JPH08269545A - Production of steel plate for mo-added ultrahigh strength steel tube excellent in toughness in weld zone - Google Patents

Production of steel plate for mo-added ultrahigh strength steel tube excellent in toughness in weld zone

Info

Publication number
JPH08269545A
JPH08269545A JP7072725A JP7272595A JPH08269545A JP H08269545 A JPH08269545 A JP H08269545A JP 7072725 A JP7072725 A JP 7072725A JP 7272595 A JP7272595 A JP 7272595A JP H08269545 A JPH08269545 A JP H08269545A
Authority
JP
Japan
Prior art keywords
less
steel
toughness
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7072725A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Hiroshi Tamehiro
博 為広
Hitoshi Asahi
均 朝日
Takuya Hara
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7072725A priority Critical patent/JPH08269545A/en
Priority to CN96190145A priority patent/CN1148416A/en
Priority to CA002187028A priority patent/CA2187028C/en
Priority to EP96901131A priority patent/EP0757113B1/en
Priority to DE69607702T priority patent/DE69607702T2/en
Priority to PCT/JP1996/000157 priority patent/WO1996023909A1/en
Priority to AU44966/96A priority patent/AU677540B2/en
Priority to KR1019960705573A priority patent/KR100222302B1/en
Priority to US08/718,567 priority patent/US5755895A/en
Priority to NO964182A priority patent/NO964182L/en
Publication of JPH08269545A publication Critical patent/JPH08269545A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To produce a steel plate for Mo-added ultrahigh strength steel tube excellent in toughness in weld zone by applying treatments of reheating, rolling, etc., to a steel slab of specific composition under respectively specified conditions. CONSTITUTION: A steel slab, having a composition which consists of, by weight, 0.05-0.10% C, <=0.6% Si, 1.8-2.5% Mn, <=0.015% P, <=0.001% S, 0.1-1.0% Ni, 0.35-0.60% Mo, 0.01-0.10% Nb, 0.005-0.030% Ti, <=0.004% Al, 0.001-0.006% N, <=0.003% O, and the balance iron with inevitable impurities and in which the value of P, defined by equation, is regulated to 1.9-2.8, is reheated to 950-1200 deg.C. Subsequently, rolling is done so that cumulative rolling reduction at <=900 deg.C, cumulative rolling reduction in the ferrite-austenite two-phase region between the Ar3 and the Ar1 point, and rolling finishing temp. are >=70%, 15-35%, and 680-820 deg.C, respectively. Further, the resulting rolled plate is cooled at >=10 deg.C/sec cooling rate down to an arbitrary temp. of <=400 deg.C and then tempered at 400-650 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は米国石油協会(API)
規格でX120以上(引張強さで約950N/mm2
上)の超高強度と優れた母材および溶接部の低温靭性、
現地溶接性を有する鋼板の製造方法に関するものであ
る。
This invention relates to the American Petroleum Institute (API)
Ultra high strength of X120 or more (tensile strength of about 950 N / mm 2 or more) as standard and excellent low temperature toughness of base material and welded part,
The present invention relates to a method for manufacturing a steel sheet having on-site weldability.

【0002】[0002]

【従来の技術】原油・天然ガスを長距離輸送するパイプ
ラインに使用するラインパイプは、(1)高圧化による
輸送効率の向上や、(2)薄肉化による現地での溶接能
率向上のためますます高張力化する傾向にある。これま
でにAPI規格でX80までのラインパイプの実用化が
進行中であるが、さらに高強度のラインパイプに対する
ニーズが最近でてきた。
2. Description of the Related Art Line pipes used in pipelines for long-distance transportation of crude oil and natural gas are (1) to improve transportation efficiency by increasing pressure and (2) to improve welding efficiency in the field by reducing wall thickness. There is a tendency for the tensile strength to become higher and higher. Until now, line pipes up to X80 according to the API standard have been put into practical use, but there has recently been a need for line pipes with higher strength.

【0003】現在、X100以上の超高強度ラインパイ
プはX80級ラインパイプの製造法(NKK技報No.1
38(1992),pp24−31およびThe 7t
hOffshore Mechanics and A
rctic Engineering(1988),V
olume V,pp179−185)を基本に検討さ
れているが、これではせいぜい、X100(降伏強さ9
89N/mm2 以上、引張強さ760N/mm2 以上)ライ
ンパイプの製造が限界と考えられる。パイプラインの超
高強度化は強度・低温靭性バランスをはじめとして、溶
接熱影響部(HAZ)靭性、現地溶接性、継手軟化など
多くの問題を抱えており、これらを克服した画期的な超
高強度ラインパイプ(X100超)の早期開発が要望さ
れている。
Currently, ultrahigh strength line pipes of X100 or more are manufactured by the method of manufacturing X80 class line pipe (NKK Technical Report No. 1).
38 (1992), pp24-31 and The 7t.
hOffshore Mechanics and A
rctic Engineering (1988), V
Olume V, pp179-185), but this is at most X100 (yield strength 9
89 N / mm 2 or more, tensile strength 760 N / mm 2 or more) The production of line pipes is considered to be the limit. The ultra-high-strength pipeline has many problems such as the balance between strength and low temperature toughness, weld heat affected zone (HAZ) toughness, on-site weldability, and softening of joints. There is a demand for early development of high strength line pipes (X100 or more).

【0004】[0004]

【発明が解決しようとする課題】本発明は溶接部および
母材の低温靭性、現地溶接性などの諸特性を同時に達成
できる引張強さ950N/mm2 以上(API規格X10
0超)の超高強度鋼管用鋼板の製造技術を提供するもの
である。
SUMMARY OF THE INVENTION According to the present invention, tensile strength of 950 N / mm 2 or more (API standard X10
It provides the manufacturing technology of ultra high strength steel pipe for steel pipe.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、重量%
で、C:0.05〜0.10%、Si:0.6%以下、
Mn:1.8〜2.5%、P:0.015%以下、S:
0.001%以下、Ni:0.1〜1.0%、Mo:
0.35〜0.60%、Nb:0.01〜0.10%、
Ti:0.005〜0.030%、Al:0.004%
以下、N:0.001〜0.006%、O:0.003
%以下を含有し、必要に応じて、V:0.01〜0.1
0%、Cu:0.1〜0.7%、Cr:0.1〜0.8
%、Ca:0.001〜0.005%の一種または二種
以上を含有し、残部が鉄および不可避的不純物からな
り、かつP=2.7C+0.4Si+Mn+0.8Cr
+0.45(Ni+Cu)+Mo+V−1が1.9≦P
≦2.8を満足する鋼片を950〜1200℃の温度に
再加熱後、900℃以下の累積圧下量が70%以上、か
つAr3 点〜Ar1 点のフェライト・オーステナイト2
相域の累積圧下量が15〜35%で圧延終了温度が68
0〜820℃となるように圧延を行い、その後10℃/
秒以上の冷却速度で400℃以下の任意の温度まで冷却
し、400〜650℃の温度で焼戻し処理することであ
る。
SUMMARY OF THE INVENTION The gist of the present invention is the weight%
C: 0.05 to 0.10%, Si: 0.6% or less,
Mn: 1.8 to 2.5%, P: 0.015% or less, S:
0.001% or less, Ni: 0.1 to 1.0%, Mo:
0.35 to 0.60%, Nb: 0.01 to 0.10%,
Ti: 0.005-0.030%, Al: 0.004%
Below, N: 0.001 to 0.006%, O: 0.003
% Or less, and if necessary, V: 0.01 to 0.1
0%, Cu: 0.1 to 0.7%, Cr: 0.1 to 0.8
%, Ca: 0.001 to 0.005% of one kind or two or more kinds, and the balance consisting of iron and inevitable impurities, and P = 2.7C + 0.4Si + Mn + 0.8Cr.
+0.45 (Ni + Cu) + Mo + V-1 is 1.9 ≦ P
After reheating a steel piece satisfying ≦ 2.8 to a temperature of 950 to 1200 ° C., a cumulative reduction amount of 900 ° C. or less of 70% or more and Ar 3 point to Ar 1 point of ferrite austenite 2
The cumulative rolling reduction in the phase region is 15 to 35% and the rolling end temperature is 68.
Rolling is performed at 0 to 820 ° C, and then 10 ° C /
It is to cool to an arbitrary temperature of 400 ° C. or lower at a cooling rate of 2 seconds or more, and to perform tempering treatment at a temperature of 400 to 650 ° C.

【0006】以下に本発明の超高強度鋼管用鋼板の製造
方法について詳細に説明する。本発明の特徴は、(1)
実質的にAlを含有しない低C−Ni−Nb−Mo−T
i系鋼を、(2)オーステナイト−フェライト2相域で
厳格に制御圧延した後、加速冷却するところにあり、こ
れによって超高強度と優れた母材および溶接部の低温靭
性、現地溶接性を同時に達成している。
The method of manufacturing the steel sheet for ultra high strength steel pipe of the present invention will be described in detail below. The features of the present invention are (1)
Low C-Ni-Nb-Mo-T containing substantially no Al
(2) Strictly controlled rolling of the i-type steel in the austenite-ferrite two-phase region is followed by accelerated cooling, which results in ultra-high strength and excellent base material and low-temperature toughness of the weld zone, and local weldability. Achieved at the same time.

【0007】従来より、低炭素−高Mn−Nb−Mo鋼
は微細なアシキュラーフェライト組織を有するラインパ
イプ用鋼としてよく知られているが、その引張強さの上
限はせいぜい750MPa が限界であった。さらに高強度
化するためには、(1)C量や合金元素量を増加させる
こと、(2)900℃以上の高温から焼入れ−焼戻し処
理すること、が必要であるが、母材やHAZの低温靭性
は不十分となる。
Conventionally, low carbon-high Mn-Nb-Mo steel is well known as a steel for line pipes having a fine acicular ferrite structure, but the upper limit of its tensile strength is 750 MPa at the most. It was In order to further increase the strength, it is necessary to (1) increase the amount of C and the amount of alloying elements, and (2) quench-temper from a high temperature of 900 ° C. or higher. The low temperature toughness is insufficient.

【0008】まず母材の低温靭性であるが、パイプライ
ンでは脆性破壊の発生特性とともに伝播停止特性が極め
て重要である。脆性破壊の伝播停止特性を向上させるた
めには、(1)ミクロ組織を微細化すること、(2)い
わゆるシャルピー衝撃試験などの試験片破面に発生する
セパレーションを利用すること(セパレーションは衝撃
試験時生ずる板面に平行な層状剥離現象で、脆性き裂先
端での3軸応力度を低下させることによって脆性き裂の
伝播停止特性を向上させると考えられている)が必要で
ある。
First, regarding the low temperature toughness of the base material, in the pipeline, the propagation stopping characteristics as well as the brittle fracture occurrence characteristics are extremely important. In order to improve the propagation stopping property of brittle fracture, (1) miniaturize the microstructure, (2) use the separation generated on the fracture surface of the test piece such as the so-called Charpy impact test (separation is the impact test It is considered that the propagation deteriorating property of the brittle crack is improved by reducing the triaxial stress level at the brittle crack tip by a delamination phenomenon that occurs at times parallel to the plate surface).

【0009】つぎに溶接部の低温靭性であるが、低合金
鋼の溶接熱影響部(HAZ)靭性は、(1)結晶粒のサ
イズ、(2)高炭素島状マルテンサイト(M* )、上部
ベイナイト(Bu)などの硬化相の分散状態、(3)粒
界脆化の有無、(4)元素のミクロ偏析など種々の冶金
学的要因に支配される。なかでもHAZの結晶粒のサイ
ズおよびM* は低温靭性に大きな影響を与えることが知
られている。本発明では鋼中のAl量を低減することに
より、HAZでのM* の生成量を抑制して、かつ微細に
分散させることによりHAZ靭性を向上させる。
Next, regarding the low temperature toughness of the weld zone, the weld heat affected zone (HAZ) toughness of the low alloy steel is as follows: (1) grain size, (2) high carbon island martensite (M * ), It is governed by various metallurgical factors such as the dispersed state of a hardened phase such as upper bainite (Bu), (3) presence or absence of grain boundary embrittlement, and (4) microsegregation of elements. Especially, it is known that the size of the crystal grains and the M * of HAZ have a great influence on the low temperature toughness. In the present invention, by reducing the amount of Al in the steel, the amount of M * produced in the HAZ is suppressed and the HAZ toughness is improved by finely dispersing it.

【0010】とくに高強度化すればするほど合金元素の
添加量は必然的に多くなり、HAZでのM* 生成の完全
抑制は困難になる。しかしながら、この場合でも実質的
にAlを含んでいなければM* は微細に分散され、HA
Z靭性は向上する。Alを添加した場合には、Alは炭
化物に固溶しないために、未変態オーステナイト中でγ
が安定化してM* の生成が顕著になる。
In particular, the higher the strength, the more the amount of alloying elements added, and it becomes difficult to completely suppress the production of M * in the HAZ. However, even in this case, M * is finely dispersed if it does not substantially contain Al, and HA
Z toughness is improved. When Al is added, since Al does not form a solid solution with carbides, γ in untransformed austenite
Is stabilized and the production of M * becomes remarkable.

【0011】まず本発明の製造条件の限定理由について
説明する。本発明では、鋼片を950〜1200℃の温
度範囲に再加熱後、900℃以下の累積圧下量が70%
以上、かつAr3 点〜Ar1 点のフェライト・オーステ
ナイト2相域の累積圧下量が15〜35%で圧延終了温
度が680〜820℃となるように圧延を行い、その後
10℃/秒以上の冷却速度で400℃以下の任意の温度
まで冷却し、400〜650℃で時効処理する。
First, the reasons for limiting the manufacturing conditions of the present invention will be described. In the present invention, after reheating the billet to a temperature range of 950 to 1200 ° C., the cumulative rolling reduction of 900 ° C. or less is 70%.
Above, rolling is carried out so that the cumulative rolling reduction in the ferrite-austenite two-phase region of Ar 3 point to Ar 1 point is 15 to 35% and the rolling end temperature is 680 to 820 ° C., and thereafter 10 ° C./sec or more. It is cooled to an arbitrary temperature of 400 ° C. or lower at a cooling rate, and is aged at 400 to 650 ° C.

【0012】鋼片(スラブ)の再加熱温度を950℃以
上とする理由は、粗大な鋳造組織である鋼片をオーステ
ナイト域で十分に溶体化させ、圧延終了温度を確保する
ためである。しかし再加熱温度が1200℃を超える
と、再加熱時のオーステナイト粒が成長し、圧延後の結
晶粒も大きくなって低温靭性や耐サワー性の劣化を招
く。このため再加熱温度の上限は1200℃とした。
The reason why the reheating temperature of the steel slab (slab) is set to 950 ° C. or higher is that the steel slab having a coarse casting structure is sufficiently solution-treated in the austenite region to secure the rolling end temperature. However, if the reheating temperature exceeds 1200 ° C., austenite grains grow during reheating and the crystal grains after rolling also increase, resulting in deterioration of low temperature toughness and sour resistance. Therefore, the upper limit of the reheating temperature is 1200 ° C.

【0013】再加熱した鋼片は900℃以下の累積圧下
量が70%以上、かつAr3 点〜Ar1 点のフェライト
・オーステナイト2相域の累積圧下量が15〜35%で
圧延終了温度が680〜820℃となるように圧延しな
ければならない。900℃以下の累積圧下量を70%以
上とする理由はオーステナイト未再結晶域での圧延を強
化し、変態前のオーステナイト組織の微細化を図るため
である。X100ラインパイプではとくに安全上、従来
にも増して高靭性を必要とするので、その累積圧下量は
70%としなければならない(累積圧下量は大きいほど
望ましく、その上限については限定しない)。
The reheated steel slab has a cumulative reduction of 900% or less of 70% or more, a cumulative reduction of 15 to 35% in the ferrite-austenite two-phase region of Ar 3 point to Ar 1 point, and a rolling end temperature. It must be rolled to 680-820 ° C. The reason why the cumulative reduction amount at 900 ° C. or less is 70% or more is to strengthen rolling in the austenite unrecrystallized region and to refine the austenite structure before transformation. Since the X100 line pipe requires higher toughness than ever before, especially for safety, its cumulative reduction amount must be 70% (the larger the cumulative reduction amount is, the more preferable it is, and the upper limit is not limited).

【0014】さらに本発明では、フェライト・オーステ
ナイト2相域の累積圧下量を15〜35%とし、圧延終
了温度を680〜820℃とする。これはオーステナイ
ト未再結晶域で細粒化したオーステナイト組織を一層微
細化し、かつフェライトを加工してフェライトの強化と
衝撃試験時にセパレーションの発生を容易にするためで
ある。2相域の累積圧下量が15%以下では、セパレー
ションの発生が十分でなく脆性き裂の伝播停止特性の向
上は得られない。
Further, in the present invention, the cumulative reduction amount in the ferrite-austenite two-phase region is set to 15 to 35%, and the rolling end temperature is set to 680 to 820 ° C. This is because the austenite structure finely grained in the unrecrystallized austenite region is further refined, and the ferrite is processed to strengthen the ferrite and facilitate the occurrence of separation during the impact test. When the cumulative rolling reduction in the two-phase region is 15% or less, the separation is not sufficiently generated and the propagation stopping property of the brittle crack cannot be improved.

【0015】また累積圧下量が35%以上では、加工に
よるフェライトの脆化が顕著となって低温靭性はかえっ
て劣化する。このため、2相域での累積圧下量の範囲を
15〜35%とした。一方、累積圧下量が適切であって
も、その圧延温度が不適切であると優れた低温靭性は達
成できない。圧延終了温度が680℃以下では、フェラ
イト変態が進行して続く加速冷却の効果がなくなるばか
りか、加工によるフェライトの脆化も顕著となるので、
圧延終了温度の下限を680℃とした。しかし圧延終了
温度が820℃以上では、オーステナイト組織の微細化
やセパレーション発生が十分でないため、圧延終了温度
の上限を820℃に限定した。
If the cumulative reduction is 35% or more, the embrittlement of ferrite due to working becomes remarkable and the low temperature toughness deteriorates. Therefore, the range of the cumulative reduction amount in the two-phase region is set to 15 to 35%. On the other hand, even if the cumulative reduction amount is appropriate, excellent low temperature toughness cannot be achieved if the rolling temperature is inappropriate. When the rolling end temperature is 680 ° C. or lower, not only the effect of accelerated cooling due to the progress of ferrite transformation disappears but also the embrittlement of ferrite due to working becomes remarkable,
The lower limit of the rolling end temperature was 680 ° C. However, if the rolling end temperature is 820 ° C. or higher, refinement of the austenite structure and occurrence of separation are not sufficient, so the upper limit of the rolling end temperature is limited to 820 ° C.

【0016】圧延終了後、鋼板は10℃/秒以上の冷却
速度で400℃以下の任意の温度まで冷却する必要があ
る。これはベイナイト組織の形成などによる変態強化、
組織の微細化を図るためである。冷却速度が10℃/秒
以下であったり、水冷停止温度が400℃以上である
と、変態強化による強度・低温靭性バランスの向上が十
分に期待できない。冷却速度が大きいほど変態強化に有
効であり、とくに上限は限定しないが、実用上可能な冷
却速度は板厚にも依存するが、40℃/秒程度である。
After the completion of rolling, the steel sheet needs to be cooled at a cooling rate of 10 ° C./sec or more to an arbitrary temperature of 400 ° C. or less. This is transformation strengthening due to the formation of bainite structure,
This is for achieving a finer structure. When the cooling rate is 10 ° C./sec or less and the water cooling stop temperature is 400 ° C. or more, improvement in strength / low temperature toughness balance due to transformation strengthening cannot be expected sufficiently. The higher the cooling rate, the more effective the transformation strengthening is, and the upper limit is not particularly limited, but the practically feasible cooling rate is about 40 ° C./sec although it depends on the plate thickness.

【0017】さらに圧延・冷却後の鋼板は400〜65
0℃の温度で焼戻し処理する必要がある。焼戻し処理温
度が400℃以下であると低温靭性が不十分となり、焼
戻し処理温度が650℃以上では強度が低下する。
Further, the steel sheet after rolling and cooling is 400 to 65
It is necessary to temper at a temperature of 0 ° C. When the tempering treatment temperature is 400 ° C. or lower, the low temperature toughness becomes insufficient, and when the tempering treatment temperature is 650 ° C. or higher, the strength decreases.

【0018】つぎに成分元素の限定理由について説明す
る。Cの下限0.05%は母材および溶接部の強度、低
温靭性の確保ならびにNb,V添加による析出硬化、結
晶粒の微細化効果を発揮させるための最小量である。し
かしC量が多過ぎると低温靭性、現地溶接性や耐サワー
性の著しい劣化を招くので、上限を0.10%とした。
Siは脱酸や強度向上のため添加する元素であるが、多
く添加すると現地溶接性、HAZ靭性を劣化させるの
で、上限を0.6%とした。鋼の脱酸はTiあるいはA
lのみでも十分であり、Siは必ずしも添加する必要は
ない。
Next, the reasons for limiting the constituent elements will be described. The lower limit of 0.05% of C is the minimum amount for ensuring the strength and low temperature toughness of the base material and the welded portion, and exerting the precipitation hardening effect by the addition of Nb and V and the refinement of crystal grains. However, if the C content is too large, the low temperature toughness, the field weldability and the sour resistance are significantly deteriorated, so the upper limit was made 0.10%.
Si is an element to be added for deoxidation and strength improvement, but if added in a large amount, it deteriorates the field weldability and HAZ toughness, so the upper limit was made 0.6%. Deoxidation of steel is Ti or A
Only 1 is sufficient, and Si does not necessarily have to be added.

【0019】Mnは強度、低温靭性を確保する上で不可
欠な元素であり、その下限は1.8%である。しかしM
nが多過ぎると鋼の焼入れ性が増加して現地溶接性、H
AZ靭性を劣化させるだけでなく、連続鋳造鋼片の中心
偏析を助長し、耐サワー性、低温靭性も劣化させるので
上限を2.5%とした。
Mn is an essential element for securing strength and low temperature toughness, and its lower limit is 1.8%. But M
If n is too large, the hardenability of steel will increase and the local weldability, H
The upper limit was set to 2.5% because it not only deteriorates the AZ toughness but also promotes the center segregation of the continuously cast steel pieces, and also deteriorates the sour resistance and the low temperature toughness.

【0020】Niを添加する目的は低炭素の本発明鋼の
強度を低温靭性や現地溶接性を劣化させることなく向上
させるためである。Ni添加はMnやCr,Mo添加に
比較して圧延組織(とくにスラブの中心偏析帯)中に低
温靭性、耐サワー性に有害な硬化組織を形成することが
少なく、強度を増加させることが判明した。しかし、添
加量が多過ぎると、経済性だけでなく、現地溶接性やH
AZ靭性などを劣化させるので、下限は0.1%、その
上限を1.0%とした。Niは連続鋳造時、熱間圧延時
におけるCuクラックの防止にも有効である。この場
合、NiはCu量の1/3以上添加する必要がある。
The purpose of adding Ni is to improve the strength of the low carbon steel of the present invention without deteriorating the low temperature toughness and field weldability. Compared with Mn, Cr, and Mo additions, it was found that Ni addition causes less formation of a hardened structure detrimental to low temperature toughness and sour resistance in the rolling structure (especially the central segregation zone of the slab) and increases strength. did. However, if the amount of addition is too large, not only economy but also local weldability and H
Since the AZ toughness is deteriorated, the lower limit is set to 0.1% and the upper limit is set to 1.0%. Ni is also effective in preventing Cu cracks during continuous casting and hot rolling. In this case, it is necessary to add Ni to 1/3 or more of the Cu amount.

【0021】Moを添加する理由は鋼の焼入れ性を向上
させるためである。またMoはNbと共存して制御圧延
時にオーステナイトの再結晶を強力に抑制し、オーステ
ナイト組織の微細化にも効果がある。このような効果を
得るためには、Moは最低0.35%必要である。しか
し過剰なMo添加はHAZ靭性、現地溶接性を劣化させ
るので、その上限を0.60%とした。
The reason for adding Mo is to improve the hardenability of steel. Further, Mo coexists with Nb to strongly suppress recrystallization of austenite during controlled rolling, and is also effective for refining the austenite structure. To obtain such an effect, Mo must be at least 0.35%. However, excessive addition of Mo deteriorates HAZ toughness and field weldability, so the upper limit was made 0.60%.

【0022】また本発明鋼では、必須の元素としてN
b:0.01〜0.10%、Ti:0.005〜0.0
30%を含有する。Nbは制御圧延において結晶粒の微
細化や析出硬化に寄与し、鋼を強靭化する作用を有す
る。しかしNbを0.10%以上添加すると、現地溶接
性やHAZ靭性に悪影響をもたらすので、その上限を
0.06%、下限を0.01%とした。またTi添加は
微細なTiNを形成し、スラブ再加熱時および溶接HA
Zのオーステナイト粒の粗大化を抑制してミクロ組織を
微細化し、母材およびHAZの低温靭性を改善する。こ
のようなTiNの効果を発現させるためには、最低0.
005%のTi添加が必要である。しかしTi量が多過
ぎると、TiNの粗大化やTiCによる析出硬化が生
じ、低温靭性が劣化するので、その上限は0.030%
に限定しなければならない。
In the steel of the present invention, N is an essential element.
b: 0.01 to 0.10%, Ti: 0.005 to 0.0
Contains 30%. Nb contributes to refinement of crystal grains and precipitation hardening in controlled rolling, and has an action of strengthening steel. However, if Nb is added in an amount of 0.10% or more, on-site weldability and HAZ toughness are adversely affected, so the upper limit was made 0.06% and the lower limit was made 0.01%. When Ti is added, fine TiN is formed, and when the slab is reheated and when welding HA
It suppresses coarsening of the austenite grains of Z to make the microstructure finer and improves the low temperature toughness of the base material and HAZ. In order to bring out such an effect of TiN, at least 0.
005% Ti addition is required. However, if the amount of Ti is too large, coarsening of TiN and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit is 0.030%.
Must be limited to.

【0023】Alは通常脱酸剤として鋼に含まれるが、
本発明では好ましくない元素である。Al量が0.00
4%を超えるとHAZでのM* の生成量が顕著となり、
HAZ靭性の劣化を招くので上限を0.004%とし
た。脱酸はTiあるいはSiでも可能であり、必ずしも
添加する必要はない。
Although Al is usually contained in steel as a deoxidizer,
It is an element that is not preferred in the present invention. Al amount is 0.00
If it exceeds 4%, the amount of M * produced in HAZ becomes remarkable,
Since the HAZ toughness is deteriorated, the upper limit was made 0.004%. Deoxidation is also possible with Ti or Si, and it is not always necessary to add it.

【0024】さらに本発明では、不純物元素であるP,
S,O量をそれぞれ、0.015%以下、0.001%
以下、0.003%以下とする。この主たる理由は母
材、HAZ靭性の低温靭性をより一層向上させるためで
ある。P量の低減は連続鋳造スラブの中心偏析を低減
し、粒界破壊を防止し低温靭性を向上させる。またS量
の低減は延伸化したMnSを低減して耐サワー性や延靭
性を向上させる効果がある。O量の低減は鋼中の酸化物
を少なくして、耐サワー性や低温靭性の改善に効果があ
る。したがってP,S,O量は低いほど好ましい。
Further, in the present invention, P, which is an impurity element,
S and O contents are 0.015% or less and 0.001%, respectively
Hereinafter, it will be 0.003% or less. The main reason for this is to further improve the low temperature toughness of the base material and HAZ toughness. Reduction of the amount of P reduces center segregation of the continuously cast slab, prevents intergranular fracture, and improves low temperature toughness. Further, the reduction of the amount of S has the effect of reducing the stretched MnS and improving the sour resistance and ductility. The reduction of the amount of O reduces the oxides in the steel and is effective in improving the sour resistance and the low temperature toughness. Therefore, the lower the amount of P, S, O, the more preferable.

【0025】NはTiNを形成してスラブ再加熱時およ
び溶接HAZのオーステナイト粒の粗大化を抑制して母
材、HAZの低温靭性を向上させる。このために必要な
最小量は0.001%である。しかし多過ぎるとスラブ
表面疵や固溶NによるHAZ靭性の劣化の原因となるの
で、その上限は0.006%に抑える必要がある。
N forms TiN and suppresses coarsening of austenite grains in the slab reheating and in the welded HAZ and improves the low temperature toughness of the base metal and HAZ. The minimum amount required for this is 0.001%. However, if it is too large, it may cause deterioration of the HAZ toughness due to slab surface defects and solid solution N, so the upper limit must be suppressed to 0.006%.

【0026】つぎにV,Cu,Cr,Caを添加する理
由について説明する。基本となる成分にさらにこれらの
元素を添加する主たる目的は本発明鋼の優れた特徴を損
なうことなく、製造可能な板厚の拡大や母材の強度・靭
性などの特性の向上を図るためである。したがって、そ
の添加量は自ら制限されるべき性質のものである。
Next, the reason for adding V, Cu, Cr and Ca will be explained. The main purpose of adding these elements to the basic composition is to increase the manufacturable plate thickness and improve the properties such as strength and toughness of the base metal without impairing the excellent characteristics of the steel of the present invention. is there. Therefore, the amount added is of a nature that should be limited by itself.

【0027】VはほぼNbと同様の効果を有するが、そ
の効果はNbに比較して格段に弱い。その下限は0.0
1%、上限は現地溶接性、HAZ靭性の点から0.10
%まで許容できる。CuはNiとほぼ同様な効果を持つ
とともに、耐食性、耐水素誘起割れ特性の向上にも効果
がある。またCu析出硬化によって強度を大幅に増加さ
せる。しかし過剰に添加すると析出硬化により母材、H
AZの靭性低下や熱間圧延時にCuクラックが生じるの
で、その上限を0.7%とした。
V has almost the same effect as Nb, but its effect is much weaker than that of Nb. The lower limit is 0.0
1%, the upper limit is 0.10 from the viewpoint of local weldability and HAZ toughness.
Permissible up to%. Cu has almost the same effect as Ni, and also has an effect of improving the corrosion resistance and the hydrogen-induced cracking resistance. Also, the strength is significantly increased by Cu precipitation hardening. However, if added excessively, the base metal, H
Since the toughness of AZ decreases and Cu cracks occur during hot rolling, the upper limit was set to 0.7%.

【0028】Crは母材、溶接部の強度を増加させる
が、多過ぎると現地溶接性やHAZ靭性を著しく劣化さ
せる。このためCr量の上限は0.8%、好ましくは
0.6%である。Cu,Cr量の下限0.1%はそれぞ
れの元素添加による材質上の効果が顕著になる最小量で
ある。Caは硫化物(MnS)の形態を制御し、低温靭
性を向上(シャルピー試験における吸収エネルギーの増
加など)させる。とくに衝撃試験でのセパレーションを
利用する本発明鋼ではシャルピー試験などの吸収エネル
ギーは低下する傾向にあるので、Caの添加は必須であ
る。しかしCa量が0.001%以下では実用上効果が
なく、また0.005%を超えて添加するとCaO−C
aSが大量に生成してクラスター、大型介在物となり、
鋼の清浄度を害するだけでなく、現地溶接性にも悪影響
をおよぼす。このためCa添加量を0.001〜0.0
05%に制限した。なお、超高強度鋼ではS,O量をそ
れぞれ0.001%、0.002%以下に低減しESS
P=(Ca)〔1−124(O)〕/125(S)を
0.5≦ESSP≦10.0とすることがとくに有効で
ある。
[0028] Cr increases the strength of the base material and the welded portion, but if it is too much, it deteriorates the field weldability and HAZ toughness remarkably. Therefore, the upper limit of the amount of Cr is 0.8%, preferably 0.6%. The lower limit of 0.1% of the amount of Cu and Cr is the minimum amount at which the effect on the material due to the addition of each element becomes remarkable. Ca controls the morphology of sulfide (MnS) and improves low temperature toughness (such as increase of absorbed energy in Charpy test). In particular, in the steel of the present invention utilizing the separation in the impact test, the absorbed energy in the Charpy test and the like tends to decrease, so that the addition of Ca is essential. However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it exceeds 0.005%, CaO-C is added.
A large amount of aS is generated to form clusters and large inclusions,
Not only does it impair the cleanliness of steel, but it also adversely affects the field weldability. Therefore, the amount of Ca added is 0.001 to 0.0.
Limited to 05%. In the case of ultra-high strength steel, the S and O contents were reduced to 0.001% and 0.002% or less, respectively.
It is particularly effective to set P = (Ca) [1-124 (O)] / 125 (S) to 0.5 ≦ ESSP ≦ 10.0.

【0029】以上の個々の添加元素の限定に加えて本発
明では、さらにP=2.7C+0.4Si+Mn+0.
8Cr+0.45(Ni+Cu)+Mo+V−1を1.
9≦P≦2.8に制限する。これはHAZ靭性、現地溶
接性を損なうことなく、目的とする強度・低温靭性バラ
ンスを達成するためである。P値の下限を1.9とした
のは950N/mm2 以上の強度と優れた低温靭性を得る
ためである。またP値の上限を2.8としたのは優れた
HAZ靭性、現地溶接性を維持するためである。
In addition to the above limitation of the individual additive elements, in the present invention, P = 2.7C + 0.4Si + Mn + 0.
8Cr + 0.45 (Ni + Cu) + Mo + V-1
It is limited to 9 ≦ P ≦ 2.8. This is to achieve the desired balance between strength and low temperature toughness without impairing HAZ toughness and field weldability. The lower limit of the P value is set to 1.9 in order to obtain a strength of 950 N / mm 2 or more and excellent low temperature toughness. The upper limit of the P value is set to 2.8 in order to maintain excellent HAZ toughness and field weldability.

【0030】[0030]

【実施例】転炉−連続鋳造法で種々の鋼成分の鋼片から
種々の製造法により鋼板を製造して、諸性質を調査し
た。機械的性質は圧延と直角方向で調査した。HAZ靭
性は入熱5kJ/mm相当の再現熱サイクルを付与して調査
した。実施例を表1に示す。本発明にしたがって製造し
た鋼板は優れた強度・低温靭性を有する。これに対して
比較鋼は化学成分または鋼板製造条件が適切でなく、い
ずれかの特性が劣る。
EXAMPLES Steel sheets were manufactured by various manufacturing methods from billets having various steel components by a converter-continuous casting method, and various properties were investigated. The mechanical properties were investigated in the direction perpendicular to rolling. HAZ toughness was investigated by applying a simulated heat cycle equivalent to a heat input of 5 kJ / mm. Examples are shown in Table 1. The steel sheet produced according to the present invention has excellent strength and low temperature toughness. On the other hand, the comparative steel is not suitable in terms of chemical composition or steel plate manufacturing conditions, and either characteristic is inferior.

【0031】鋼9はC量が多過ぎるため、低温靭性(シ
ャルピー吸収エネルギー、遷移温度)、HAZ靭性が悪
く、かつ溶接時の予熱温度も高い。鋼10はMn添加
量、P値が高過ぎるため、母材およびHAZ靭性が悪
く、かつ溶接時の予熱温度も著しく高い。鋼11はNb
が添加されていないため、Nb添加鋼よりもやや強度が
低く、シャルピー遷移温度が高く(強度・低温靭性バラ
ンスが悪い)、またHAZ靭性も悪い。
Steel 9 has an excessively large amount of C, so that it has poor low temperature toughness (Charpy absorbed energy, transition temperature) and HAZ toughness, and has a high preheating temperature during welding. Since the amount of Mn added and the P value of Steel 10 are too high, the base metal and HAZ toughness are poor, and the preheating temperature during welding is also extremely high. Steel 11 is Nb
Since it is not added, the strength is slightly lower than that of Nb-added steel, the Charpy transition temperature is high (the strength / low temperature toughness balance is poor), and the HAZ toughness is also poor.

【0032】鋼12はTiが添加されていないため、シ
ャルピー遷移温度が高く、HAZ靭性が劣る。鋼13は
Mo添加量が多過ぎるため、溶接時に予熱を必要とす
る。鋼14はMo量が少な過ぎるため、目標とする強度
が達成できない。鋼15はAl量が多過ぎるため、HA
Z靭性が悪い。鋼16は化学成分は適当であるが、製造
条件中の鋼片再加熱開始温度が高過ぎるため、シャルピ
ー遷移温度が高い。鋼17は鋼片の再加熱温度が低過ぎ
るため、溶体化が不十分で強度が低い。
Since Steel 12 contains no Ti, it has a high Charpy transition temperature and is inferior in HAZ toughness. Steel 13 requires preheating at the time of welding because it contains too much Mo. Steel 14 does not achieve the target strength because the Mo content is too small. Steel 15 has too much Al, so HA
Z toughness is poor. Steel 16 has an appropriate chemical composition, but has a high Charpy transition temperature because the reheating start temperature of the billet in the manufacturing conditions is too high. Since the reheating temperature of the steel slab is too low, steel 17 is insufficient in solution treatment and has low strength.

【0033】鋼18は900℃以下の累積圧下量が少な
過ぎるため、低温靭性が今一歩である。鋼19はオース
テナイト−フェライト2相域での累積圧下量が少な過ぎ
るため、シャルピー遷移温度が高い。鋼20は2相域で
の累積圧下量が多過ぎるため、かえって低温靭性が劣化
している。鋼21は2相域での圧延がなく圧延終了温度
が高過ぎるため、低温靭性が劣る。鋼22は圧延終了温
度が低過ぎるため、低温靭性が劣る。鋼23は水冷停止
温度が高過ぎるため強度が低い。鋼24は焼戻し温度が
高過ぎるため強度が低い。鋼25は焼戻し温度が低過ぎ
るため低温靭性が悪い。
Steel 18 has too little cumulative reduction below 900 ° C., so low temperature toughness is a step ahead. Steel 19 has a high Charpy transition temperature because the cumulative rolling reduction in the austenite-ferrite two-phase region is too small. Steel 20 has an excessively large amount of rolling reduction in the two-phase region, so that the low temperature toughness is rather deteriorated. Steel 21 is not rolled in the two-phase region and the rolling end temperature is too high, so the low temperature toughness is poor. Steel 22 has an inferior low temperature toughness because the rolling end temperature is too low. Steel 23 has low strength because the water cooling stop temperature is too high. Steel 24 has a low strength because the tempering temperature is too high. Steel 25 has a low tempering temperature, so the low temperature toughness is poor.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】本発明により低温靭性、現地溶接性が優
れた超高強度ラインパイプ(API規格X100超)の
鋼板が安定して製造できるようになった。その結果、パ
イプラインの安全性が著しく向上するとともに、パイプ
ラインの施工能率、輸送効率の飛躍的な向上が可能とな
った。
Industrial Applicability According to the present invention, it becomes possible to stably manufacture a steel plate of an ultra high strength line pipe (API standard X100 or more) excellent in low temperature toughness and field weldability. As a result, the safety of the pipeline was significantly improved, and the construction efficiency and transportation efficiency of the pipeline were dramatically improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/58 C22C 38/58 (72)発明者 原 卓也 富津市新富20−1 新日本製鐵株式会社技 術開発本部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location C22C 38/58 C22C 38/58 (72) Inventor Takuya Hara 20-1 Shintomi, Futtsu-shi Nippon Steel Technology Development Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.05〜0.10%、 Si:0.6%以下、 Mn:1.8〜2.5%、 P :0.015%以下、 S :0.001%以下、 Ni:0.1〜1.0%、 Mo:0.35〜0.60%、 Nb:0.01〜0.10%、 Ti:0.005〜0.030%、 Al:0.004%以下、 N :0.001〜0.006%、 O :0.003%以下を含有し、残部が鉄および不可
避的不純物からなり、下記の式で定義されるP値が1.
9〜2.8の範囲にある鋼片を950〜1200℃の温
度に再加熱後、900℃以下の累積圧下量が70%以
上、かつAr3 点〜Ar1 点のフェライト・オーステナ
イト2相域の累積圧下量が15〜35%で圧延終了温度
が680〜820℃となるように圧延を行い、その後1
0℃/秒以上の冷却速度で400℃以下の任意の温度ま
で冷却し、400〜650℃の温度で焼戻し処理するこ
とを特徴とする溶接部靭性の優れたMo添加超高強度鋼
管用鋼板の製造方法。 P= 2.7C+ 0.4Si+Mn+ 0.8Cr+0.45(Ni+
Cu)+Mo+V−1
1. By weight%, C: 0.05 to 0.10%, Si: 0.6% or less, Mn: 1.8 to 2.5%, P: 0.015% or less, S: 0 0.001% or less, Ni: 0.1 to 1.0%, Mo: 0.35 to 0.60%, Nb: 0.01 to 0.10%, Ti: 0.005 to 0.030%, Al : 0.004% or less, N: 0.001 to 0.006%, O: 0.003% or less, the balance consisting of iron and unavoidable impurities, and the P value defined by the following formula is 1 .
After reheating a steel slab in the range of 9 to 2.8 to a temperature of 950 to 1200 ° C, a ferrite / austenite two-phase region in which the cumulative reduction amount of 900 ° C or less is 70% or more and Ar 3 point to Ar 1 point Rolling is performed so that the cumulative reduction amount of 15 to 35% and the rolling end temperature become 680 to 820 ° C., and then 1
Of a steel plate for Mo-added ultra-high strength steel pipe having excellent weld toughness, characterized by cooling to an arbitrary temperature of 400 ° C. or lower at a cooling rate of 0 ° C./second or more and tempering at a temperature of 400 to 650 ° C. Production method. P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni +
Cu) + Mo + V-1
【請求項2】 重量%で、 C :0.05〜0.10%、 Si:0.6%以下、 Mn:1.8〜2.5%、 P :0.015%以下、 S :0.001%以下、 Ni:0.1〜1.0%、 Mo:0.35〜0.60%、 Nb:0.01〜0.10%、 Ti:0.005〜0.030%、 Al:0.004%以下、 N :0.001〜0.006%、 O :0.003%以下に必要に応じて、 V :0.01〜0.10%、 Cu:0.1〜0.7%、 Cr:0.1〜0.8%、 Ca:0.001〜0.005%の一種または二種以上
を含有し、残部が鉄および不可避的不純物からなり、下
記の式で定義されるP値が1.9〜2.8の範囲にある
鋼片を950〜1200℃の温度に再加熱後、900℃
以下の累積圧下量が70%以上、かつAr3 点〜Ar1
点のフェライト・オーステナイト2相域の累積圧下量が
15〜35%で圧延終了温度が680〜820℃となる
ように圧延を行い、その後10℃/秒以上の冷却速度で
400℃以下の任意の温度まで冷却し、400〜650
℃の温度で焼戻し処理することを特徴とする溶接部靭性
の優れたMo添加超高強度鋼管用鋼板の製造方法。 P= 2.7C+ 0.4Si+Mn+ 0.8Cr+0.45(Ni+
Cu)+Mo+V−1
2. By weight%, C: 0.05 to 0.10%, Si: 0.6% or less, Mn: 1.8 to 2.5%, P: 0.015% or less, S: 0 0.001% or less, Ni: 0.1 to 1.0%, Mo: 0.35 to 0.60%, Nb: 0.01 to 0.10%, Ti: 0.005 to 0.030%, Al : 0.004% or less, N: 0.001 to 0.006%, O: 0.003% or less, if necessary, V: 0.01 to 0.10%, Cu: 0.1 to 0. 7%, Cr: 0.1 to 0.8%, Ca: 0.001 to 0.005%, containing one or more kinds, and the balance consisting of iron and inevitable impurities, defined by the following formula. After reheating a steel slab having a P value in the range of 1.9 to 2.8 to a temperature of 950 to 1200 ° C, 900 ° C
The following cumulative reduction amount is 70% or more, and Ar 3 points to Ar 1
Rolling is performed so that the cumulative reduction amount of the ferrite-austenite two-phase region at the point is 15 to 35% and the rolling end temperature is 680 to 820 ° C, and then at any cooling rate of 400 ° C or less at a cooling rate of 10 ° C / sec or more. Cool to temperature, 400-650
A method for producing a steel sheet for ultrahigh-strength Mo-added steel pipe with excellent weld toughness, characterized by performing tempering at a temperature of ° C. P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni +
Cu) + Mo + V-1
JP7072725A 1995-02-03 1995-03-30 Production of steel plate for mo-added ultrahigh strength steel tube excellent in toughness in weld zone Withdrawn JPH08269545A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP7072725A JPH08269545A (en) 1995-03-30 1995-03-30 Production of steel plate for mo-added ultrahigh strength steel tube excellent in toughness in weld zone
CN96190145A CN1148416A (en) 1995-02-03 1996-01-26 High strength line-pipe steel having low-yield ratio and excullent low-temp toughness
CA002187028A CA2187028C (en) 1995-02-03 1996-01-26 High strength line pipe steel having low yield ratio and excellent low temperature toughness
EP96901131A EP0757113B1 (en) 1995-02-03 1996-01-26 High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
DE69607702T DE69607702T2 (en) 1995-02-03 1996-01-26 High-strength conduit steel with a low yield strength-tensile strength ratio and excellent low-temperature toughness
PCT/JP1996/000157 WO1996023909A1 (en) 1995-02-03 1996-01-26 High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
AU44966/96A AU677540B2 (en) 1995-02-03 1996-01-26 High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
KR1019960705573A KR100222302B1 (en) 1995-02-03 1996-01-26 High strength line pipe steel having low yield ratio and excellent low temperature
US08/718,567 US5755895A (en) 1995-02-03 1996-01-26 High strength line pipe steel having low yield ratio and excellent in low temperature toughness
NO964182A NO964182L (en) 1995-02-03 1996-10-02 Pipeline steel with high strength, low flow ratio and excellent toughness at low temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7072725A JPH08269545A (en) 1995-03-30 1995-03-30 Production of steel plate for mo-added ultrahigh strength steel tube excellent in toughness in weld zone

Publications (1)

Publication Number Publication Date
JPH08269545A true JPH08269545A (en) 1996-10-15

Family

ID=13497629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7072725A Withdrawn JPH08269545A (en) 1995-02-03 1995-03-30 Production of steel plate for mo-added ultrahigh strength steel tube excellent in toughness in weld zone

Country Status (1)

Country Link
JP (1) JPH08269545A (en)

Similar Documents

Publication Publication Date Title
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JPWO2013100106A1 (en) High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JPH1136042A (en) High tensile strength steel excellent in arrestability and weldability and its production
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3258207B2 (en) Ultra high strength steel with excellent low temperature toughness
JPH10298707A (en) High toughness and high tensile strength steel and its production
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JP2007131925A (en) STEEL SHEET FOR HIGH STRENGTH LINE PIPE HAVING LOW TEMPERATURE TOUGHNESS AND HAVING TENSILE STRENGTH IN CLASS OF &gt;=900 MPa, LINE PIPE USING THE SAME AND METHOD FOR PRODUCING THEM
JP3262972B2 (en) Weldable high strength steel with low yield ratio and excellent low temperature toughness
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JPH08311549A (en) Production of ultrahigh strength steel pipe
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JPH08311550A (en) Production of steel sheet for ultrahigh strength steel pipe
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness
JPH059575A (en) Production of high streangth steel plate excellent in corrosion resistance
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604