JPH0826734A - Magnetic ca-v garnet oxide powder - Google Patents

Magnetic ca-v garnet oxide powder

Info

Publication number
JPH0826734A
JPH0826734A JP6186624A JP18662494A JPH0826734A JP H0826734 A JPH0826734 A JP H0826734A JP 6186624 A JP6186624 A JP 6186624A JP 18662494 A JP18662494 A JP 18662494A JP H0826734 A JPH0826734 A JP H0826734A
Authority
JP
Japan
Prior art keywords
powder
oxide powder
garnet oxide
magnetic garnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6186624A
Other languages
Japanese (ja)
Inventor
Tadahiko Horiguchi
忠彦 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6186624A priority Critical patent/JPH0826734A/en
Publication of JPH0826734A publication Critical patent/JPH0826734A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnetic Ca-V garnet oxide powder in the form of fine particles having a sharp particle diameter distribution by forming magnetic Ca-V garnet oxide powder consisting of prescribed elements under specified conditions. CONSTITUTION:A soln. prepd. by dissolving a complex of nitrates of Ca, Fe, V and R (R is one or more kinds of rare earth elements including Y) with an amino acid in a solvent such as water is heated at a temp. above the b.p. of the solvent to obtain the objective magnetic Ca-V garnet oxide powder consisting essentially of Fe, Ca, V and R and having <=0.5mum average particle diameter and an anisotropic shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Ca−V系磁性ガーネ
ットの原料となる高純度で、組成が均一で、かつ微細粒
径のCa−V系磁性ガーネット酸化物粉末とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ca-V magnetic garnet oxide powder having a high purity, a uniform composition and a fine particle size, which is a raw material for a Ca-V magnetic garnet, and a method for producing the same.

【0002】[0002]

【従来の技術】以前より、Ca−V系磁性ガーネット材
料はマイクロ波アイソレータ用材料として用いられてい
る。このアイソレータ用の材料としては低磁界損失が小
さく、飽和磁化の小さいことが要求されるが、Ca−V
系磁性ガーネット材料はこれらの条件を満たす優れた材
料である。ところで、従来のCa−V系磁性ガーネット
酸化物粉末の製造には、一般的な粉末冶金による固相反
応を利用した製法や共沈法が用いられてきた。
2. Description of the Related Art Ca-V based magnetic garnet materials have been used as materials for microwave isolators. As a material for this isolator, low magnetic field loss and small saturation magnetization are required.
The magnetic garnet material is an excellent material that satisfies these conditions. By the way, in the conventional production of Ca-V based magnetic garnet oxide powder, a production method utilizing a solid phase reaction by general powder metallurgy and a coprecipitation method have been used.

【0003】前者においては、Ca−V系磁性ガーネッ
トの構成元素であるFe、Ca、V、および希土類元素
(但し、Yを含む)等の酸化物粉末を目標組成になるよ
うに秤量し、湿式もしくは乾式で混合し、乾燥、熱処理
を施して製造する。
In the former case, oxide powders such as Fe, Ca, V, which are the constituent elements of the Ca-V magnetic garnet, and rare earth elements (including Y) are weighed so as to have a target composition, and wet. Alternatively, it is produced by dry-mixing, drying and heat treatment.

【0004】又、共沈法においては、目標の組成になる
ように調整した硝酸塩混合水溶液に、アンモニア水等の
アルカリ溶液をPHが9〜11前後になるように加え、
共沈澱物を得る。この共沈澱物を蒸留水等で充分に洗浄
し、遠心分離機等により脱水した後、乾燥し、500〜
700℃で熱処理して磁性ガーネット粉末を製造する。
Further, in the coprecipitation method, an alkaline solution such as ammonia water is added to a nitrate mixed aqueous solution adjusted to have a target composition so that the pH is about 9 to 11,
A coprecipitate is obtained. The coprecipitate is thoroughly washed with distilled water or the like, dehydrated by a centrifuge or the like, and then dried to obtain 500-
A magnetic garnet powder is manufactured by heat treatment at 700 ° C.

【0005】[0005]

【発明が解決しようとする課題】従来の一般的な粉末冶
金法により、Ca−V系磁性ガーネット酸化物粉末を製
造しようとする場合、Fe、Ca、V、および希土類元
素(但し、Yを含む)の酸化物原料粉末を均一に混合す
ることは非常に難しく、分散剤を溶媒に加えて粉末同志
の凝集を防ぎながら長時間混合しなければならない。長
時間混合する場合には、外部やボールミル装置等から不
純物が混入する可能性があり、製造工程の管理が難し
い。又長時間混合することはコストアップにもつなが
る。特に湿式混合の場合では、脱水、乾燥の工程を経た
後、熱処理を施さなければならないため非常に手間がか
かりコスト高の要因となっている。
When a Ca-V type magnetic garnet oxide powder is to be manufactured by a conventional general powder metallurgy method, Fe, Ca, V, and a rare earth element (provided that Y is included). It is very difficult to uniformly mix the oxide raw material powders in 1), and it is necessary to add a dispersant to the solvent and mix them for a long time while preventing the powders from coagulating. When mixing for a long time, impurities may be mixed in from the outside or a ball mill device, which makes it difficult to control the manufacturing process. Also, mixing for a long time leads to an increase in cost. Particularly in the case of wet mixing, heat treatment must be performed after the steps of dehydration and drying, which is very troublesome and causes a cost increase.

【0006】又、一般的な粉末冶金による製造方法にお
いては、熱処理の段階における反応が固相反応であるた
め、均一に構成元素同志を反応させることは非常に困難
で、均一な組成のCa−V系磁性ガーネット酸化物粉末
を得ることは難しい。
Further, in a general method of manufacturing by powder metallurgy, since the reaction in the stage of heat treatment is a solid phase reaction, it is very difficult to uniformly react the constituent elements, and Ca- having a uniform composition is used. It is difficult to obtain a V-based magnetic garnet oxide powder.

【0007】一方、共沈法の場合には、組成の均一な粉
末は得られるが、反応に時間がかかるため量産に適して
いない。
On the other hand, in the case of the coprecipitation method, a powder having a uniform composition can be obtained, but the reaction takes time, which is not suitable for mass production.

【0008】近年、積層タイプのアイソレータへの応用
が考えられており、平均粒径0.5μm以下でかつ粒度
分布の狭いCa−V系磁性ガーネット酸化物粉末の要求
が高まってきている。しかし、粉末冶金的な製造方法で
は、出発原料の粉末の平均粒径が既に0.5μm以上あ
り、更に、熱処理を施すため粒成長を引き起こし、この
要求に応えることができない。一方、共沈法によっても
500〜700℃で熱処理を施さねばならず、この熱処
理により粒成長が進み、上記の要求を満たすことができ
ない。従って、粒径が大きいことから、固相反応を完結
するためには、焼成温度が1300℃以上となり、層状
の磁性粉末と導体との一体焼成を可能とするためには、
内部導体あるいは電極は、融点の高いPd系合金を使わ
なければならず、低コスト化のためにも焼成温度の低下
が可能なCa−V系磁性ガーネット酸化物粉末が望まれ
ている。
In recent years, application to a laminated type isolator has been considered, and there is an increasing demand for Ca-V type magnetic garnet oxide powder having an average particle size of 0.5 μm or less and a narrow particle size distribution. However, in the powder metallurgical manufacturing method, the average particle diameter of the powder of the starting material is already 0.5 μm or more, and further, heat treatment is performed, so that grain growth is caused, and this requirement cannot be met. On the other hand, the coprecipitation method also requires heat treatment at 500 to 700 [deg.] C., and this heat treatment promotes grain growth, so that the above requirements cannot be satisfied. Therefore, since the particle size is large, in order to complete the solid phase reaction, the firing temperature is 1300 ° C. or higher, and in order to enable the layered magnetic powder and the conductor to be fired integrally,
A Pd-based alloy having a high melting point must be used for the internal conductor or the electrode, and a Ca-V-based magnetic garnet oxide powder capable of lowering the firing temperature is desired for cost reduction.

【0009】又、積層タイプのアイソレータを作製する
場合、層状の磁性層を形成するのに、Ca−V系磁性ガ
ーネット酸化物粉末の粒子形状は、異方的なものが望ま
しい。しかし、粉末冶金法、共沈法、いずれの製法によ
っても異方的な形状を有する粉末粒子を得ることができ
ない。
Further, in the case of manufacturing a laminated type isolator, it is desirable that the particle shape of the Ca-V type magnetic garnet oxide powder is anisotropic in order to form a layered magnetic layer. However, powder particles having an anisotropic shape cannot be obtained by any of the powder metallurgy method and the coprecipitation method.

【0010】従って、本発明の技術的課題は、従来の粉
末冶金法、あるいは共沈法等の製法で得られた粉末より
も微粒で、粒度が揃っており、かつ異方的な形状を有す
るCa−V系磁性ガーネット酸化物粉末、およびその製
法を供するものである。
Therefore, the technical problem of the present invention is that the powder obtained is finer than the powder obtained by the conventional powder metallurgical method or the coprecipitation method, and has a uniform particle size and an anisotropic shape. The present invention provides a Ca-V based magnetic garnet oxide powder and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】Fe、Ca、V、および
Yを含む希土類元素の少なくとも1種(R)からなる磁
性ガーネット酸化物粉末において、Ca、Fe、V、お
よびRの硝酸塩とアミノ酸との錯体の溶液を溶媒の沸点
以上の温度で加熱して得られたCa−V系磁性ガーネッ
ト酸化物粉末は、積層タイプのアイソレータにも適用可
能な磁性粉末である。
In a magnetic garnet oxide powder composed of at least one rare earth element (R) containing Fe, Ca, V and Y, a nitrate of Ca, Fe, V and R and an amino acid are added. The Ca-V based magnetic garnet oxide powder obtained by heating the solution of the complex of above at a temperature not lower than the boiling point of the solvent is a magnetic powder applicable to a laminated type isolator.

【0012】[0012]

【作用】Ca−V系磁性ガーネット酸化物粉末の構成元
素の硝酸塩とアミノ酸との錯体の溶液を、その溶媒の沸
点以上の温度で加熱すると、自己燃焼反応が起こり、組
成の均一なCa−V系磁性ガーネット酸化物粉末が得ら
れる。この反応は非常に速やかに起こるため、量産性が
高い。更に、反応が瞬時に進むことから粒成長が起こら
ないため、平均粒径が0.5μm以下で粒度分布の幅の
狭いCa−V系磁性ガーネット酸化物粉末を製造するこ
とができる。
When a solution of the complex of nitrate of the constituent elements of the Ca-V type magnetic garnet oxide powder and an amino acid is heated at a temperature higher than the boiling point of the solvent, a self-combustion reaction occurs and Ca-V having a uniform composition is produced. A magnetic garnet oxide powder is obtained. Since this reaction occurs very quickly, mass productivity is high. Furthermore, since the reaction proceeds instantaneously and grain growth does not occur, it is possible to produce a Ca—V magnetic garnet oxide powder having an average grain size of 0.5 μm or less and a narrow grain size distribution.

【0013】又、現在の所、技術的な根拠は不明ではあ
るが、異方的な形状の粉末の製造が可能である。
At present, although the technical basis is unknown, it is possible to manufacture an anisotropically shaped powder.

【0014】更に、本発明により製造された粉末を基板
に塗布した後、熱処理することにより、Ca−V系磁性
ガーネットの厚膜の製造が可能である。
Furthermore, a thick film of Ca-V type magnetic garnet can be manufactured by applying the powder manufactured by the present invention to a substrate and then heat treating it.

【0015】[0015]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0016】(実施例1)Ca、V、Y、Feの硝酸塩
を組成が(Ca1.41.6)(Fe1/32/351 2とな
るように秤量し、純水中に溶解させ、その溶液中にアミ
ノ酸を15wt%となるように添加し、よく混合した。
次に、この溶液を300℃に加熱し、水分を蒸発させ
た。水分蒸発後、溶液の残留物は自己燃焼反応を起こ
し、Ca−V系磁性ガーネット酸化物粉末を得た。
[0016] (Example 1) Ca, V, Y, nitrate composition of Fe (Ca 1.4 Y 1.6) (Fe 1/3 V 2/3) 5 O 1 2 and were weighed so as to, pure water Was dissolved in, and the amino acid was added to the solution so as to be 15 wt%, and mixed well.
Next, this solution was heated to 300 ° C. to evaporate water. After evaporation of water, the residue of the solution caused a self-combustion reaction to obtain a Ca-V based magnetic garnet oxide powder.

【0017】(比較例1)比較例としての共沈法による
粉末の製造は、次のように行った。組成が(Ca1.4
1.6)(Fe1/32/3512となるように調整したC
a、Y、V、Feの硝酸塩を純水に溶解し、これにアン
モニア水を混入し、共沈澱物を得た。最終的な溶液のP
Hは、10.7であった。この沈澱物を500〜700
℃で1時間熱処理することにより、粉末を得た。
Comparative Example 1 The production of powder by the coprecipitation method as a comparative example was carried out as follows. The composition is (Ca 1.4 Y
1.6 ) C adjusted to be (Fe 1/3 V 2/3 ) 5 O 12
The nitrates of a, Y, V, and Fe were dissolved in pure water, and ammonia water was mixed therein to obtain a coprecipitate. P of final solution
H was 10.7. 500-700 of this precipitate
The powder was obtained by heat-treating at 1 degreeC for 1 hour.

【0018】(比較例2)比較例としての通常の粉末冶
金法による粉末の製造方法は、次の通りである。原料と
しては、CaO、V23、Y23、Fe23の粉末を
(Ca1.41.6)(Fe1/32/3512となるように
秤量し、純水中で40時間エンプラ製のボールミルで混
合し、脱水、乾燥させた後、700℃で熱処理して粉末
を得た。
(Comparative Example 2) As a comparative example, a method for producing powder by a usual powder metallurgy method is as follows. As raw materials, powders of CaO, V 2 O 3 , Y 2 O 3 , and Fe 2 O 3 were weighed so as to be (Ca 1.4 Y 1.6 ) (Fe 1/3 V 2/3 ) 5 O 12, and then pure. The mixture was mixed in water for 40 hours with an engineering plastic ball mill, dehydrated and dried, and then heat-treated at 700 ° C. to obtain a powder.

【0019】図1に、本発明により製造されたCa−V
系磁性ガーネット酸化物粉末の粒度分布と、比較例とし
て、従来の製造方法により製造されたCa−V系磁性ガ
ーネット酸化物粉末の粒度分布を示す。図中(1)は、
本発明より製造された粉末の粒度分布であり、(2)
は、比較例として共沈法により製造された粉末の粒度分
布、(3)は、比較例として従来の粉末冶金法により製
造された粉末の粒度分布である。
FIG. 1 shows the Ca-V produced according to the present invention.
The particle size distribution of the system magnetic garnet oxide powder and the particle size distribution of the Ca-V system magnetic garnet oxide powder manufactured by the conventional manufacturing method are shown as a comparative example. (1) in the figure
2 is a particle size distribution of the powder produced by the present invention, (2)
Is a particle size distribution of the powder produced by the coprecipitation method as a comparative example, and (3) is a particle size distribution of the powder produced by the conventional powder metallurgy method as a comparative example.

【0020】この結果からわかるように、本発明によれ
ば、従来の方法に比べて、粒度分布の幅が狭く、平均粒
径の小さな粉末が得られる。
As can be seen from these results, according to the present invention, a powder having a narrow particle size distribution and a small average particle size can be obtained as compared with the conventional method.

【0021】(実施例2)V、Y、Ca、Feの硝酸塩
を組成が[(Ca3/41/43(Fe2/31/3512
となるように秤量し、純水に溶解し、その溶液中にアミ
ノ酸を15wt%添加し、よく混合した。次に、この溶
液を300℃に加熱し、水分を蒸発させた。水分蒸発
後、溶液の残留物は自己燃焼反応を起こし、Ca−V系
磁性ガーネット酸化物粉末を得た。
(Example 2) V, Y, Ca, and Fe nitrates having a composition of [(Ca 3/4 Y 1/4 ) 3 (Fe 2/3 V 1/3 ) 5 O 12 ].
Were weighed so as to obtain the following, dissolved in pure water, and 15 wt% of amino acid was added to the solution and mixed well. Next, this solution was heated to 300 ° C. to evaporate water. After evaporation of water, the residue of the solution caused a self-combustion reaction to obtain a Ca-V based magnetic garnet oxide powder.

【0022】(比較例3)比較例としての共沈法による
粉末の製造は、次のように行った。Y、Ca、Fe、V
の硝酸塩を(Ca3/41/43(Fe2/31/3512
なるように秤量し、純水に溶解し、これにアンモニア水
を混入し、共沈澱物を得た。最終的な溶液のPHは1
0.7であった。この沈澱物を500〜700℃で1時
間熱処理することにより、粉末を得た。
(Comparative Example 3) The production of powder by the coprecipitation method as a comparative example was carried out as follows. Y, Ca, Fe, V
Of nitrate of (Ca 3/4 Y 1/4 ) 3 (Fe 2/3 V 1/3 ) 5 O 12 was weighed, dissolved in pure water, mixed with ammonia water, and coprecipitated. I got a thing. PH of the final solution is 1
It was 0.7. This precipitate was heat-treated at 500 to 700 ° C. for 1 hour to obtain a powder.

【0023】(比較例4)比較例として、実施例2と同
一組成のCa−V系磁性ガーネット酸化物粉末を、比較
例2と同様な粉末治金法によって得た。
(Comparative Example 4) As a comparative example, a Ca-V type magnetic garnet oxide powder having the same composition as in Example 2 was obtained by the same powder metallurgy method as in Comparative Example 2.

【0024】これらの粉末をプレス成形して、1200
〜1300℃で焼成し、焼結体の相対密度を測定した結
果を図2に示す。図2において、縦軸に相対密度
(%)、横軸に焼結温度(℃)を示している。(4)は
本発明の粉末によるもの、(5)は比較例であって共沈
法によって作製された粉末によるもの、(6)も比較例
であって粉末冶金方法により作製された粉末によるもの
である。
These powders were pressed into 1200
FIG. 2 shows the result of measuring the relative density of the sintered body by firing at ˜1300 ° C. In FIG. 2, the vertical axis shows the relative density (%) and the horizontal axis shows the sintering temperature (° C.). (4) is based on the powder of the present invention, (5) is based on the powder prepared by the coprecipitation method as a comparative example, and (6) is also based on the powder manufactured by the powder metallurgy method as a comparative example. Is.

【0025】図2からわかるように、本発明の方法によ
る粉末を使用したものは、従来の製法による粉末を使用
したものに比べて、低温で相対密度の高い焼結体が得ら
れることがわかる。
As can be seen from FIG. 2, the one using the powder according to the present invention can obtain a sintered body having a high relative density at a low temperature, as compared with the one using the powder according to the conventional manufacturing method. .

【0026】更に、図3に、本発明および従来のCa−
V系磁性ガーネット酸化物粉末の形状を比較して示す。
縦軸は相対頻度を、横軸は粉体のSEM像より2次元的
な解析により粉体の慣性モーメントを求め、それに相当
する楕円の短軸/長軸の比を示している。なお、粉末試
料は、実施例2および比較例3によるものを使用した。
Furthermore, FIG.
The shapes of V-based magnetic garnet oxide powders are shown for comparison.
The vertical axis shows the relative frequency, and the horizontal axis shows the moment of inertia of the powder by two-dimensional analysis from the SEM image of the powder, and shows the minor axis / major axis ratio of the ellipse corresponding thereto. The powder samples used in Example 2 and Comparative Example 3 were used.

【0027】図3からわかるように、本発明によれば従
来の共沈法に比べて短軸/長軸の比が小さい異方的な粉
末が得られている。
As can be seen from FIG. 3, according to the present invention, an anisotropic powder having a smaller minor axis / major axis ratio than the conventional coprecipitation method is obtained.

【0028】[0028]

【発明の効果】本発明によれば、従来の共沈法等の製造
方法に比べて、微粒で粒度が揃っており、異方的な形状
の粉末が得られる。又、得られた粉末を用いて焼結すれ
ば、従来法よりも低い温度でCa−V系磁性ガーネット
が得られる。
EFFECTS OF THE INVENTION According to the present invention, as compared with the conventional manufacturing method such as the coprecipitation method, an anisotropically shaped powder having fine particles and a uniform particle size can be obtained. If the obtained powder is sintered, a Ca-V type magnetic garnet can be obtained at a lower temperature than the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】組成が(Ca1.41.6)(Fe1/32/35
12で示される本発明によるCa−V系磁性ガーネット酸
化物粉末と、従来法による粉末との粒度分布を比較して
示す特性図。
1] The composition is (Ca 1.4 Y 1.6 ) (Fe 1/3 V 2/3 ) 5 O
The characteristic view which compares and shows the particle size distribution of the Ca-V type | system | group magnetic garnet oxide powder by this invention shown by 12 and the powder by the conventional method.

【図2】組成が(Ca3/41/43(V1/3Fe2/35
12で示される本発明によるCa−V系磁性ガーネット酸
化物粉末、および従来法による粉末を使用して作製した
焼結体の相対密度の焼結温度依存性を比較して示す特性
図。
[Fig. 2] Composition (Ca 3/4 Y 1/4 ) 3 (V 1/3 Fe 2/3 ) 5 O
12 is a characteristic diagram showing a comparison of the sintering temperature dependence of the relative density of a sintered body produced by using the Ca—V based magnetic garnet oxide powder according to the present invention shown by 12 and the powder according to the conventional method.

【図3】本発明および従来法によるCa−V系磁性ガー
ネット酸化物粉末の形状の解析結果を比較して示した特
性図。
FIG. 3 is a characteristic diagram showing comparison of analysis results of the shapes of Ca—V magnetic garnet oxide powders according to the present invention and the conventional method.

【符号の説明】[Explanation of symbols]

(1) 本発明の方法によって得られた粉末(実施例
1) (2) 共沈法によって得られた粉末(比較例1) (3) 粉末治金的な方法によって得られた粉末(比
較例2) (4) 本発明の方法によって得られた粉末(実施例
2) (5) 共沈法によって得られた粉末(比較例3) (6) 粉末冶金的な方法によって得られた粉末(比
較例4)
(1) Powder obtained by the method of the present invention (Example 1) (2) Powder obtained by coprecipitation method (Comparative example 1) (3) Powder obtained by powder metallurgical method (Comparative example) 2) (4) Powder obtained by the method of the present invention (Example 2) (5) Powder obtained by coprecipitation method (Comparative Example 3) (6) Powder obtained by powder metallurgical method (Comparison Example 4)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄(Fe)、カルシウム(Ca)、バナ
ジウム(V)、およびR(ここでRはイットリウムを含
む希土類元素のうち少なくとも1種)からなるCa−V
系磁性ガーネット酸化物粉末において、Ca、Fe、
V、およびRの硝酸塩とアミノ酸との錯体の溶液を、そ
の溶媒の沸点以上の温度で加熱して得られた、平均粒径
が0.5μm以下で、異方的な形状を有する粉末である
ことを特徴とするCa−V系磁性ガーネット酸化物粉
末。
1. A Ca-V composed of iron (Fe), calcium (Ca), vanadium (V), and R (where R is at least one of rare earth elements including yttrium).
In the system-based magnetic garnet oxide powder, Ca, Fe,
A powder having an anisotropic shape and having an average particle size of 0.5 μm or less, which is obtained by heating a solution of a complex of nitrate of V and R and an amino acid at a temperature higher than the boiling point of the solvent. Ca-V type magnetic garnet oxide powder characterized by the above.
JP6186624A 1994-07-15 1994-07-15 Magnetic ca-v garnet oxide powder Withdrawn JPH0826734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6186624A JPH0826734A (en) 1994-07-15 1994-07-15 Magnetic ca-v garnet oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6186624A JPH0826734A (en) 1994-07-15 1994-07-15 Magnetic ca-v garnet oxide powder

Publications (1)

Publication Number Publication Date
JPH0826734A true JPH0826734A (en) 1996-01-30

Family

ID=16191842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6186624A Withdrawn JPH0826734A (en) 1994-07-15 1994-07-15 Magnetic ca-v garnet oxide powder

Country Status (1)

Country Link
JP (1) JPH0826734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139050A (en) * 2003-11-10 2005-06-02 Toda Kogyo Corp Ferrite magnetic powder and resin composition for semiconductor sealing, containing ferrite magnetic powder
CN105087924A (en) * 2015-10-11 2015-11-25 江西理工大学 Auxiliary leaching agent used for reinforced leaching of ion-type rare earth ores and leaching method thereof
CN105427995A (en) * 2015-12-21 2016-03-23 浙江凯文磁业有限公司 Preparation method for improving NdFeB (neodymium iron boron) coercivity by organic heavy rare earth complex

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139050A (en) * 2003-11-10 2005-06-02 Toda Kogyo Corp Ferrite magnetic powder and resin composition for semiconductor sealing, containing ferrite magnetic powder
CN105087924A (en) * 2015-10-11 2015-11-25 江西理工大学 Auxiliary leaching agent used for reinforced leaching of ion-type rare earth ores and leaching method thereof
CN105427995A (en) * 2015-12-21 2016-03-23 浙江凯文磁业有限公司 Preparation method for improving NdFeB (neodymium iron boron) coercivity by organic heavy rare earth complex

Similar Documents

Publication Publication Date Title
JPH10149910A (en) Ferrite magnet and its manufacturing method
JP2017126718A (en) Ferrite sintered magnet
Pramanik Synthesis of nano particle of inorganic oxides by polymer matrix
EP0127427B1 (en) Production of microcrystralline ferrimagnetic spinels
JPH0826734A (en) Magnetic ca-v garnet oxide powder
JP2000323317A (en) Ferrite magnet and manufacture of powder thereof
JP3919546B2 (en) Iron oxide powder
JPS6131601B2 (en)
JPH0869903A (en) Manufacture of ntc thermistor
CN114068118B (en) Composite permanent magnetic material and preparation method and application thereof
CN111344820B (en) Magnetic powder and method for producing magnetic powder
JPH08133895A (en) Grain boundary-free type manganese oxide-based crystal, its production and memory switching type magnetic resistance element
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JP2001093716A (en) Powder for magnetic recording medium and method for manufacturing thereof
JPH0328109A (en) Production of compound oxide powder
JPH0574528B2 (en)
JPH06290923A (en) Manufacture of ferrite magnet
JPS58194305A (en) Manufacture of oxide permanent magnet
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH08217455A (en) Oxide magnetic material and production thereof
JPH09209007A (en) Production of hexagonal ferrite powder
JP2005112699A (en) Method of manufacturing ferrite magnet and method of forming w-type hexagonal ferrite phase
JPH0319202A (en) Strontium-ferrite magnet in excellent magnetic properties
JPH03177002A (en) Manufacture of strontium ferrite magnet having high residual flux density and coercive force
JPS63288912A (en) Production of inorganic oxide superconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041108