JPH0319202A - Strontium-ferrite magnet in excellent magnetic properties - Google Patents

Strontium-ferrite magnet in excellent magnetic properties

Info

Publication number
JPH0319202A
JPH0319202A JP1152167A JP15216789A JPH0319202A JP H0319202 A JPH0319202 A JP H0319202A JP 1152167 A JP1152167 A JP 1152167A JP 15216789 A JP15216789 A JP 15216789A JP H0319202 A JPH0319202 A JP H0319202A
Authority
JP
Japan
Prior art keywords
strontium
magnetic properties
cao
ferrite magnet
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152167A
Other languages
Japanese (ja)
Inventor
Hiroto Nakamura
中村 広登
Keizou Okuno
奥埜 計造
Hideaki Inaba
秀明 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1152167A priority Critical patent/JPH0319202A/en
Publication of JPH0319202A publication Critical patent/JPH0319202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To augment the residual flux density and the coercive force by a method wherein the title strontium.ferrite is composed of a sintered body containing CuO, SiO2, Sb2O3 in respectively specified contents as well as the remaining content of SrO.nFe2O3 where n represents 5.8-6.0. CONSTITUTION:The title strontium.ferrite magnet can be manufactured by sintering it so that it may be composed of 0.3-0.6wt.% of CaO, SiO2 and 0.05-0.15wt.% of Sb2O3 as well as the remaining substantial wt.% of SrO.nFe2O3 where n represents 5.8-6.0. Through these procedures, the strontium.ferrite magnet especially for electronic range in combination of high Bv with high Hc can be manufactured.

Description

【発明の詳細な説明】 く産業上の利川分野〉 本発明はフエライト磁石に係わり、特に残留磁束密度(
B『)及び保磁力(irlc)が共に高いストロンチウ
ム・フェライト磁石に関するものである.〈従来の技術
〉 ストロンチウム・フェライトの焼結磁石の高性能化を達
或するためには、(1)焼結体の密度を高《する、(2
)結晶粒径を政界I1!径に近づける、(3)結晶配向
度を高める、等の手段がある.これらの内(1)および
(2)の条件を満足させる方法として、ストロンチウム
・フェライトの土威分以外に少量の元素を添加すること
が有効であることが知られている.例えば特開昭55−
141711号公報にはCaOおよびS10,の添加が
焼結磁石の特性改善に著しく効果があることが開示され
ている. 従来、電子レンジ用高性能磁石として要求される磁気特
性は、Br≧43000,  illc≧29000e
であるが両者の特性は相反する傾向を示すもので、残留
磁束密度(Ilr)を高くする条件で焼結すると保磁力
(lllc)は低下する.残留磁束密度向上には結晶配
向度を強くし、かつ焼結密度を高くすることが有利であ
り、そのため焼威温度を高くし結晶組織を比較的大きく
するのが好ましい.一方保磁力(lllc)は単磁区粒
子(ストロンチウム・フェライトは0.94m)にする
ためにも焼結後の結晶の大きさをある程度以下に抑える
ことが必要である.そこで『粉体および粉末冶金』第3
4@第4号1987年6月号第30〜32真において、
このような粒径制御のためにCab, Slowの添加
量及び添加比が種々検討されている. CaOおよびSin.を添加したストロンチウム・フェ
ライトの焼結機構はCaO−S10.−Sr0 ・6 
Fearsの三元固溶体が局所的に生威し、焼結温度の
上昇に伴ってストロンチウム・フェライト結晶粒子との
間に良好な濡れ性を持つ粒界液相を形威して結晶威長抑
制及び高密度化に作用する液相焼結であり、Cab, 
Singの添加量及びそれらの添加比(CaO/Sin
g)が粒径制御に微妙に影響する.例えばCaOの添加
量が増加( Cab/ SiOi比が大)すると粒成長
は促進し、Singの添加量が増加( Cab/ Si
O2比が小)すると粒成長は抑制される. またCab, SiOgj同時にN10,を微量添加し
て粒成長を抑制し、保磁力(illc)の向上を図るこ
とも既に特開昭55−138204号公報に開示されて
いる.しかしながら、CaO及びStO.の添加、或い
はCab,Sing及び/V t O zの同時添加は
焼結温度の高い場合に結晶粒が局部的に異常成長を起こ
し、その結果、i11cが著しく低下することがある.
電子レンジ用高性能磁石としては前述したように、高い
Brと高いillcを同時に具備する必要があり、Ca
O+ Sing及び八lx’sの複合添加ではそれらの
添加量及びCaO/SiOz比など最適条件を+1!!
握するのが困難であった. く発明が解決しようとする課題〉 この発明は上記したストロンチウム・フェライトの現状
に鑑み、高い焼結温度でも異常結晶組織を生成すること
なく、B『及びillcに優れた磁石特性が得られ、特
に電子レンジ用高性能iff石特性(Br>4300G
,  illc≧29000o )を存ずるストロング
ーウム・フエライト磁石を得ることを目的としている. 〈課題を解決するための手段〉 即ち本発明はストロンチウム・フェライトSrO・nF
axos ( n − 5.8〜0.O )に対し副成
分として酸化カルシウム(Cab)を0.3〜0.6 
wt%,二酸化珪素(Sins )を0,3〜0.6 
wt%および酸化アンチモン(Sb*03)を0.05
〜0. 15wt%を添加ずるごとによって、焼結時の
結晶粒の異常成長を抑制し、均?微細な結晶組織を得た
ものである.その結果、B『とillcに優れた磁石特
性を有するストロンチウム・フェライト磁石が得られた
. く作 用〉 従来からSingの添加作用効果としては結晶粒のネ■
大化を抑制し、保磁力の高い磁石が得られることが知ら
れている.八Itch もSin.と同じような作用効
果が認められているが、Singよりも結晶粒粗大化の
卯制作用が小さい.一方CaOはSiO■八It’sと
は異なり、フエライト化反応を促進し、結晶粒の粗大化
.高密度化する作用のあることが知られている.しかし
SiO■CaO及びSbzOsを同時に添加した時の効
果についてはill l Sれていなかった.本発明者
らは以上の問題点を認識して種々検討した結果、CaO
+ SIOt及びSbzOsの同時添加により高性能磁
石が得られることを発見した.次に本発明においてCa
b, SingおよびSb!03の添加量を限定した理
由を以下に説明する.Sing : 0.3wt%未満
では保磁力が低くなり、0.6wt%を超えると保磁力
は高くなるが残留磁束密度が低くなり実川上好ましくな
い. CaO :  0.3wt%未満では保磁力は高くなる
が残留磁束密度が低い.一方0.6wL%を超えると焼
粘性が促進され、結晶粒の粗大化が起こり保磁力が著し
く低下するので好ましくない。
[Detailed description of the invention] Industrial field in Icheon> The present invention relates to ferrite magnets, and particularly relates to residual magnetic flux density (
B') and coercive force (irlc) are both high. <Prior art> In order to improve the performance of sintered strontium ferrite magnets, it is necessary to (1) increase the density of the sintered body, (2)
) grain size in political world I1! (3) increase the degree of crystal orientation. As a method of satisfying conditions (1) and (2) of these, it is known that it is effective to add a small amount of elements other than the strontium ferrite component. For example, JP-A-55-
141711 discloses that the addition of CaO and S10 is extremely effective in improving the characteristics of sintered magnets. Conventionally, the magnetic properties required for a high-performance magnet for microwave ovens are Br≧43000, illc≧29000e.
However, the characteristics of the two tend to contradict each other, and when sintered under conditions that increase the residual magnetic flux density (Ilr), the coercive force (lllc) decreases. In order to improve the residual magnetic flux density, it is advantageous to strengthen the degree of crystal orientation and increase the sintering density. Therefore, it is preferable to increase the firing temperature and make the crystal structure relatively large. On the other hand, the coercive force (llc) requires that the size of the crystal after sintering be suppressed to a certain level in order to obtain single domain grains (0.94 m for strontium ferrite). Therefore, “Powders and Powder Metallurgy” Volume 3
4 @ No. 4 June 1987 No. 30-32 True,
In order to control the particle size, various amounts and ratios of Cab and Slow are being investigated. CaO and Sin. The sintering mechanism of strontium ferrite added with CaO-S10. -Sr0 ・6
Fears' ternary solid solution grows locally, and as the sintering temperature rises, a grain boundary liquid phase with good wettability is formed between the strontium and ferrite crystal grains, suppressing crystal length and suppressing crystal growth. It is liquid phase sintering that works on densification, and Cab,
Addition amount of Sing and their addition ratio (CaO/Sin
g) has a subtle effect on particle size control. For example, when the amount of CaO added increases (Cab/SiOi ratio increases), grain growth is promoted, and the amount of Sing increases (Cab/SiOi ratio increases).
When the O2 ratio is small), grain growth is suppressed. Furthermore, it has already been disclosed in JP-A-55-138204 that a small amount of N10 is added to Cab, SiOgj at the same time to suppress grain growth and improve coercive force (ILLC). However, CaO and StO. , or the simultaneous addition of Cab, Sing, and /V t O z may cause locally abnormal growth of crystal grains when the sintering temperature is high, resulting in a significant decrease in i11c.
As mentioned above, high-performance magnets for microwave ovens must have high Br and high illc at the same time.
For combined addition of O+ Sing and 8 lx's, the optimum conditions such as their addition amount and CaO/SiOz ratio are +1! !
It was difficult to grasp. Problems to be Solved by the Invention> In view of the above-mentioned current state of strontium ferrite, the present invention has been developed to obtain excellent magnetic properties in B' and illc without producing abnormal crystal structures even at high sintering temperatures, and in particular High performance IF stone characteristics for microwave oven (Br>4300G
, illc≧29000o). <Means for solving the problem> That is, the present invention solves the problem by using strontium ferrite SrO.nF.
axos (n − 5.8 to 0.0) with calcium oxide (Cab) as a subcomponent of 0.3 to 0.6
wt%, silicon dioxide (Sins) from 0.3 to 0.6
wt% and antimony oxide (Sb*03) 0.05
~0. By adding 15 wt% every time, abnormal growth of crystal grains during sintering is suppressed, and evenness is achieved. A fine crystal structure was obtained. As a result, a strontium ferrite magnet with excellent magnetic properties in B' and illc was obtained. Effect> Traditionally, the addition effect of Sing has been to increase the concentration of crystal grains.
It is known that magnets with high coercive force can be obtained by suppressing magnetization. Eight Itch also Sin. The same effects as those of Sing have been recognized, but the effect of coarsening the crystal grains is smaller than that of Sing. On the other hand, CaO, unlike SiO 8 It's, promotes the ferritization reaction and causes coarsening of crystal grains. It is known to have the effect of increasing density. However, the effect of adding SiO₂CaO and SbzOs at the same time has not been investigated. The present inventors recognized the above problems and conducted various studies, and as a result, CaO
+ We discovered that high-performance magnets can be obtained by simultaneously adding SIOt and SbzOs. Next, in the present invention, Ca
b, Sing and Sb! The reason for limiting the amount of 03 added is explained below. Sing: If it is less than 0.3 wt%, the coercive force will be low, and if it exceeds 0.6 wt%, the coercive force will be high, but the residual magnetic flux density will be low, which is not desirable in practical terms. CaO: If it is less than 0.3 wt%, the coercive force will be high but the residual magnetic flux density will be low. On the other hand, if it exceeds 0.6 wL%, the thermal viscosity will be accelerated, crystal grains will become coarser, and the coercive force will drop significantly, which is not preferable.

SbzOs : CaO及びSing量が上記限定範囲
においてSbmOtが0.05wL%未満の場合には保
磁力が低く、0.15wt%を超えると磁東密度が著し
く低下するので好ましくない.従って添加物の含有量は
CaO :0.30〜0.60wt%, Si(h :
 0.30〜0.60wt%,  SbzOs: 0.
05〜0.15wt%に限定する.ストロンヂウム・フ
エライトのn 4i ( FetOi/SrOのモル比
):n{aが5.8未満では残留磁束密度は高いが保磁
力が低くなり実川上好ましくない.一方n{!!が6を
超えるとヘマタイトが過剰となり、磁気特性が劣化する
ので好ましくない.従ってn値は5.8≦n≦6.0と
した. 以下に実施例を示し、この発明の効果を明らかにする. く実施例〉 実施例l モル比Fi3tOz/SrO = 6のストロンチウム
・フェライトからなる基本組威の原料をヘンシェルミキ
サーで混合した後、ペレット状にして1260℃で仮焼
した.この仮焼べレフトをアトマイザーを用いて粗粉砕
した.次いでアトライターにて第1表に示す添加物を添
加し、40w1%スラリー状で混合、微粉砕を施した.
微粉砕後の平均粒径(a)を0.8μとした後、スラリ
ーを遠心分ramにかけ(40→60%スラリー) 7
000 0erstedの磁界中でIt/C−の圧力下
で成形した.成形体は十分乾燥した後1250℃3時間
の焼戒を施した.得られた焼結体の磁気特性を第1表に
示した. 第1表から明らかなようにCaO, SiO2に加え、
さらにSbgOsを0.05〜0.15%複合添加する
ことにより、B『及びillcが共に電子レンジ用高性
能磁石特性を十分満足するものが得られ、アンチモンの
添加効果が明らかである. しかし試料Nn26 〜30の如く、Sbg03を0.
20wt%添加したものはillcは向上するがBrが
低下し特性として好ましくない.また拭料ill〜5の
如く、tab, 510.添加材はCano量が増加す
るにつれてBrは増加傾向を示すが111cは逆に減少
する.一方試料弘6〜10の如< Cab, SiO富
に加えてMtOsを添加したものはDrは低下するがl
llcは改善される.しかしBrが低いため電子レンジ
用高性能化磁石としての特性を十分に満足したものでは
ない. 以上の結果から適正量のCan, SiO*及びSbt
Osの複合添加がBr, lflcを共に改暮すること
が分かる. なお拭料隠3及びN[Ll3に関し、鏡面研摩した後エ
ッチング処理を施し光学a微鏡にて組織観察した結果を
第1図に示す.本発明による第1図(a)(試料恥13
)は結晶粒径が比較的均一微細化しており、磁気特性に
優れることがIJI微鏡組織からも伺える.一方第1図
(ハ)拭料馳3の如く従来法によるものは結晶組織が不
均一で局所的に粗大粒が見られるが、このことがInc
の低下を招いていると考えられる. ?にIMMAによる添加物の定性分析を行った結果、C
ab, SlO■は結晶粒界に濃縮しているがsbは粒
内に均等に分布している(粒内に固溶している)ことが
判明した, sb添加による結晶成長抑制のR横は明ら
かでないが何らかの形で抑制効果が働いていると!II
測される. 実施例2 モル比Fe,0,/SrO = 6のストロンヂウム・
フエライトからなる基本組威の原料を実施例lと同様の
方法で混合,仮焼.粉砕処理し、次いでアトライターに
て第2表に示す添加物を添加し、その後実施例lと同様
の方法で試料を作威し、第2表に示す磁気特性を得た. 第2表から明らかなようにCaO : 0.3〜0.6
wt%.Sins : 0.3〜0.6wt%の添加に
SbtOs  : 0.05〜0. 15%を同時添加
することによって電子レンジ用高性能化磁石としての磁
気特性が得られる.実施例3 モル比でPezO,/SrO ( n値) −5.6,
 5.7. 5.8.5.9. 6.0のストロンチウ
ム・フェライトからなる基本&IIFfAの原料を実施
例lと同様の方法で混合,仮焼,粉砕処理し、次いでア
トライターにて第3表に示す添加物を添加し、その後実
施例lと同碌の方法で試料を作成し、第3j!に示す磁
気特性を得た. 第3表から明らかなように5.8≦n≦6.0の範囲に
おいて電子レンジ用高性能化磁石としての磁気特性を得
た. 〈発明の効果〉 本発明によって従来のものを凌飢する高Brと高11l
cをかね備えた、特に電子レンジ用高性能化磁石として
好適なストロンチウム・フェライト磁石が得られ、省エ
ネルギー等の点でその効果は大きい.
SbzOs: In the above limited range of CaO and Sing amounts, if SbmOt is less than 0.05 wL%, the coercive force will be low, and if it exceeds 0.15 wt%, the magnetic east density will drop significantly, which is not preferable. Therefore, the content of additives is CaO: 0.30-0.60wt%, Si(h:
0.30-0.60wt%, SbzOs: 0.
05 to 0.15 wt%. If n4i (molar ratio of FetOi/SrO): n{a of strondium ferrite is less than 5.8, the residual magnetic flux density will be high but the coercive force will be low, which is not desirable in practical terms. On the other hand n{! ! If it exceeds 6, hematite becomes excessive and the magnetic properties deteriorate, which is undesirable. Therefore, the n value was set to 5.8≦n≦6.0. Examples are shown below to clarify the effects of this invention. Examples Example 1 A basic composition of raw materials consisting of strontium ferrite with a molar ratio of Fi3tOz/SrO = 6 was mixed in a Henschel mixer, then pelletized and calcined at 1260°C. This calcined left was coarsely ground using an atomizer. Next, the additives shown in Table 1 were added using an attritor, mixed in the form of a 40w1% slurry, and pulverized.
After finely pulverizing the average particle size (a) to 0.8μ, the slurry was centrifuged in a ram (40→60% slurry) 7
It was molded under a pressure of It/C- in a magnetic field of 000 ersted. After thoroughly drying the compact, it was baked at 1250°C for 3 hours. The magnetic properties of the obtained sintered body are shown in Table 1. As is clear from Table 1, in addition to CaO and SiO2,
Further, by adding 0.05 to 0.15% of SbgOs in a composite manner, a material in which both B' and illc sufficiently satisfy the characteristics of a high-performance magnet for microwave ovens is obtained, and the effect of adding antimony is clear. However, as in samples Nn26 to 30, Sbg03 was added to 0.
When 20 wt% is added, illc improves, but Br decreases, making the properties unfavorable. Also, like wipe ill~5, tab, 510. As for additives, as the amount of Cano increases, Br tends to increase, but 111c decreases on the contrary. On the other hand, samples like Samples 6 to 10 in which MtOs was added in addition to Cab, SiO richness decreased Dr but l
llc will be improved. However, due to its low Br, it does not fully satisfy the characteristics as a high-performance magnet for microwave ovens. From the above results, appropriate amounts of Can, SiO* and Sbt
It can be seen that the combined addition of Os modifies both Br and lflc. Figure 1 shows the results of microstructural observation using an optical a-microscope after mirror polishing and etching treatment for Wiryokakure 3 and N[Ll3. FIG. 1(a) (Sample Shame 13) according to the present invention
) has a relatively uniform and fine grain size, and the IJI microstructure shows that it has excellent magnetic properties. On the other hand, in the case of the conventional method as shown in Fig. 1 (c) Wipe cutter 3, the crystal structure is non-uniform and coarse grains can be seen locally.
This is thought to be causing a decline in ? As a result of qualitative analysis of additives using IMMA, C
It was found that ab, SlO■ is concentrated at the grain boundaries, but sb is evenly distributed within the grains (solid solution within the grains). Although it is not clear, some kind of suppressive effect is working! II
It is measured. Example 2 Strondium with molar ratio Fe,0,/SrO = 6
The raw materials for the basic composition consisting of ferrite were mixed and calcined in the same manner as in Example 1. After pulverization, the additives shown in Table 2 were added using an attritor, and samples were prepared in the same manner as in Example 1 to obtain the magnetic properties shown in Table 2. As is clear from Table 2, CaO: 0.3 to 0.6
wt%. Sins: 0.3 to 0.6 wt%, SbtOs: 0.05 to 0. By simultaneously adding 15%, magnetic properties suitable for a high-performance microwave oven magnet can be obtained. Example 3 Molar ratio of PezO,/SrO (n value) -5.6,
5.7. 5.8.5.9. The basic & IIFfA raw materials consisting of 6.0 strontium ferrite were mixed, calcined, and pulverized in the same manner as in Example 1, and then the additives shown in Table 3 were added in an attritor, and then the Prepare a sample using the same method as in 1.3.j! The magnetic properties shown are obtained. As is clear from Table 3, magnetic properties suitable for a high-performance microwave oven magnet were obtained in the range of 5.8≦n≦6.0. <Effects of the Invention> The present invention provides high Br and high 11L that surpass the conventional ones.
A strontium ferrite magnet is obtained that is particularly suitable as a high-performance magnet for microwave ovens, and is highly effective in terms of energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims]  CaO:0.3〜0.6wt%,SiO_2:0.3
〜0.6wt%,Sb_2O_3:0.05〜0.15
wt%を含み、残部実質的にSrO・nFe_2O_3
(但しn=5.8〜6.0)の組成割合からなる焼結体
であることを特徴とする磁気特性に優れたストロンチウ
ム・フェライト磁石。
CaO: 0.3 to 0.6 wt%, SiO_2: 0.3
~0.6wt%, Sb_2O_3:0.05-0.15
wt%, and the remainder is substantially SrO・nFe_2O_3
A strontium ferrite magnet with excellent magnetic properties, characterized by being a sintered body having a composition ratio of n=5.8 to 6.0.
JP1152167A 1989-06-16 1989-06-16 Strontium-ferrite magnet in excellent magnetic properties Pending JPH0319202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152167A JPH0319202A (en) 1989-06-16 1989-06-16 Strontium-ferrite magnet in excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152167A JPH0319202A (en) 1989-06-16 1989-06-16 Strontium-ferrite magnet in excellent magnetic properties

Publications (1)

Publication Number Publication Date
JPH0319202A true JPH0319202A (en) 1991-01-28

Family

ID=15534497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152167A Pending JPH0319202A (en) 1989-06-16 1989-06-16 Strontium-ferrite magnet in excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0319202A (en)

Similar Documents

Publication Publication Date Title
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
JPWO2005085153A1 (en) Ferrite magnetic material, ferrite sintered magnet and manufacturing method thereof
KR100236155B1 (en) Ferrite magnet, and powder for ferrite magnet and production process thereof
JPWO2005056493A1 (en) Ferrite magnetic material, ferrite sintered magnet
US3003966A (en) Polycrystalline garnet materials
KR20020026346A (en) Method for making m-type hexaferrite powders or wafers
JP3266187B2 (en) Rotating machine
JPH0319202A (en) Strontium-ferrite magnet in excellent magnetic properties
JP4599752B2 (en) Method for producing sintered ferrite magnet
JPH0927430A (en) Manufacture of ferrite magnet
US3038861A (en) Polycrystalline garnet materials
JP2001223104A (en) Method of manufacturing sintered magnet
JPH11307331A (en) Ferrite magnet
JP2908631B2 (en) Manufacturing method of ferrite magnet
JPH03177002A (en) Manufacture of strontium ferrite magnet having high residual flux density and coercive force
JPH0878220A (en) Manufacture of hexagonal crystal system ferrite
JPH0283218A (en) Oxide magnetic material
JPH0542128B2 (en)
JPH0661029A (en) Manufacture of oxide permanent magnet
JPH0653020A (en) Oxide permanent magnet
JPH0826734A (en) Magnetic ca-v garnet oxide powder
JP2939035B2 (en) Soft magnetic oxide substance
JP2000173812A (en) Manufacture of anisotropic ferrite magnet
JPH03242906A (en) Manufacture of low loss oxide magnetic material
JP3257536B2 (en) Composite ferrite magnet material