arranged in parallel. A mountain retaining method characterized by arranging a plurality of intermediate walls made of an improved body by a mixing treatment method at intervals, and then excavating the building area and supporting the mountain retaining wall exposed on the side of the building area by supporting work.
【請求項2】 地盤に、地下構造物の構築領域に沿って
柱列式地中連続壁からなる山留め壁を構築し、 前記構築領域の内側の地盤に、山留め壁の水平方向の延
在方向に沿って深層混合処理工法による改良体からなる
支持壁を間隔を空けて複数配設し、 その後前記構築領域を掘削するとともに構築領域側に露
出する山留め壁を支保工により支持することを特徴とす
る山留め工法。
2. A ground retaining wall consisting of a column-type underground continuous wall is constructed in the ground along the construction area of the underground structure, and a horizontal extension direction of the mountain retaining wall is formed in the ground inside the construction area. A plurality of supporting walls made of the improved body by the deep layer mixing processing method are arranged at intervals along with, and thereafter the building area is excavated and the mountain retaining wall exposed on the building area side is supported by the supporting work. Mountain retaining method.
【請求項3】 山留め壁の内側に、柱列式地中連続壁も
しくは深層混合処理工法による改良体からなる補助壁を
併設して山留め壁を2重構造とすることを特徴とする請
求項2に記載の山留め工法。
3. The mountain retaining wall has a double structure in which an auxiliary wall made of a column-row underground continuous wall or an improved body formed by a deep mixing treatment method is provided inside the mountain retaining wall. Mountain retaining method described in.
【請求項4】 間隔を空けて複数配設された深層混合処
理工法による改良体壁からなる支持壁に、山留め壁と平
行に深層混合処理工法による改良体からなる内壁を配設
することを特徴とする請求項2または請求項3に記載の
山留め工法。
4. An inner wall made of an improved body prepared by the deep-layer mixing processing method is arranged in parallel with the mountain retaining wall on a support wall made of the improved body wall made by the deep-layer mixed processing method, which is arranged at a plurality of intervals. The mountain retaining method according to claim 2 or claim 3.
JP07215695A 1995-03-29 1995-03-29 Mountain retaining method Expired - Fee Related JP3521363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07215695A JP3521363B2 (en) 1995-03-29 1995-03-29 Mountain retaining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07215695A JP3521363B2 (en) 1995-03-29 1995-03-29 Mountain retaining method

Publications (2)

Publication Number Publication Date
JPH08269968A true JPH08269968A (en) 1996-10-15
JP3521363B2 JP3521363B2 (en) 2004-04-19

Family

ID=13481120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07215695A Expired - Fee Related JP3521363B2 (en) 1995-03-29 1995-03-29 Mountain retaining method

Country Status (1)

Country Link
JP (1) JP3521363B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202373A (en) * 2010-03-24 2011-10-13 Taisei Corp Earth retaining structure and construction method of the same
JP2014231725A (en) * 2013-05-30 2014-12-11 株式会社大林組 Earth retaining wall and construction method for the same
JP2016156216A (en) * 2015-02-25 2016-09-01 株式会社竹中工務店 Mountain retention wall
JP2017172283A (en) * 2016-03-25 2017-09-28 鹿島建設株式会社 Ground improvement structure and ground excavation method
CN114718083A (en) * 2022-04-08 2022-07-08 中交天津港湾工程研究院有限公司 Construction method of foundation pit support anti-seepage composite structure of highly permeable layer foundation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100360746C (en) * 2005-01-07 2008-01-09 中船第九设计研究院 Support free construction method for super large diameter circular deep foundation ditch
CN102505695B (en) * 2011-10-09 2014-12-03 浙江荣邦房地产开发有限公司 Construction method for deep foundation pit of three-dimensional garage
CN113774920A (en) * 2021-09-02 2021-12-10 宋芳 Building foundation pit supporting and protecting device capable of monitoring inclination

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202373A (en) * 2010-03-24 2011-10-13 Taisei Corp Earth retaining structure and construction method of the same
JP2014231725A (en) * 2013-05-30 2014-12-11 株式会社大林組 Earth retaining wall and construction method for the same
JP2016156216A (en) * 2015-02-25 2016-09-01 株式会社竹中工務店 Mountain retention wall
JP2017172283A (en) * 2016-03-25 2017-09-28 鹿島建設株式会社 Ground improvement structure and ground excavation method
CN114718083A (en) * 2022-04-08 2022-07-08 中交天津港湾工程研究院有限公司 Construction method of foundation pit support anti-seepage composite structure of highly permeable layer foundation

Also Published As

Publication number Publication date
JP3521363B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
Goh et al. Response of framed buildings to excavation-induced movements
KR101972381B1 (en) Integral block reinforced cast-in-place pile structure using geo tube and mat, and Construction method thereof
CN207092107U (en) A kind of anti-subsidence structure using diaphram wall
JP4502797B2 (en) Vertical loading test method for existing piles
JP3521363B2 (en) Mountain retaining method
JP2005290869A (en) Reinforcing structure of structure on water
JP4226954B2 (en) Underpinning method and viaduct
CN114541439B (en) Construction method of double-wall steel cofferdam structure without bottom sealing
JP3735424B2 (en) Retaining wall and its construction method
Wang et al. Collapse of a high-rise building with pretensioned high-strength concrete piles
KR100967496B1 (en) Device for constructing an underground structure
JP4387130B2 (en) Construction method of underground structure and underground structure
JP6710999B2 (en) Temporary receiving method for existing structures
Bono et al. Performance of an internally braced slurry-diaphragm wall for excavation support
JP2599299B2 (en) Retaining wall and retaining method in soft ground
JP3306527B2 (en) Open cut method of soft ground by deep mixing method
JPH1077644A (en) Earthquake resisting pile foundation construction method
JP3407168B2 (en) Foundation of new building using existing pile foundation
CN110904958A (en) Construction method of prestressed pipe pile containing deep boulder and pile foundation structure of prestressed pipe pile
JPH04115016A (en) Earth retaining wall in weak foundation and method of retaining earth
CN115198797B (en) Underground communication channel construction method combining three-side surrounding pipe curtain method and open cut
JPH07259080A (en) Self-supported sheath wall structure
CN113026761B (en) Soil-rock double-element foundation pit composite supporting structure and construction method thereof
JP2004132124A (en) Pneumatic caisson and pneumatic caisson constructing method
CN220704537U (en) Deep foundation pit supporting structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees