JP3735424B2 - Retaining wall and its construction method - Google Patents

Retaining wall and its construction method Download PDF

Info

Publication number
JP3735424B2
JP3735424B2 JP31058696A JP31058696A JP3735424B2 JP 3735424 B2 JP3735424 B2 JP 3735424B2 JP 31058696 A JP31058696 A JP 31058696A JP 31058696 A JP31058696 A JP 31058696A JP 3735424 B2 JP3735424 B2 JP 3735424B2
Authority
JP
Japan
Prior art keywords
retaining wall
ground
wall
retaining
mountain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31058696A
Other languages
Japanese (ja)
Other versions
JPH10152841A (en
Inventor
文夫 龍岡
憲行 樗澤
茂 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenox Corp
Original Assignee
Tenox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenox Corp filed Critical Tenox Corp
Priority to JP31058696A priority Critical patent/JP3735424B2/en
Publication of JPH10152841A publication Critical patent/JPH10152841A/en
Application granted granted Critical
Publication of JP3735424B2 publication Critical patent/JP3735424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は構造物の基礎を構築する際に施工され、地盤改良によって構築される山留め壁とその構築方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
攪拌混合処理工法の地盤改良によって構築される山留め壁は従来、図12,図13に示すように、1度に施工される1〜3本程度の柱列体を平面上、2方向にオーバーラップさせながら連続させる柱列式の地盤改良により構築され、図示するように柱列体を2方向に隙間なく連続させた形の他、格子状やトラス状に配列させた形に形成されるが、柱列体から構成される山留め壁には以下の柱列体固有の問題がある。
【0003】
砂質地盤のようにソイルセメントの強度発現が速まる性質を持つ地盤によっては先行して構築した柱列体の強度が大きくなり、オーバーラップ施工する際に構築済みの改良体から抵抗を受けるため、隣接する柱列体の芯ズレが生じ易く、また硬化後の構築済みの改良体がオーバーラップ施工により損傷を受け易い。このことは休日を挟んでラップ施工するような場合に著しい。
【0004】
また改良深度が大きい場合には上記理由と施工精度の関係から鉛直性を維持することが難しく、深い位置で隣接して施工される柱列体間に隙間が発生する等のラップ不良が生じ、それにより柱列体間からの漏水も生ずる。
【0005】
この他、粘性土と砂礫層が互層になっている地盤では粘性土から砂礫層への変化部分で掘削攪拌装置自身が地盤から受ける抵抗の差により芯ズレを起こし、ラップ不良が生ずることもある。
【0006】
芯ズレが発生すればラップ部分のせん断強度が極端に低下するため、地震時のせん断力に対する抵抗力を期待することはできない。仮に計画通りにラップ施工できたとしても、円形断面の柱列体のラップ部分が断面の急変箇所であることに変わりないため、柱列体を格子状やトラス状に配列させた山留め壁には地震時の水平力に対してラップ部分が構造上の弱点になる本質的な問題が残る。
【0007】
また地盤改良体は引張強度が小さい性質から、地山からの側圧によって地山側に受ける引張力により引張破壊する可能性がある。
【0008】
山留め壁にはまた、地山からの側圧によって地山の反対側に位置する柱列体の下端回りに転倒モーメントが作用するため、地山側の柱列体が浮き上がり、山留め壁自体が転倒する可能性もある。山留め壁の転倒は、山留め壁の背面側の敷地にその厚さを増す余地がなく、山留め壁全体の幅が小さくなるように場合に起こり易い。
【0009】
このことから、従来の柱列体による自立山留め壁を構築する場合には、引張力に対する抵抗力を増すために壁厚を大きくすることが必要であり、壁厚を大きくするには柱列体の径を拡大するか、図14に示すように壁厚方向に複数の柱列体を配列させることを要し、施工が煩雑化するため、現状では柱列体は根切り深さの小さい山留め壁にしか適用できていない。
【0010】
また柱列体による山留め壁に限らず、長さ方向に一定の壁厚の自立山留め壁は地山からの側圧により、図14に曲線で示すように中間部で大きくなる水平変位を生ずるが、構造物の基礎工事に支障を与えない必要から、絶対量が一定値以下になるように水平変位を抑制しなければならないため、この意味からも壁厚を大きくすることが必要になる。
【0011】
この発明は上記背景より、柱列体固有の問題を解消し、地山からの側圧による水平変位量を抑制し、また側圧に対する抵抗力が大きい山留め壁とその構築方法を提案するものである。
【0012】
【課題を解決するための手段】
この発明の山留め壁は、カッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して構築され、幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体と、山留め壁本体の地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により壁状に構築される地盤改良体の控え壁から構成される山留め壁であって、山留め壁本体の長さ方向中間部に位置する控え壁の平面上の長さは、両端部寄りに位置する控え壁の平面上の長さより大きい山留め壁と、
請求項2に記載している構造である、カッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して構築され、幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体と、山留め壁本体の地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により壁状に構築される地盤改良体の控え壁から構成される山留め壁であって、山留め壁本体の長さ方向中間部における隣接する控え壁間の間隔は、両端部寄りにおける隣接する控え壁間の間隔より小さい山留め壁と、
請求項3に記載している構造である、カッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して構築され、幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体と、山留め壁本体の地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により壁状に構築される地盤改良体の控え壁から構成される山留め壁であって、山留め壁本体の長さ方向中間部に位置する控え壁の平面上の長さは、両端部寄りに位置する控え壁の平面上の長さより大きく、かつ山留め壁本体の長さ方向中間部における隣接する控え壁間の間隔は、両端部寄りにおける隣接する控え壁間の間隔より小さい山留め壁とのいずれかの構造の山留め壁である。
これらの山留め壁では、カッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して構築され、幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体と、山留め壁本体の地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により壁状に構築される地盤改良体の控え壁から山留め壁を構成することにより、柱列体を壁状に連続させる方法の、ラップ施工に伴う芯ズレ及び隙間の発生の問題を解消し、せん断強度の低下を回避する。
【0013】
少なくとも山留め壁本体が幅方向に一定の厚さを持った壁状に形成されることにより、山留め壁本体から断面の急変箇所がなくなるため、地震時の水平力に対する構造上の弱点もなくなり、上記した芯ズレの発生や隙間の発生に伴う地山からの漏水の発生がなくなることと併せて柱列体固有の問題が解消される。
【0014】
山留め壁本体が一定の厚さを持った壁状に形成されることによりまた、山留め壁本体の内周が直線で構成されるため、内周面に凹凸が表れる柱列体から山留め壁を構成する場合より基礎工事の対象敷地の有効面積が拡大する。
【0015】
また山留め壁が山留め壁本体とその地山側の控え壁から構成されることにより山留め壁の曲げ剛性が上がり、山留め壁完成後の根切り後に地山から受ける側圧による山留め壁本体の曲げ変形が低減される。この結果、側圧による水平変位量を一定量以下に抑えるのに必要な山留め壁本体の壁厚を小さくすることができ、山留め壁の躯体コストが削減される。
【0016】
請求項1では山留め壁本体の長さ方向に間隔をおいて形成される控え壁の平面上の長さを、根切り後に地山から受ける側圧により山留め壁本体に生ずる水平変位量に対応させ、水平変位量が大きくなる山留め壁本体の中間部に位置する控え壁の長さを、両端部寄りに位置する控え壁の長さより大きくすることにより山留め壁本体の中間部の曲げ剛性を増大させ、山留め壁本体中間部の水平変位量を低減する。
【0017】
請求項2では、控え壁の配置を、山留め壁本体に生ずる側圧による水平変位量に対応させ、山留め壁本体の中間部における隣接する控え壁間の間隔を、両端部寄りにおける隣接する控え壁間の間隔より小さくし、中間部における控え壁を密に配置することにより山留め壁本体の中間部の曲げ剛性を増大させ、山留め壁本体中間部の水平変位量を低減する。
請求項3では、控え壁の配置を、山留め壁本体に生ずる水平変位量に対応させ、水平変位量が大きくなる山留め壁本体の中間部に位置する控え壁の長さを、両端部寄りに位置する控え壁の長さより大きくし、かつ山留め壁本体の中間部における隣接する控え壁間の間隔を、両端部寄りにおける隣接する控え壁間の間隔より小さくし、中間部における控え壁を密に配置することにより山留め壁本体の中間部の曲げ剛性を増大させ、山留め壁本体中間部の水平変位量を低減する。
【0018】
請求項4では、上記した請求項1乃至請求項3のいずれかに記載の山留め壁における控え壁の地山寄りの一部にその深度方向にプレストレスを導入し、山留め壁本体が地山から受ける側圧による引張力を相殺することにより、山留め壁本体の引張強度を高め、引張破壊に対する安全性を高める。
【0019】
プレストレスは控え壁の一部に、控え壁の上端部から深度方向に挿通する緊張材が緊張されることにより深度方向に導入される。緊張材はその下端が控え壁中,もしくはその下端部に定着された状態で緊張され、緊張材の上端は控え壁の上端部に定着される。
【0020】
請求項5では請求項4の緊張材の下端を延長し、控え壁を貫通させてそれ以深の地盤まで挿通させると共に、緊張材の下端にアンカー体を接続し、アンカー体を控え壁以深の地盤に定着させた状態で緊張材を緊張し、控え壁を地山寄りで地盤に定着させることによりその浮き上がりを防止し、転倒モーメントによる山留め壁の転倒を防止する。緊張材の上端は山留め壁本体の上端部に定着される。
【0021】
緊張材は転倒モーメントによる控え壁の引き抜き力を地盤に負担させることにより控え壁を浮き上がりに対して安定させ、山留め壁の転倒を防止する。転倒の防止は山留め壁全体の幅が小さい場合にも可能になる。
【0022】
請求項5ではまた、アンカー体が地盤に定着された状態で緊張材が緊張されることにより、控え壁にはプレストレスが導入され、山留め壁本体の引張破壊に対する安全性も高められる。
【0023】
請求項1乃至請求項3のいずれかに記載の山留め壁は請求項6に記載のように、上記の掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して幅方向に一定の厚さを持った壁状に連続する山留め壁本体を構築し、その地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により請求項1乃至請求項3のいずれかに記載の壁状の地盤改良体の控え壁を構築することで完成する。
【0024】
請求項4記載の山留め壁は請求項7に記載のように、請求項1乃至請求項3のいずれかに記載の山留め壁を構築した後、控え壁の地山寄りの一部に、その硬化前に上端部から控え壁の深度方向に緊張材を挿通させ、緊張材の下端を控え壁中,もしくはその下端部に定着させ、控え壁が硬化した後に緊張材を緊張して控え壁の地山寄りにその深度方向にプレストレスを導入することで完成する。
【0025】
請求項5記載の山留め壁は請求項8に記載のように、請求項1乃至請求項3のいずれかに記載の山留め壁を構築した後、控え壁の地山寄りの一部に、その硬化前に上端部から下端を貫通させて控え壁以深の地盤まで、下端にアンカー体が接続した緊張材を控え壁の深度方向に挿通させ、アンカー体を地盤に定着させ、控え壁が硬化した後に緊張材を緊張して控え壁を地山寄りで地盤に定着させることで完成する。
【0026】
【発明の実施の形態】
図5に掘溝装置1による地盤改良の要領を示す。掘溝装置1はカッターポスト2と、その外周に循環自在に張架される、切削攪拌爪4を有する無端チェイン3から構成され、ベースマシン5に搭載された油圧シリンダによってカッターポスト2がフレーム6に沿い、ベースマシン5を反力として水平方向に移動させられ、循環する切削攪拌爪4が地盤を溝状に切削しながら、カッターポスト2から吐出される,もしくは地上から供給される固化材と切削土を混合することにより地盤改良し、山留め壁本体7を構築する。
【0027】
固化材はスラリー状の場合にはカッターポスト2の下端部付近から吐出される、もしくは地上部付近から注入される。粉体,またはペレット状の場合には予め地上に所定量だけ散布される、もしくは地上部付近の、無端チェイン3が地中に貫入する側から投入,あるいは散布される。
【0028】
山留め壁9は図1,図2の左側に示すように地盤改良体の山留め壁本体7と、同じく地盤改良体の控え壁8から構成され、山留め壁本体7は掘溝装置1が連続的に移動することにより図1,図2に示すように幅方向に一定の厚さを持った壁状に構築される。山留め壁本体7は図示するように直線状に連続する場合に限らず、波形状に連続する場合もあり、控え壁8は山留め壁本体7の長さ方向に直交,あるいは交差する方向を向き、山留め壁本体7の長さ方向に互いに間隔をおいて構築される。
【0029】
図1,図2は掘溝装置1を連続的に移動させることにより、もしくは一定位置に留めたまま無端チェイン3を循環させることにより、控え壁8も幅方向に一定の厚さを持った壁状に構築した場合を示すが、山留め壁本体7が一定の厚さを持って構築されることで、山留め壁として必要な止水性と一定の強度を確保しており、控え壁8における止水性は問題にならないことから、控え壁8は必ずしも掘溝装置1により構築される必要はなく、図3,図4に示すように柱列体を直線状に連続させることによっても構築される。以下、図6,図8,図10は控え壁8を掘溝装置1により構築した場合を、図7,図9,図11は柱列体から構成した場合を示す。
【0030】
図7の上側の山留め壁9では山留め壁本体7に接続する一部の控え壁8を幅方向に2列の柱列体から構成しているが、控え壁8を掘溝装置1により構築する場合にも、一度の施工でできる地盤改良体を幅方向に重ねることもある。
【0031】
また控え壁8は必ずしも山留め壁本体7と同一の深さまで構築される必要はなく、地山からの側圧により山留め壁本体7の深度方向に沿って生ずる曲げ変形を低減する効果を発揮できればよいため、図10,図11に示すように根切り底の深度程度までの深さまでで足りる場合もある。
【0032】
図2の左側において、山留め壁本体7と控え壁8の接続部Cには根切りに伴って山留め壁本体7の背面に作用する側圧Bにより引張力が作用するが、隣接する控え壁8,8間の間隔Aをある程度以下に抑える等、控え壁8,8に挟まれた地盤にアーチング作用が発生するよう、控え壁8,8間の間隔Aを設定すれば側圧Bが小さくなるため、接続部Cにおける引張力を低減する効果が得られる。
【0033】
請求項1の発明では、図6,図7の下側の山留め壁9に示すように山留め壁本体7の中間部位置の控え壁8の平面上の長さを、図14に示す撓み曲線に対応させて両端位置の控え壁8の長さより大きくした場合であり、請求項2の発明では、図7の左側の山留め壁本体7に接続する控え壁8のように山留め壁本体7の中間部における控え壁8を密に配置した場合である。図6中の左右の山留め壁9と、図7中の右側の山留め壁9は請求項1の山留め壁9と請求項2の山留め壁9を組み合わせた請求項3の形でもある。
これらの山留め壁は、請求項6に記載のように、上記の掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体を構築し、その地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により請求項1乃至請求項3のいずれかに記載の壁状の地盤改良体の控え壁を構築することで完成する。
【0034】
請求項4の発明は請求項1〜請求項3において、本発明以外の山留め壁の例である図1〜図4の右側に示したように、控え壁8の地山寄りの一部に緊張材10を深度方向に挿通し、緊張材10の緊張により控え壁8の地山寄りにプレストレスを導入した山留め壁9である。緊張材10は控え壁8の地山寄りに1本,もしくは複数本配置される。
【0035】
緊張材10にはアンボンド処理されたPC鋼棒やPCストランド等のPC鋼材の他、鉄筋や棒鋼等の引張材が使用される。控え壁8内にシースを挿入する場合には、緊張材10がアンボンド処理されている必要はない。
【0036】
緊張材10の上端と下端にはそれぞれ定着板11,11が接続し、上端の定着板11は控え壁8の上端部に、その硬化後に、もしくは硬化によって定着される。下端の定着板11は図1,図3に示すように控え壁8の下端,もしくは下端部に、あるいは控え壁8の中間部にその硬化によってそのまま定着される。プレストレスを与える範囲は控え壁8に引張力が発生する範囲でよいため、下端の定着板11は控え壁8の下端部より上方の中間部に配置されることもある。定着板11の面積は、緊張材10に与えられる張力により定着板11から控え壁8に作用する支圧力が控え壁8の支圧強度以内に納まるように設定される。
【0037】
緊張材10は請求項1乃至請求項3のいずれかの山留め壁9を構築した後、切削土と固化材の混合物である控え壁8の硬化前に、上端部から下端部まで深度方向に挿入され、硬化によって下端の定着板11が山留め壁本体7の下端部,もしくは中間部に定着された後に緊張され、上端が上端の定着板11に定着される。
【0038】
請求項4では緊張材10の緊張により控え壁8にプレストレスが与えられた後に、山留め壁本体7の内側の地山が掘削される。
【0039】
山留め壁本体7の内側の根切りに伴い、山留め壁9の断面には図15−(a) に示すように、地山からの側圧により根切り側が圧縮力、地山側が引張力となる曲げモーメントが発生する。山留め壁9の断面にはまた、(b) に示すように自重による圧縮応力が加わるが、曲げモーメントと自重による圧縮応力の合成により引張側に引張応力が生ずれば、無筋の山留め壁9が曲げ破壊する恐れがある。
【0040】
これに対し、根切り前に控え壁8の地山側にプレストレスを与えておくことで根切り後の地山側の引張力を完全に相殺し、図15−(b) に示すように山留め壁9の断面に圧縮応力のみが作用する状態にすることができる。この結果、山留め壁9の曲げモーメントに対する抵抗力が増大し、破壊に対する安全性が高まることになる。
【0041】
請求項5の発明は請求項1〜請求項3において、図8〜図11に示すように請求項4の緊張材10の下端にアンカー体12を接続し、アンカー体12を地盤に定着させることにより控え壁8を地山寄りで地盤に定着させた山留め壁9である。緊張材10の上端には定着板11が接続する。
【0042】
緊張材10は控え壁8の上端部から下端を貫通し、控え壁8以深の良好な地盤まで挿通し、下端に接続したアンカー体12が地盤に定着された状態で緊張されることにより控え壁8を地盤に定着させる。緊張材10の上端の定着板11は請求項4と同様に控え壁8の上端部に定着される。図8,図9は控え壁8の深さが山留め壁本体7の深さに等しい場合、図10,図11は控え壁8の深さが山留め壁本体7の深さより浅い場合である。
【0043】
また図11はアンカー体12が接続した緊張材10のみを控え壁8中に配置した場合であるが、図8〜図10はアンカー体12が接続した緊張材10に加え、下端が控え壁8の下端部に定着される緊張材10を控え壁8中に挿通した場合を示す。
【0044】
この発明では請求項1乃至請求項3のいずれかの山留め壁9を構築し、控え壁8の硬化前に、アンカー体12が挿入される地盤をその挿入深度まで削孔した後に、アンカー体12が接続した緊張材10が挿入される。アンカー体12を削孔内に挿入し、削孔内にグラウト材を充填してアンカー体12を地盤に定着させ、控え壁8が硬化した後に緊張材10が緊張され、上端の定着板11に定着される。
【0045】
緊張材10の緊張によって控え壁8が地盤に定着されると同時に、控え壁8には深度方向にプレストレスが導入される。
【0046】
【発明の効果】
請求項1〜請求項3ではカッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合することで一定の厚さを持った壁状に構築される地盤改良体の山留め壁本体と、その地山側に壁状に構築される地盤改良体の控え壁から山留め壁を構成するため、柱列体を連続させて構築される山留め壁の、ラップ施工に伴う芯ズレ及び隙間の発生と、それによる根切り後の漏水の問題が解消される。
【0047】
また少なくとも山留め壁本体が幅方向に一定の厚さを持った壁状に形成されることで山留め壁本体から断面の急変箇所がなくなるため、山留め壁本体のせん断強度の低下が回避され、地震時の水平力に対する構造上の弱点もなくなる。
【0048】
上記理由から、山留め壁として一定の性能を確保する上で、柱列体により山留め壁を構成する場合のように柱列体を2方向に隙間なく連続させる必要がなくなるため、施工コストが削減される。
【0049】
加えて山留め壁本体が一定の厚さを持った壁状に形成されることで山留め壁本体の内周が直線で構成されるため、内周面に凹凸が表れる柱列体から山留め壁を構成する場合より基礎工事の対象敷地の有効面積が拡大する。
【0050】
更に山留め壁を山留め壁本体とその地山側の控え壁から構成することで山留め壁の曲げ剛性が上がるため、山留め壁完成後の根切り後に地山から受ける側圧による山留め壁本体の曲げ変形を低減できる。この結果、側圧による水平変位量を一定量以下に抑えるのに必要な山留め壁本体の壁厚を小さくすることができ、山留め壁の躯体コストが削減される。
【0051】
特に請求項1では水平変位量が大きくなる山留め壁本体の中間部に位置する控え壁の長さを、両端部寄りに位置する控え壁の長さより大きくすることにより、請求項2では山留め壁本体の中間部における隣接する控え壁間の間隔を、両端部寄りにおける隣接する控え壁間の間隔より小さくすることにより、共に山留め壁本体の中間部の曲げ剛性を増大させているため、いずれも山留め壁本体中間部の水平変位量を低減できる。
【0052】
請求項4では控え壁の地山寄りの一部にその深度方向にプレストレスを導入し、山留め壁本体が地山から受ける側圧による引張力を相殺するため、山留め壁本体の引張強度が高まり、引張破壊に対する安全性が高まる。
【0053】
地山側の連続地盤改良体の引張強度が高まる結果、プレストレスを導入しない場合より連続地盤改良体の壁厚を小さくすることができ、経済的である。
【0054】
請求項5では請求項4の緊張材を延長し、控え壁を貫通させてそれ以深の地盤まで挿通させると共に、緊張材の下端にアンカー体を接続し、アンカー体を控え壁以深の地盤に定着させた状態で緊張材に張力を導入することで、控え壁を地山寄りで地盤に定着させるため、地山からの側圧による山留め壁の転倒を防止できる。
【0055】
また請求項5では緊張材の下端のアンカー体が地盤に定着された状態で緊張材が緊張されることにより、控え壁にはプレストレスが導入されるため、山留め壁本体の引張破壊に対する安全性も高まる。
【図面の簡単な説明】
【図1】控え壁を掘溝装置により構築した場合の山留め壁を示した縦断面図である。
【図2】図1の平面図である。
【図3】控え壁を柱列体から構成した場合の山留め壁を示した縦断面図である。
【図4】図3の平面図である。
【図5】掘溝装置による地盤改良の様子を示した立面図である。
【図6】控え壁を掘溝装置により構築した場合の請求項1と請求項3の山留め壁を示した平面図である。
【図7】控え壁を柱列体から構成した場合の請求項1と請求項2と請求項3の山留め壁を示した平面図である。
【図8】控え壁を掘溝装置により構築した場合の請求項5の山留め壁を示した縦断面図である。
【図9】控え壁を柱列体から構成した場合の請求項5の山留め壁を示した縦断面図である。
【図10】控え壁を掘溝装置により構築した場合の請求項5の他の山留め壁を示した縦断面図である。
【図11】控え壁を柱列体から構成した場合の請求項5の他の山留め壁を示した縦断面図である。
【図12】柱列体からなる山留め壁を示した縦断面図である。
【図13】図12の平面図である。
【図14】柱列体からなる自立山留め壁の変形の様子を示した平面図である。
【図15】(a) は根切りによって山留め壁に作用する側圧と曲げモーメントの関係を示した縦断面図、(b) はプレストレスを加えたときに山留め壁の断面に生ずる合成応を示した応力図である。
【符号の説明】
1……掘溝装置、2……カッターポスト、3……無端チェイン、4……切削攪拌爪、5……ベースマシン、6……フレーム、7……山留め壁本体、8……控え壁、9……山留め壁、10……緊張材、11……定着板、12……アンカー体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mountain retaining wall constructed by constructing a foundation of a structure and constructed by ground improvement and a construction method thereof.
[0002]
[Prior art and problems to be solved by the invention]
As shown in Fig. 12 and Fig. 13, the mountain retaining wall constructed by the ground improvement of the stirring and mixing method is conventionally overlapped with about 1 to 3 columnar columns that are constructed at a time in two directions on the plane. It is built by improving the ground of the column array type that is continued while being formed, and as shown in the figure, it is formed in a shape in which the column array is arranged in a lattice shape or a truss shape in addition to a continuous shape in two directions without gaps. The retaining wall composed of a columnar structure has the following problems inherent to the columnar structure.
[0003]
Depending on the ground with the property that the strength expression of the soil cement is accelerated like sandy ground, the strength of the column structure constructed in advance will increase, and resistance will be received from the improved body that has been built at the time of overlap construction, Misalignment between adjacent columnar bodies is likely to occur, and a built-up improvement after curing is likely to be damaged by the overlap construction. This is remarkable when wrapping is performed on holidays.
[0004]
In addition, when the improvement depth is large, it is difficult to maintain the verticality from the relationship between the above reasons and the construction accuracy, and a lap failure such as a gap occurring between the columnar columns that are constructed adjacently at a deep position occurs. This also causes water leakage between the columnar bodies.
[0005]
In addition, in the ground where the cohesive soil and gravel layer are alternating layers, the excavation stirrer itself may cause misalignment due to the difference in resistance received from the ground at the transition from the cohesive soil to the gravel layer, which may cause lap failure. .
[0006]
If the misalignment occurs, the shear strength of the lap will be extremely reduced, so resistance to the shear force during an earthquake cannot be expected. Even if lap construction can be performed as planned, the lap part of the circular columnar column body is still a sudden change point in the cross section, so the mountain retaining wall in which the columnar column is arranged in a grid or truss shape The essential problem remains that the lap part is a structural weak point against the horizontal force during an earthquake.
[0007]
In addition, since the ground improvement body has a low tensile strength, there is a possibility of tensile failure due to the tensile force applied to the natural ground side by the side pressure from the natural ground.
[0008]
The mountain retaining wall also has a tipping moment acting around the lower end of the columnar column located on the opposite side of the natural mountain due to the side pressure from the natural mountain, so that the columnar column on the natural mountain surface rises and the mountain retaining wall itself can fall over There is also sex. The fall of the retaining wall is likely to occur when there is no room to increase the thickness of the site on the back side of the retaining wall and the width of the entire retaining wall is reduced.
[0009]
Therefore, when building a self-supporting mountain retaining wall with a conventional columnar structure, it is necessary to increase the wall thickness in order to increase the resistance to tensile force. As shown in Fig. 14, it is necessary to arrange a plurality of columnar bodies in the wall thickness direction as shown in Fig. 14, and the construction becomes complicated. It can only be applied to walls.
[0010]
Also, not only the retaining wall by the columnar column, the self-supporting retaining wall with a constant wall thickness in the length direction causes a horizontal displacement that increases at the middle part as shown by the curve in FIG. Since it is necessary not to hinder the foundation work of the structure, it is necessary to suppress the horizontal displacement so that the absolute amount becomes a certain value or less. Therefore, it is necessary to increase the wall thickness also in this sense.
[0011]
In view of the above background, the present invention proposes a mountain retaining wall that eliminates problems inherent to the columnar body, suppresses the amount of horizontal displacement due to the lateral pressure from the natural ground, and has a large resistance to the lateral pressure, and a construction method thereof.
[0012]
[Means for Solving the Problems]
The mountain retaining wall according to the present invention stirs and mixes the cutting soil and the solidified material while continuously moving the grooving device composed of an endless chain with a cutting stirring claw protruding from the cutter post and the outer periphery thereof. The ground retaining wall body of the ground improvement body that is constructed in the width direction and has a constant thickness in the width direction, and the ground wall side of the retaining wall body are cut at intervals in the length direction of the retaining wall body. A retaining wall composed of a retaining wall of a ground improvement body constructed in the shape of a wall by stirring and mixing soil and solidified material, and the length of the retaining wall on the plane in the middle of the retaining wall body in the longitudinal direction Is a retaining wall larger than the length on the plane of the retaining wall located near both ends,
3. Solidified with cutting soil while continuously moving a digging device comprising a cutter post and an endless chain provided with a cutting stirring claw, which is stretched around the cutter post and the outer periphery of the cutter post. It is constructed by mixing and mixing materials, and the wall retaining wall body of the ground improvement body that has a constant thickness in the width direction and the ground wall side of the mountain retaining wall body, in the length direction of the mountain retaining wall body A retaining wall composed of a retaining wall of a ground improvement body that is constructed in a wall shape by stirring and mixing the cutting soil and the solidified material at intervals, and an adjacent retaining wall in the middle portion in the longitudinal direction of the retaining wall body The spacing between the retaining walls is smaller than the spacing between adjacent buttress walls near both ends,
Solidified with cutting soil while continuously moving a digging device comprising a cutter post and an endless chain provided with a cutting stirring claw, which is stretched around the cutter post and the outer periphery of the cutter post. It is constructed by mixing and mixing materials, and the wall retaining wall body of the ground improvement body that has a constant thickness in the width direction and the ground wall side of the mountain retaining wall body, in the length direction of the mountain retaining wall body A retaining wall composed of a retaining wall of a ground improvement body constructed in a wall shape by stirring and mixing the cutting soil and the solidified material at intervals, and the retaining wall located in the middle in the longitudinal direction of the retaining wall body Is longer than the length of the retaining wall located near the both ends, and the spacing between the adjacent retaining walls in the middle portion in the longitudinal direction of the retaining wall body is adjacent to the both ends. Either with a retaining wall smaller than the spacing between the retaining walls It is an elephant earth retaining wall.
At these retaining walls , the cutting soil and the solidified material are agitated and mixed while continuously moving a grooving device consisting of an endless chain protruding from the cutter post and the outer periphery of the cutter post. The earth retaining wall main body of the ground improvement body which is constructed in the width direction and has a certain thickness in the width direction, and the ground soil on the side of the ground wall of the mountain retaining wall body with a space in the length direction of the retaining wall main body. By constructing the retaining wall from the retaining wall of the ground improvement body constructed in the shape of a wall by stirring and mixing the solidified material and the solidified material, it is a method of continuing the column array in the shape of a wall, and the misalignment and gap associated with the lapping work Eliminate the problem of occurrence and avoid a decrease in shear strength.
[0013]
Since at least the mountain retaining wall body is formed in a wall shape having a certain thickness in the width direction, there is no sudden change in cross section from the mountain retaining wall body, so there is no structural weakness against the horizontal force at the time of the earthquake. The problem inherent to the columnar structure is solved in addition to the occurrence of water leakage from the natural ground due to the occurrence of the misalignment and the gap.
[0014]
The mountain retaining wall body is formed in a wall shape with a certain thickness. Also, the inner periphery of the mountain retaining wall body is formed of a straight line, so the mountain retaining wall is composed of a column array with irregularities on the inner peripheral surface. The effective area of the target site for foundation work will be expanded compared to the case of doing so.
[0015]
In addition, because the retaining wall is composed of the retaining wall body and the retaining wall on the natural ground side, the bending rigidity of the retaining wall increases, and the bending deformation of the retaining wall body due to the side pressure received from the natural ground after root cutting after completion of the retaining wall is reduced. Is done. As a result, it is possible to reduce the wall thickness of the retaining wall main body necessary to suppress the horizontal displacement due to the lateral pressure to a certain amount or less, and to reduce the cost of the retaining wall frame.
[0016]
In claim 1 , the length on the plane of the retaining wall formed at intervals in the length direction of the retaining wall main body is made to correspond to the horizontal displacement amount generated in the retaining wall main body by the side pressure received from the natural ground after the root cutting, By increasing the length of the retaining wall located in the middle part of the retaining wall body where the horizontal displacement amount is larger than the length of the retaining wall located near both ends, the bending rigidity of the intermediate part of the retaining wall body is increased. Reduce the horizontal displacement of the middle part of the retaining wall body.
[0017]
In claim 2, the arrangement of the retaining walls is made to correspond to the horizontal displacement due to the side pressure generated in the retaining wall main body, and the interval between the adjacent retaining walls in the intermediate portion of the retaining wall main body is set between the adjacent retaining walls near the both ends. By setting the retaining wall in the intermediate portion densely, the bending rigidity of the intermediate portion of the retaining wall main body is increased, and the horizontal displacement amount of the intermediate portion of the retaining wall main body is reduced.
In claim 3, the arrangement of the retaining wall corresponds to the horizontal displacement amount generated in the retaining wall main body, and the length of the retaining wall located in the middle portion of the retaining wall main body where the horizontal displacement amount is increased is located closer to both ends. The spacing between adjacent retaining walls in the middle part of the retaining wall main body is smaller than the spacing between adjacent retaining walls near the both ends, and the retaining walls in the middle part are densely arranged. By doing so, the bending rigidity of the intermediate part of the retaining wall main body is increased, and the horizontal displacement amount of the intermediate part of the retaining wall main body is reduced.
[0018]
In claim 4, prestress is introduced in the depth direction of a part of the retaining wall of the retaining wall according to any one of claims 1 to 3 near the ground, and the retaining wall body is separated from the ground. By canceling out the tensile force due to the received side pressure, the tensile strength of the retaining wall body is increased and the safety against tensile failure is increased.
[0019]
Prestress is introduced in the depth direction by tensioning a tension member inserted in the depth direction from the upper end portion of the retaining wall into a part of the retaining wall. The tension material is tensioned with the lower end thereof fixed in the retaining wall or the lower end portion thereof, and the upper end of the tension material is fixed to the upper end portion of the retaining wall.
[0020]
In claim 5, the lower end of the tendon of claim 4 is extended, penetrated through the retaining wall to the deeper ground, the anchor body is connected to the lower end of the tendon, and the anchor body is deeper than the retaining wall. The tension material is tensioned in a state where it is fixed to the ground, and the retaining wall is fixed to the ground near the ground, thereby preventing its lifting and preventing the fall of the retaining wall due to the falling moment. The upper end of the tendon is fixed to the upper end of the retaining wall body.
[0021]
The tension material stabilizes the retaining wall against lifting by applying the pulling force of the retaining wall due to the falling moment to the ground, and prevents the retaining wall from falling. Fall prevention is possible even when the entire width of the retaining wall is small.
[0022]
Further, in the fifth aspect, the tension member is tensioned in a state where the anchor body is fixed to the ground, so that prestress is introduced into the retaining wall, and the safety against the tensile breakage of the retaining wall body is enhanced.
[0023]
The mountain retaining wall according to any one of claims 1 to 3 has a width obtained by stirring and mixing the cutting soil and the solidified material while continuously moving the digging apparatus as described in claim 6. constructs a earth retaining wall body that is continuous with the wall shape having a constant direction thickness, in the land mountain side, stirring solidifying material and the cutting soil at intervals in the length direction of the earth retaining wall body claims by mixing It completes by constructing the retaining wall of the wall-shaped ground improvement body according to any one of claims 1 to 3 .
[0024]
After the mountain retaining wall according to any one of claims 1 to 3 is constructed as described in claim 7, the mountain retaining wall according to claim 4 is hardened on a part of the retaining wall near the ground mountain. The tension material is inserted in the depth direction of the retaining wall from the upper end, and the lower end of the tension material is fixed in the retaining wall or at the lower end of the retaining wall. It is completed by introducing prestress on the mountain side in the depth direction.
[0025]
After the mountain retaining wall according to any one of claims 1 to 3 is constructed as described in claim 8, the mountain retaining wall according to claim 5 is hardened on a part of the retaining wall near the ground mountain. After passing through the lower end from the upper end to the ground deeper than the retaining wall, after inserting the tension material with the anchor body connected to the lower end in the depth direction of the retaining wall, fixing the anchor body to the ground and hardening the retaining wall It is completed by tensioning the tension material and fixing the retaining wall to the ground near the ground.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 5 shows the ground improvement procedure by the digging apparatus 1. The grooving device 1 is composed of a cutter post 2 and an endless chain 3 having a cutting stirring claw 4 that is circulated around the outer periphery of the cutter post 2, and the cutter post 2 is attached to the frame 6 by a hydraulic cylinder mounted on a base machine 5. A solidified material discharged from the cutter post 2 or supplied from the ground while the circulating cutting stirring claw 4 is moved in the horizontal direction with the base machine 5 as a reaction force and cutting the ground into a groove shape The ground is improved by mixing cutting soil, and the retaining wall body 7 is constructed.
[0027]
In the case of a slurry, the solidified material is discharged from the vicinity of the lower end portion of the cutter post 2 or injected from the vicinity of the ground portion. In the case of powder or pellet form, a predetermined amount is sprayed on the ground in advance, or the endless chain 3 in the vicinity of the ground is thrown in or sprayed from the side penetrating into the ground.
[0028]
As shown on the left side of FIGS. 1 and 2, the mountain retaining wall 9 is composed of a mountain retaining wall body 7 that is a ground improvement body and a retaining wall 8 that is also a ground improvement body. By moving, as shown in FIG. 1 and FIG. 2, it is constructed in the shape of a wall having a certain thickness in the width direction. The retaining wall body 7 is not limited to a straight line as shown in the figure, but may be continued in a wavy shape, and the retaining wall 8 faces a direction orthogonal to or intersecting with the length direction of the retaining wall body 7, The retaining wall main body 7 is constructed at intervals in the length direction.
[0029]
1 and 2 show that the wall 8 has a constant thickness in the width direction by continuously moving the digging apparatus 1 or by circulating the endless chain 3 while keeping it in a fixed position. Although the mountain retaining wall body 7 is constructed with a certain thickness, the water retaining property necessary for the mountain retaining wall and a certain strength are ensured. Therefore, the retaining wall 8 does not necessarily have to be constructed by the grooving device 1, but can also be constructed by continuing the column array linearly as shown in FIGS. 6, 8, and 10 show the case where the retaining wall 8 is constructed by the digging apparatus 1, and FIGS. 7, 9, and 11 show the case where the retaining wall 8 is constituted by a columnar body.
[0030]
In the upper retaining wall 9 in FIG. 7, a part of the retaining wall 8 connected to the retaining wall main body 7 is composed of two columns of columns in the width direction, but the retaining wall 8 is constructed by the digging groove device 1. In some cases, ground improvement bodies made by a single construction may be stacked in the width direction.
[0031]
Further, the retaining wall 8 does not necessarily have to be constructed to the same depth as the retaining wall main body 7, as long as it can exhibit the effect of reducing the bending deformation that occurs along the depth direction of the retaining wall main body 7 due to the lateral pressure from the natural ground. As shown in FIGS. 10 and 11, it may be sufficient up to the depth of the root cutting depth.
[0032]
On the left side of FIG. 2, a tensile force acts on the connection portion C between the retaining wall body 7 and the retaining wall 8 due to the side pressure B acting on the back surface of the retaining wall body 7 along with the root cutting. If the distance A between the retaining walls 8 and 8 is set so that an arching action occurs in the ground sandwiched between the retaining walls 8 and 8, such as keeping the distance A between 8 to a certain degree or less, the lateral pressure B is reduced. The effect of reducing the tensile force at the connecting portion C is obtained.
[0033]
In the first aspect of the invention , as shown in the lower retaining wall 9 in FIGS. 6 and 7 , the length on the plane of the retaining wall 8 at the intermediate position of the retaining wall main body 7 is changed to the bending curve shown in FIG. In this case, the length of the retaining wall 8 is longer than the length of the retaining wall 8 at both ends. In the invention of claim 2, the intermediate portion of the retaining wall body 7 is connected to the retaining wall body 7 on the left side of FIG. This is a case where the retaining walls 8 are densely arranged. The left and right retaining walls 9 in FIG. 6 and the right retaining wall 9 in FIG. 7 are also in the form of claim 3 in which the retaining wall 9 of claim 1 and the retaining wall 9 of claim 2 are combined.
These mountain retaining walls are walls having a constant thickness in the width direction by stirring and mixing the cutting soil and the solidified material while continuously moving the grooving device as described in claim 6. A rock retaining wall body of a ground improvement body that is continuous in a shape is constructed, and on the ground ground side, the cutting soil and the solidifying material are agitated and mixed at intervals in the length direction of the rock retaining wall body. It is completed by constructing the retaining wall of the wall-shaped ground improvement body described in any one of the above.
[0034]
The invention of claim 4 is that in the first to third aspects of the invention, as shown on the right side of FIGS. This is a mountain retaining wall 9 in which the material 10 is inserted in the depth direction and prestress is introduced near the natural mountain of the retaining wall 8 by the tension of the tension material 10. One or a plurality of tendon members 10 are arranged near the ground of the retaining wall 8.
[0035]
The tension material 10 is made of an unbonded PC steel material such as a PC steel rod or PC strand, or a tensile material such as a reinforcing bar or steel bar. When a sheath is inserted into the retaining wall 8, the tendon 10 need not be unbonded.
[0036]
Fixing plates 11 and 11 are connected to the upper end and the lower end of the tension member 10, respectively, and the fixing plate 11 at the upper end is fixed to the upper end portion of the retaining wall 8 after being cured or by curing. As shown in FIGS. 1 and 3, the fixing plate 11 at the lower end is fixed as it is to the lower end or lower end portion of the retaining wall 8 or to the intermediate portion of the retaining wall 8 by curing. Since the prestressing range may be a range in which a tensile force is generated in the retaining wall 8, the fixing plate 11 at the lower end may be disposed in an intermediate portion above the lower end portion of the retaining wall 8. The area of the fixing plate 11 is set so that the supporting pressure applied from the fixing plate 11 to the retaining wall 8 by the tension applied to the tension member 10 is within the bearing strength of the retaining wall 8.
[0037]
The tension material 10 is inserted in the depth direction from the upper end portion to the lower end portion after the retaining wall 9 according to any one of claims 1 to 3 is constructed and before the retaining wall 8 which is a mixture of cutting soil and solidified material is cured. The fixing plate 11 at the lower end is fixed after being fixed to the lower end portion or the intermediate portion of the retaining wall main body 7 by curing, and the upper end is fixed to the fixing plate 11 at the upper end.
[0038]
In claim 4, after prestress is applied to the retaining wall 8 due to the tension of the tension material 10, the natural ground inside the retaining wall body 7 is excavated.
[0039]
As the inner wall of the retaining wall 7 is rooted, the section of the retaining wall 9 is bent so that, as shown in FIG. A moment is generated. The cross section of the retaining wall 9 is also subjected to compressive stress due to its own weight as shown in (b). However, if a tensile stress is generated on the tension side due to the combination of the bending moment and the compressive stress due to its own weight, the straight retaining wall 9 is May bend and break.
[0040]
On the other hand, by applying prestress to the ground side of the retaining wall 8 before root cutting, the tensile force on the ground side after root cutting completely cancels, and the retaining wall as shown in Fig. 15- (b) It is possible to make a state in which only the compressive stress acts on the cross section of 9. As a result, the resistance force against the bending moment of the retaining wall 9 increases, and the safety against destruction increases.
[0041]
According to a fifth aspect of the present invention, in the first to third aspects, as shown in FIGS. 8 to 11, the anchor body 12 is connected to the lower end of the tension member 10 of the fourth aspect, and the anchor body 12 is fixed to the ground. Thus, the retaining wall 8 is a retaining wall 9 fixed on the ground near the ground. A fixing plate 11 is connected to the upper end of the tension material 10.
[0042]
The tension member 10 penetrates from the upper end of the retaining wall 8 to the lower end, is inserted to a good ground deeper than the retaining wall 8, and the anchor body 12 connected to the lower end is tensioned in a state where the anchor body 12 is fixed to the ground, thereby retaining the retaining wall. Fix 8 on the ground. The fixing plate 11 at the upper end of the tension member 10 is fixed to the upper end portion of the retaining wall 8 as in the fourth aspect. FIGS. 8 and 9 show the case where the depth of the retaining wall 8 is equal to the depth of the retaining wall body 7, and FIGS. 10 and 11 show the case where the depth of the retaining wall 8 is shallower than the depth of the retaining wall body 7.
[0043]
FIG. 11 shows a case where only the tension member 10 to which the anchor body 12 is connected is disposed in the retaining wall 8. FIGS. 8 to 10 show the tension member 10 to which the anchor body 12 is connected, and the lower end is the retaining wall 8. The case where the tendon 10 fixed to the lower end of the pierced wall is inserted into the retaining wall 8 is shown.
[0044]
In this invention, the retaining wall 9 according to any one of claims 1 to 3 is constructed, and after the ground into which the anchor body 12 is inserted is drilled to the insertion depth before the retaining wall 8 is hardened, the anchor body 12 The tension material 10 connected to is inserted. The anchor body 12 is inserted into the drilling hole, the grout material is filled into the drilling hole, the anchor body 12 is fixed to the ground, and after the retaining wall 8 is hardened, the tensioning material 10 is tensioned to the fixing plate 11 at the upper end. It is fixed.
[0045]
The stay wall 8 is fixed on the ground by the tension of the tendon 10 and simultaneously, prestress is introduced into the stay wall 8 in the depth direction.
[0046]
【The invention's effect】
In the first to third aspects, the cutting soil and the solidified material are stirred while continuously moving the digging device composed of an endless chain provided with a cutting stirring claw protruding from the cutter post and the outer periphery thereof. In order to construct the retaining wall from the retaining wall body of the ground improvement body constructed in a wall shape with a certain thickness by mixing and the retaining wall of the ground improvement body constructed in a wall shape on the ground mountain side, The problem of water leakage after root cutting due to the occurrence of misalignment and gap due to lap construction of the retaining wall constructed by continuously arranging the columnar bodies is solved.
[0047]
In addition, since at least the mountain retaining wall body is formed in a wall shape having a certain thickness in the width direction, there is no sudden change in the cross section of the mountain retaining wall body, so a decrease in shear strength of the mountain retaining wall body is avoided, and at the time of an earthquake The structural weakness against the horizontal force is also eliminated.
[0048]
For the above reasons, in order to secure a certain performance as a retaining wall, it is not necessary to connect the columnar body in two directions without gap as in the case where the retaining wall is constituted by the columnar body, so that the construction cost is reduced. The
[0049]
In addition, the mountain retaining wall body is formed in a wall shape with a certain thickness, so the inner circumference of the mountain retaining wall body is configured with a straight line, so the mountain retaining wall is composed of a column of columns with irregularities on the inner circumferential surface. The effective area of the target site for foundation work will be expanded compared to the case of doing so.
[0050]
Furthermore, because the retaining wall is composed of the retaining wall body and the retaining wall on the ground side, the bending rigidity of the retaining wall increases, so bending deformation of the retaining wall body due to the lateral pressure received from the ground after the root wall is completed is reduced. it can. As a result, it is possible to reduce the wall thickness of the retaining wall main body necessary to suppress the horizontal displacement due to the lateral pressure to a certain amount or less, and to reduce the cost of the retaining wall frame.
[0051]
In particular the length of the buttress located in the middle portion of the earth retaining wall body horizontal displacement of the claim 1 is increased by greater than the length of the buttress positioned at both ends nearer, claim 2, earth retaining wall body Since the spacing rigidity between the adjacent retaining walls in the middle part of each is smaller than the spacing between the neighboring retaining walls near the both ends, the bending rigidity of the middle part of the retaining wall body is increased. The horizontal displacement of the middle part of the wall body can be reduced.
[0052]
In claim 4, prestress is introduced in the depth direction of a part of the retaining wall near the ground, and the tensile strength of the retaining wall body is increased because the retaining wall body cancels the tensile force due to the side pressure received from the ground. Increased safety against tensile fracture.
[0053]
As a result of increasing the tensile strength of the continuous ground improvement body on the natural ground side, the wall thickness of the continuous ground improvement body can be made smaller than when no prestress is introduced, which is economical.
[0054]
In claim 5, the tension material of claim 4 is extended, penetrated through the retaining wall and inserted to the deeper ground, the anchor body is connected to the lower end of the tension material, and the anchor body is fixed to the ground deeper than the retaining wall. By introducing the tension to the tendon in the state of being made to stay, the retaining wall is fixed to the ground near the ground, so that the fall of the retaining wall due to the side pressure from the ground can be prevented.
[0055]
Further, in claim 5, prestressing is introduced to the retaining wall when the tensioning member is tensioned in a state where the anchor body at the lower end of the tensioning member is fixed to the ground. Will also increase.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a retaining wall when a retaining wall is constructed by a digging groove device.
2 is a plan view of FIG. 1. FIG.
FIG. 3 is a longitudinal sectional view showing a mountain retaining wall when the retaining wall is constituted by a columnar body.
4 is a plan view of FIG. 3;
FIG. 5 is an elevation view showing the state of ground improvement by the digging apparatus.
FIG. 6 is a plan view showing the retaining wall of claim 1 and claim 3 when the retaining wall is constructed by a digging groove device.
FIG. 7 is a plan view showing a mountain retaining wall according to claim 1, claim 2 and claim 3 when the retaining wall is constituted by a columnar body.
FIG. 8 is a longitudinal sectional view showing a mountain retaining wall according to claim 5 when the retaining wall is constructed by a digging groove device.
FIG. 9 is a longitudinal sectional view showing a mountain retaining wall according to claim 5 when the retaining wall is constituted by a columnar body.
FIG. 10 is a longitudinal sectional view showing another mountain retaining wall according to claim 5 when the retaining wall is constructed by a digging groove device.
FIG. 11 is a longitudinal sectional view showing another mountain retaining wall according to claim 5 when the retaining wall is constituted by a columnar body.
FIG. 12 is a longitudinal sectional view showing a mountain retaining wall composed of a columnar body.
FIG. 13 is a plan view of FIG.
FIG. 14 is a plan view showing a state of deformation of a self-supporting mountain retaining wall made of a columnar body.
15 (a) is a longitudinal sectional view showing the relationship between the lateral pressure acting on the retaining wall by root cutting and the bending moment, and FIG. 15 (b) shows the synthetic response generated in the section of the retaining wall when prestress is applied. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Groove device, 2 ... Cutter post, 3 ... Endless chain, 4 ... Cutting stirring claw, 5 ... Base machine, 6 ... Frame, 7 ... Retaining wall body, 8 ... Retaining wall, 9 ... mountain retaining wall, 10 ... tension material, 11 ... fixing plate, 12 ... anchor body.

Claims (8)

カッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して構築され、幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体と、山留め壁本体の地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により壁状に構築される地盤改良体の控え壁から構成される山留め壁であって、山留め壁本体の長さ方向中間部に位置する控え壁の平面上の長さは、両端部寄りに位置する控え壁の平面上の長さより大きい山留め壁Constructed by agitating and mixing the cutting soil and solidified material while continuously moving the grooving device consisting of an endless chain with a cutting stirring claw protruding from the cutter post and its outer periphery. The wall retaining wall body of the ground improvement body that has a certain thickness in the wall and the ground wall side of the retaining wall body, the cutting soil and the solidified material are agitated at intervals in the length direction of the retaining wall body, A retaining wall composed of a retaining wall of a ground improvement body constructed into a wall shape by mixing, and the length of the retaining wall located in the middle portion in the longitudinal direction of the retaining wall body is closer to both ends. A retaining wall that is larger than the plane length of the retaining wall . カッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して構築され、幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体と、山留め壁本体の地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により壁状に構築される地盤改良体の控え壁から構成される山留め壁であって、山留め壁本体の長さ方向中間部における隣接する控え壁間の間隔は、両端部寄りにおける隣接する控え壁間の間隔より小さい山留め壁Constructed by agitating and mixing the cutting soil and solidified material while continuously moving the grooving device consisting of an endless chain with a cutting stirring claw protruding from the cutter post and its outer periphery. The wall retaining wall body of the ground improvement body that has a certain thickness in the wall and the ground wall side of the retaining wall body, the cutting soil and the solidified material are agitated at intervals in the length direction of the retaining wall body, A retaining wall composed of a retaining wall of a ground improvement body constructed in a wall shape by mixing, and the spacing between adjacent retaining walls in the intermediate portion in the longitudinal direction of the retaining wall main body is an adjacent retaining wall near both ends. A retaining wall that is smaller than the spacing between the walls . カッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して構築され、幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体と、山留め壁本体の地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により壁状に構築される地盤改良体の控え壁から構成される山留め壁であって、山留め壁本体の長さ方向中間部に位置する控え壁の平面上の長さは、両端部寄りに位置する控え壁の平面上の長さより大きく、かつ山留め壁本体の長さ方向中間部における隣接する控え壁間の間隔は、両端部寄りにおける隣接する控え壁間の間隔より小さい山留め壁。Constructed by agitating and mixing the cutting soil and solidified material while continuously moving the grooving device consisting of an endless chain with a cutting stirring claw protruding from the cutter post and its outer periphery. The wall retaining wall body of the ground improvement body that has a certain thickness in the wall and the ground wall side of the retaining wall body, the cutting soil and the solidified material are agitated at intervals in the length direction of the retaining wall body, A retaining wall composed of a retaining wall of a ground improvement body constructed into a wall shape by mixing, and the length of the retaining wall located in the middle portion in the longitudinal direction of the retaining wall body is closer to both ends. A retaining wall that is larger than the planar length of the retaining wall that is positioned and that has an interval between adjacent retaining walls in the longitudinal intermediate portion of the retaining wall body that is smaller than the spacing between adjacent retaining walls near both ends. 控え壁の地山寄りの一部には、緊張材が控え壁の上端部から深度方向に挿通し、緊張材の下端が控え壁中,もしくはその下端部に定着されており、緊張材が緊張され、控え壁の地山寄りにその深度方向にプレストレスが導入されている請求項1乃至請求項3のいずれかに記載の山留め壁。  The tension material is inserted in the depth direction from the upper end of the retaining wall to a part of the retaining wall near the ground, and the lower end of the tension material is fixed in the retaining wall or at the lower end thereof. The mountain retaining wall according to any one of claims 1 to 3, wherein a prestress is introduced in a depth direction near the natural mountain of the retaining wall. 控え壁の地山寄りの一部には、下端にアンカー体が接続した緊張材が控え壁の上端部から下端を貫通して深度方向に挿通し、アンカー体が控え壁以深の地盤に定着されており、緊張材が緊張され、控え壁が地山寄りで地盤に定着されている請求項1乃至請求項3のいずれかに記載の山留め壁。  On the part of the retaining wall near the ground, a tension material with an anchor body connected to the lower end passes through the lower end from the upper end of the retaining wall and penetrates in the depth direction, and the anchor body is fixed to the ground deeper than the retaining wall. The retaining wall according to any one of claims 1 to 3, wherein the tendon is tensioned and the retaining wall is fixed to the ground near the ground. カッターポストとその外周に張架される、切削攪拌爪が突設された無端チェインからなる掘溝装置を連続的に移動させながら、切削土と固化材を攪拌,混合して幅方向に一定の厚さを持った壁状に連続する地盤改良体の山留め壁本体を構築し、その地山側に、山留め壁本体の長さ方向に間隔をおいて切削土と固化材の攪拌,混合により請求項1乃至請求項3のいずれかに記載の壁状の地盤改良体の控え壁を構築し、山留め壁を完成させる山留め壁の構築方法。While continuously moving the grooving device consisting of an endless chain with a cutting stirring claw protruding from the cutter post and its outer periphery, the cutting soil and solidified material are stirred and mixed so that the width is constant. constructs a Retaining wall body of the soil improvement material continuous in thickness to have a wall-like, on the land mountain side, stirring solidifying material and the cutting soil at intervals in the longitudinal direction of the earth retaining wall body claims by mixing A method for constructing a retaining wall by constructing a retaining wall of the wall-shaped ground improvement body according to any one of claims 1 to 3 and completing a retaining wall . 請求項1乃至請求項3のいずれかに記載の山留め壁を構築した後、控え壁の地山寄りの一部に、その硬化前に上端部から控え壁の深度方向に緊張材を挿通させ、緊張材の下端を控え壁中,もしくはその下端部に定着させ、控え壁が硬化した後に緊張材を緊張して控え壁の地山寄りにその深度方向にプレストレスを導入する請求項6記載の山留め壁の構築方法。  After constructing the mountain retaining wall according to any one of claims 1 to 3, a tension material is inserted from the upper end portion into the depth direction of the retaining wall before hardening to a part of the retaining wall near the natural mountain, The lower end of the tension member is fixed in the retaining wall or at the lower end portion thereof, and after the retaining wall is hardened, the tension member is tensioned to introduce prestress in the depth direction near the ground of the retaining wall. How to construct a retaining wall. 請求項1乃至請求項3のいずれかに記載の山留め壁を構築した後、控え壁の地山寄りの一部に、その硬化前に上端部から下端を貫通させて控え壁以深の地盤まで、下端にアンカー体が接続した緊張材を控え壁の深度方向に挿通させ、アンカー体を地盤に定着させ、控え壁が硬化した後に緊張材を緊張して控え壁を地山寄りで地盤に定着させる請求項6記載の山留め壁の構築方法。  After constructing the retaining wall according to any one of claims 1 to 3, in a part of the retaining wall near the ground, before the hardening, through the lower end from the upper end to the ground deeper than the retaining wall, Insert the tension material with the anchor body connected to the lower end in the depth direction of the retaining wall, fix the anchor body to the ground, tension the tension material after the retaining wall hardens, and anchor the retaining wall to the ground near the ground The method for constructing a mountain retaining wall according to claim 6.
JP31058696A 1996-11-21 1996-11-21 Retaining wall and its construction method Expired - Fee Related JP3735424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31058696A JP3735424B2 (en) 1996-11-21 1996-11-21 Retaining wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31058696A JP3735424B2 (en) 1996-11-21 1996-11-21 Retaining wall and its construction method

Publications (2)

Publication Number Publication Date
JPH10152841A JPH10152841A (en) 1998-06-09
JP3735424B2 true JP3735424B2 (en) 2006-01-18

Family

ID=18007035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31058696A Expired - Fee Related JP3735424B2 (en) 1996-11-21 1996-11-21 Retaining wall and its construction method

Country Status (1)

Country Link
JP (1) JP3735424B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074152B2 (en) * 2007-10-26 2012-11-14 株式会社竹中工務店 Foundation structure
JP2010059644A (en) * 2008-09-02 2010-03-18 Shimizu Corp Bank protective structure against side movement
JP2009002156A (en) * 2008-09-03 2009-01-08 Ohbayashi Corp Wall pile
JP5330874B2 (en) * 2009-03-24 2013-10-30 株式会社竹中工務店 Soil cement column mountain wall
JP2012102573A (en) * 2010-11-11 2012-05-31 Takenaka Komuten Co Ltd Construction method of horizontal force transmission structure
JP5569849B1 (en) * 2013-07-12 2014-08-13 強化土株式会社 Liquefaction countermeasure construction method and liquefaction countermeasure improvement ground
JP6606909B2 (en) * 2015-08-04 2019-11-20 株式会社大林組 Deformation prevention structure of retaining wall and deformation prevention method of retaining wall
JP6515731B2 (en) * 2015-08-07 2019-05-22 株式会社大林組 Support structure of retaining wall

Also Published As

Publication number Publication date
JPH10152841A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
AU2007100294A5 (en) Earth Retention and Piling Systems
KR101241566B1 (en) Method for Constructing Cap Beam Combined Wale For Retaining Wall
JP6427045B2 (en) Reinforcement structure and reinforcement method of existing concrete structure
KR20140121119A (en) PHC pile for Prestressed Concrete Member, Manufacturing method of PHC pile amd Construction method of retaining wall using PHC pile
JP3735424B2 (en) Retaining wall and its construction method
JP4318749B1 (en) Slope protection device
JP4771244B2 (en) Connection joint between steel pipe pile and concrete pile, connection pile structure between steel pipe pile and concrete pile, construction method of connection pile between steel pipe pile and concrete pile
KR101061516B1 (en) Temporary wall structure using arched steel pile
KR20190109890A (en) Composite phc pile for soil retaining wall
JP4636478B2 (en) Liquefaction prevention structure
JPH10131175A (en) Earth retaining wall and construction method thereof
KR20190137432A (en) Soil retaining wall for phc pile
JP4349708B2 (en) Structural underground wall and its construction method
JP4543268B2 (en) Liquefaction prevention structure
JP2599299B2 (en) Retaining wall and retaining method in soft ground
JP6866980B2 (en) Joining cap and pile head joining structure
JP2000314143A (en) Retaining wall execution method and retaining wall device
AU2012202472B2 (en) Earth Retention and Piling Systems
JPH04115016A (en) Earth retaining wall in weak foundation and method of retaining earth
KR20190142492A (en) PHC pile to facilitate soil guard and construction method of soil guard structure using the same
EP0922810B1 (en) Method of securing slopes
JP7008663B2 (en) Column pile rotation suppression structure
JPH0781274B2 (en) How to build a beam on an underground wall
JP7103962B2 (en) Earth retaining structure and earth retaining method
KR102614988B1 (en) Pre-stressed composite pile for retaining wall in remodeling

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees