JPH0661029A - Manufacture of oxide permanent magnet - Google Patents

Manufacture of oxide permanent magnet

Info

Publication number
JPH0661029A
JPH0661029A JP4215006A JP21500692A JPH0661029A JP H0661029 A JPH0661029 A JP H0661029A JP 4215006 A JP4215006 A JP 4215006A JP 21500692 A JP21500692 A JP 21500692A JP H0661029 A JPH0661029 A JP H0661029A
Authority
JP
Japan
Prior art keywords
powder
calcined
temperature
ferrite
calcinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4215006A
Other languages
Japanese (ja)
Inventor
Yukiko Nakamura
由紀子 中村
Shinichi Kijima
愼一 来島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4215006A priority Critical patent/JPH0661029A/en
Publication of JPH0661029A publication Critical patent/JPH0661029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a method of manufacturing easily an Sr ferrite magnet, which is superior in both of Br and iHc. CONSTITUTION:In the case of a method of manufacturing an oxide permanent magnet, which calcinates a raw material at a temperature of 1200 to 1350 deg.C, obtains Sr ferrite calcinated powder by grinding the calcinated material and thereafter, grinds the calcinated powder, molds the ground powder in a magnetic field and thereafter, calcinates finally the molded powder, calcinated powder obtainable by adding further 5 to 25wt.% of Sr ferrite powder calcinated at 1150 deg.C or higher and at a temperature region of a calcinating temperature of lower to the Sr ferrite calcinated powder is used as calcinated powder which is supplied to the molding. Thereby, it becomes possible to manufacture easily a high-Br and high-iHc Sr ferrite magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物永久磁石の製造
方法に関し、特に、残留磁束密度(以下、これを単に
「Br」と略記する)と保磁力(以下、これを単に「i
Hc」と略記する)がともに優れ、回転機器用セグメン
ト等に用いて好適な高性能酸化物永久磁石を有利に製造
する方法について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide permanent magnet, and more particularly to a residual magnetic flux density (hereinafter simply referred to as "Br") and a coercive force (hereinafter simply referred to as "i").
Hc ”) is excellent, and a method for advantageously producing a high-performance oxide permanent magnet suitable for use in a rotating machine segment and the like is proposed.

【0002】[0002]

【従来の技術】酸化物永久磁石,なかでも、Srフェラ
イト磁石は、それの原料資源が豊富でかつ安価であるこ
とから各種磁石材料として広分野で使用されており、生
産量の多い永久磁石の1つである。
2. Description of the Related Art Oxide permanent magnets, especially Sr ferrite magnets, are widely used as various magnet materials because of their abundant raw material resources and low cost. There is one.

【0003】一般に、このSrフェライト磁石は、原料
配合,仮焼,粉砕,成形および焼成という各工程を経て
製造される。すなわち、まず、主成分の酸化鉄と酸化ス
トロンチウムまたは炭酸ストロンチウムとを化学式 SrO
・nFeO3 においてn=5.2 〜6.2 となるように秤量し、
湿式混合したのち乾燥する。次に、この乾燥混合物を12
00〜1350℃の温度で約1時間仮焼し、その後粉砕してS
rフェライト仮焼粉を得る。その後、得られた前記仮焼
粉に対して、所定量の焼結促進剤や結晶成長抑制剤とな
りうる成分を添加してから粉砕し、平均粒径0.7 〜1.0
μmの微粉砕粉を得る。さらにその後、得られた微粉砕
粉を湿式磁場中にて成形に付した後、1200〜1260℃の温
度域で焼成して、Srフェライト磁石を製造する。
Generally, this Sr ferrite magnet is manufactured through the steps of raw material mixing, calcination, pulverization, molding and firing. That is, first, the main components of iron oxide and strontium oxide or strontium carbonate are represented by the chemical formula SrO
・ Weigh nFeO 3 so that n = 5.2 to 6.2,
Wet mix and dry. Next, this dry mixture is mixed with 12
Calcination at a temperature of 00 to 1350 ℃ for about 1 hour, then crushing and S
r Calcinated powder of ferrite is obtained. After that, the obtained calcined powder was pulverized after adding a predetermined amount of a component capable of becoming a sintering accelerator or a crystal growth inhibitor, and an average particle size of 0.7 to 1.0.
A micronized powder of μm is obtained. After that, the finely pulverized powder obtained is subjected to molding in a wet magnetic field and then fired in a temperature range of 1200 to 1260 ° C. to produce an Sr ferrite magnet.

【0004】このようにして製造されるSrフェライト
磁石は、BrとiHcが必ずしも優れているとは言え
ず、それ故に、例えばこのSrフェライト磁石をモータ
用セグメントとして用いた場合、モータの始動時や拘束
時に、電機子に流れる過大電流によって大きな反磁場が
作用し磁力低下を招くおそれがあった。このことから、
従来、Srフェライト磁石としては、BrとiHcがと
もに優れるものが望まれていた。
The Sr ferrite magnet manufactured in this way is not necessarily excellent in Br and iHc. Therefore, for example, when the Sr ferrite magnet is used as a motor segment, when the motor is started, When restrained, a large demagnetizing field may act due to an excessive current flowing through the armature, resulting in a decrease in magnetic force. From this,
Conventionally, it has been desired that the Sr ferrite magnet has excellent Br and iHc.

【0005】しかしながら、斯界の要望に応えられるよ
うな高いBr値を示す磁石材料を得るためには、飽和磁
束密度の高い原料を用いて、高配向でしかも高密度の焼
結体を作ることが必須となる。すなわち、高Br化に対
応するためには、高純度原料を高モル比(n=5.8 〜6.
0 )となるように配合し、最終焼結温度より高い温度で
仮焼してフェライト化反応を十分進めた上で、その仮焼
物を粉砕し、得られた微粉末を湿式磁場中成形で磁化容
易軸方向に配向させ、その後、焼結密度を十分高めるこ
とのできる温度で焼成する方法がとられる。
However, in order to obtain a magnet material exhibiting a high Br value that can meet the demands of the field, it is necessary to use a raw material having a high saturation magnetic flux density to form a highly oriented and high density sintered body. Mandatory. That is, in order to cope with the high Br, a high-purity raw material has a high molar ratio (n = 5.8 to 6.
0)), calcined at a temperature higher than the final sintering temperature to promote the ferritic reaction sufficiently, and then pulverize the calcined product, and magnetize the fine powder obtained by molding in a wet magnetic field. A method of orienting in the easy axis direction and then firing at a temperature that can sufficiently increase the sintered density is adopted.

【0006】一方、高いiHcに対応するためには、結
晶粒径を単磁区粒径以下に抑える必要がある。すなわ
ち、Srフェライトの単磁区限界粒径は一般に約0.94μ
mといわれており、そのために、高iHc化を目指すに
は、Srフェライト仮焼物を少なくとも平均粒径が約0.
7 〜0.9 μmになるまで粉砕するとともに、結晶成長抑
制剤を添加することにより、焼成時の粒成長を抑制する
ことが必要である。
On the other hand, in order to cope with high iHc, it is necessary to suppress the crystal grain size to a single domain grain size or less. That is, the single domain limit grain size of Sr ferrite is generally about 0.94μ.
It is said that the average particle size of the Sr ferrite calcined product is at least about 0.1 in order to achieve high iHc.
It is necessary to suppress grain growth during firing by pulverizing to 7 to 0.9 μm and adding a crystal growth inhibitor.

【0007】以上のことから、磁石材料の高Br化と高
iHc化を同時に実現するには、高密度化と粒成長抑制
とを同時に実現することが必要であることが判る。その
ためには、例えば、CaO やPbO,Bi2O3,B2O3などの焼結促
進剤とSiO2やAl2O3 などの結晶成長抑制剤を複合添加し
て焼成する方法があるが、少なくとも高Brの観点から
は非磁性成分を極力低く抑えることが望ましく、必要以
上に添加物を用いることは好ましくないことから、この
方法では、BrとiHcとの両方を同時に改善すること
には限界があった。
From the above, it is understood that it is necessary to simultaneously realize high density and suppression of grain growth in order to simultaneously realize high Br and high iHc of the magnet material. For this purpose, for example, CaO and PbO, Bi 2 O 3, B 2 O 3 is a method of crystal growth inhibitor is calcined by combined addition of such a sintering accelerator SiO 2 or Al 2 O 3, such as but From the viewpoint of at least high Br, it is desirable to suppress the non-magnetic component as low as possible, and it is not preferable to use an additive more than necessary. Therefore, in this method, it is not possible to improve both Br and iHc at the same time. There was a limit.

【0008】一方、Srフェライト粉の粉砕粒径を細か
くすることで、磁石材料のBrとiHcをともに向上さ
せる従来方法もある。しかしながら、この従来方法で
は、平均粒径が0.7 μm以下になると、粉砕時間に要す
る時間が長くなるため、組成変動や粉砕機の磨耗が著し
くなるとともに、粉砕粒径が細かいために湿式磁場中成
形における成形性が劣化し、生産性が極端に悪化すると
いう問題点があった。
On the other hand, there is also a conventional method for improving both Br and iHc of the magnet material by making the crushed particle size of the Sr ferrite powder fine. However, in this conventional method, when the average particle size is 0.7 μm or less, the time required for the pulverization becomes long, so that the composition variation and the abrasion of the pulverizer become remarkable, and the pulverized particle size is small, so that the molding in the wet magnetic field is performed. However, there was a problem in that the moldability in Example 2 deteriorated and the productivity extremely deteriorated.

【0009】このように、磁石材料のBrとiHcを同
時に改善することは、通常の焼結機構では互いに相反す
る現象の利用を必要としているために、その実現は困難
とされていた。
As described above, simultaneous improvement of Br and iHc of the magnetic material has been difficult to realize because it is necessary to use phenomena that are mutually contradictory in a normal sintering mechanism.

【0010】[0010]

【発明が解決しようとする課題】これに対して、近年、
平均粒径1.0 〜1.3 μmと0.75〜1.0 μmとの2種の粉
砕粉を混合して磁場中成形することにより、成形性を損
なうことなく、配向性と焼結密度を向上させて高Br化
と高iHc化とを実現させようとする試みが提案されて
いる(特公昭60−50324 号公報参照)。
On the other hand, in recent years,
By mixing two types of pulverized powders with an average particle size of 1.0 to 1.3 μm and 0.75 to 1.0 μm and molding in a magnetic field, the orientation and the sintering density are improved without compromising the moldability and high Br is achieved. And an attempt to achieve high iHc have been proposed (see Japanese Patent Publication No. 60-50324).

【0011】しかしながら、この既知の方法では、2種
類の微粉砕粉を得るために、粉砕処理を2回に分けて行
う必要があり、さらにはこれらの微粉砕粉は2次凝集の
発生などを起こし易く、均一に混合するのが非常に困難
であることなどの問題点のために、生産性が著しく阻害
されるという課題を残していた。
However, in this known method, in order to obtain two kinds of finely pulverized powder, it is necessary to perform the pulverization treatment in two steps, and further, these finely pulverized powders cause the occurrence of secondary aggregation. It has been a problem that productivity is significantly impaired due to problems such as easy occurrence and very difficult uniform mixing.

【0012】本発明の目的は、上述した従来技術が抱え
ている問題点を解消できる有利な酸化物永久磁石の製造
方法を提案することにあり、特に、極めて簡便な方法
で、高Br,高iHcのSrフェライト磁石を製造する
ことができる技術を提供することにある。
An object of the present invention is to propose an advantageous method for producing an oxide permanent magnet, which can solve the problems of the above-mentioned prior art. In particular, it is a very simple method with high Br and high An object of the present invention is to provide a technique capable of manufacturing an iHc Sr ferrite magnet.

【0013】[0013]

【課題を解決するための手段】発明者らは、焼結中の配
向性向上と緻密化促進のためには、粉砕粉中に微粉をあ
る程度含有させることが不可欠であり、一方、保磁力を
高く保つためには2μm以上の粗粉含有量を極力抑える
必要があるという知見をもとに、上記目的の実現に向
け、さらに鋭意研究を進めた。その結果、仮焼工程での
粒度調整に着目し、通常温度での仮焼粉にそれよりも低
温度で仮焼した仮焼粉を添加混合することにより、磁石
材料の高Br化と高iHc化に好適な粉砕粉の粒度分布
を容易に得ることができることを突き止め、本発明に想
到した。
In order to improve the orientation during sintering and promote densification, it is essential for the pulverized powder to contain fine powder to some extent, while the coercive force is increased. Based on the finding that it is necessary to suppress the content of coarse powder of 2 μm or more as much as possible in order to keep the value high, further intensive research was conducted toward the realization of the above object. As a result, focusing on the particle size adjustment in the calcination step, by adding and mixing the calcinated powder at the normal temperature and the calcinated powder calcined at a lower temperature than that, it is possible to increase the Br of the magnetic material and the iHc. The inventors have found that a particle size distribution of pulverized powder suitable for conversion can be easily obtained, and have conceived the present invention.

【0014】すなわち、本発明は、原料を1200〜1350℃
の温度で仮焼し粉砕して得られるSrフェライト仮焼粉
を、その後、粉砕し磁場中で成形してから、本焼成して
酸化物永久磁石を製造する方法に当たり、前記成形に供
する仮焼粉として、上記Srフェライト仮焼粉に対し
て、さらに1150℃以上でかつ前記仮焼温度以下の温度域
で仮焼したSrフェライト粉を5〜25wt%添加したもの
を用いることを特徴とする酸化物永久磁石の製造方法で
ある。
That is, in the present invention, the raw material is 1200 to 1350 ° C.
The Sr ferrite calcined powder obtained by calcination and pulverization at the temperature of 10 is then pulverized and molded in a magnetic field, and then main-calcined to produce an oxide permanent magnet. Oxidation characterized by using, as powder, 5 to 25 wt% of Sr ferrite powder calcined at a temperature range of 1150 ° C. or higher and not higher than the calcination temperature is added to the Sr ferrite calcined powder. It is a method of manufacturing a permanent magnet.

【0015】[0015]

【作用】さて、一般的なSrフェライト磁石の製造にお
いて、仮焼工程では、磁場中成形における配向性を十分
高めるためにフェライト化を完全に進めることが望まし
く、通常1200℃〜1350℃の仮焼温度が採用されている。
この理由は、1350℃を超える温度で仮焼すると、得られ
る仮焼物の粉砕が困難であるために、粗粉の多い粒度分
布となり、iHcが低下するからであり、一方、1200℃
未満では、後述するように、フェライト化が不十分であ
り、フェライト化しない未反応成分が残留するため、湿
式磁場中成形で高配向を得ることが困難になるからであ
る。
Now, in the production of a general Sr ferrite magnet, it is desirable to completely advance the ferritization in the calcination step in order to sufficiently enhance the orientation in the molding in the magnetic field. Usually, the calcination is performed at 1200 ° C to 1350 ° C. Temperature is used.
The reason for this is that if calcination is performed at a temperature higher than 1350 ° C., it is difficult to pulverize the calcinated product obtained, resulting in a large particle size distribution of coarse powder and a decrease in iHc.
If it is less than the above, as described later, the ferritization is insufficient, and unreacted components that are not ferritized remain, so that it becomes difficult to obtain a high orientation by molding in a wet magnetic field.

【0016】この仮焼温度についての発明者らの行った
研究によると、仮焼温度変化に伴う仮焼粉組織の変化を
走査型電子顕微鏡で観察した結果では、その粒子径は12
00℃未満では原料粉と比べてほとんど変化せず、1250℃
を超えると顕著に増大し始め、そして1300℃を超えると
粒径の増大と粒子間の結着が著しくなり、2μmを超え
る粒子が目立つようになることが判った。
According to a study conducted by the inventors on the calcination temperature, the change in the calcination powder structure with the change in the calcination temperature was observed by a scanning electron microscope.
Below 00 ° C, there is almost no change compared to the raw powder, 1250 ° C
It has been found that when the temperature exceeds 1300 ° C., the particle size increases remarkably, and when the temperature exceeds 1300 ° C., the particle size increases and the binding between particles becomes significant, and the particles having a particle size of more than 2 μm become conspicuous.

【0017】以上に述べた研究成果から、仮焼粉を粉砕
して、微粉が多く粗粉が少ない粒度分布を示す微粉砕粉
を得るためには、低温度で仮焼したSrフェライト仮焼
粉,いわゆる低温仮焼粉が有利であることが判る。とこ
ろが、X線回折で低温仮焼粉の相分析を行った結果、低
温仮焼粉には残留α−Fe2O3 相が若干観察された。それ
故に、低温仮焼粉の単一粉のみでは、湿式磁場中成形で
の高配向は期待できず、高いBrを得ることは難しいこ
とも判った。
From the above research results, in order to pulverize the calcined powder to obtain a finely pulverized powder having a large amount of fine powder and a small amount of coarse powder, Sr ferrite calcined powder calcined at a low temperature However, it can be seen that so-called low temperature calcined powder is advantageous. However, as a result of the phase analysis of the low-temperature calcined powder by X-ray diffraction, some residual α-Fe 2 O 3 phase was observed in the low-temperature calcined powder. Therefore, it was also found that it is difficult to obtain high Br in high magnetic field compaction with only a single powder of low-temperature calcined powder, and it is difficult to obtain high Br.

【0018】そこで、発明者らは、通常の仮焼温度1200
℃〜1350℃で仮焼したフェライト化の十分進んだSrフ
ェライト仮焼粉をベースに、ある程度フェライト化が進
みかつ仮焼原料粉と同程度の粒子径を有する低温仮焼粉
を添加し、混合粉砕することを試みたのである。
Therefore, the inventors of the present invention have proposed a normal calcination temperature of 1200
Based on Sr ferrite calcined powder that has been fully calcined at ℃ to 1350 ℃ and has been sufficiently ferriticized, add low temperature calcined powder that has a certain degree of ferriticization and a particle size similar to that of the calcined raw material powder, and mix I tried to crush it.

【0019】すなわち、このような仮焼配合粉によれ
ば、磁場中成形での配向性を劣化させることのない微粉
を多く含有する粒度分布を示す微粉砕粉を得ることがで
き、それ故に、高Brでしかも高iHcのSrフェライ
ト磁石を容易に製造することができるようになる。
That is, according to such a calcination compounded powder, it is possible to obtain a finely pulverized powder having a particle size distribution containing a large amount of fine powder which does not deteriorate the orientation in the molding in a magnetic field. It becomes possible to easily manufacture a Sr ferrite magnet having a high Br and a high iHc.

【0020】ここで、上述した低温仮焼粉を得るための
仮焼温度は、1150℃以上でかつ通常の仮焼温度である12
00℃〜1350℃以下の温度域とする。この温度が、1150℃
未満だと、フェライト化しない未反応成分が多くなり、
湿式磁場中成形で高配向が得られなくなるためである。
一方、上記の温度が、通常の仮焼温度である1200℃〜13
50℃を超えると、仮焼粉の粒径が増大し粗粉の多い粒度
分布となり、iHcが低下するからである。
Here, the calcination temperature for obtaining the above-mentioned low-temperature calcination powder is 1150 ° C. or higher and the normal calcination temperature.
The temperature range is from 00 ℃ to 1350 ℃ or below. This temperature is 1150 ℃
If it is less than the above, unreacted components that do not become ferrite increase,
This is because high orientation cannot be obtained by molding in a wet magnetic field.
On the other hand, the above temperature is the normal calcination temperature of 1200 ℃ ~ 13
This is because if the temperature exceeds 50 ° C., the particle size of the calcined powder increases, the particle size distribution becomes large with coarse powder, and iHc decreases.

【0021】また、仮焼温度1200℃〜1350℃で仮焼した
Srフェライト仮焼粉に対する低温仮焼粉の添加量は、
5〜25wt%とする。この理由は、5wt%未満では、微粉
を多く含有する粒度分布を得ることができないために添
加効果が顕著でなく、一方、25wt%を超えると逆に特性
が劣化するためである。
The addition amount of the low temperature calcined powder to the Sr ferrite calcined powder calcined at a calcining temperature of 1200 ° C to 1350 ° C is
5 to 25 wt%. The reason for this is that if it is less than 5 wt%, the effect of addition is not remarkable because a particle size distribution containing a large amount of fine powder cannot be obtained, while if it exceeds 25 wt%, the characteristics deteriorate conversely.

【0022】[0022]

【実施例】【Example】

(実施例1)Fe2O3 /SrO がモル比で5.8 である原料粉
末を1275℃で1時間仮焼してSrフェライト仮焼粉を得
た。次いで、得られた仮焼粉に、1100〜1300℃の範囲で
種々変化させた温度にて1時間仮焼した低温仮焼粉を10
wt%と、0.36wt%のSiO2および0.45wt%のCaO を添加
し、各種混合仮焼粉を得た。そして、得られた各種混合
仮焼粉を、常法に従って、粉砕, 湿式磁場中成形し、さ
らに、1225℃にて1時間焼成してSrフェライト焼結体
を得た。
(Example 1) A raw material powder having a molar ratio of Fe 2 O 3 / SrO of 5.8 was calcined at 1275 ° C. for 1 hour to obtain a calcined Sr ferrite powder. Then, the obtained calcined powder was calcined for 1 hour at variously changed temperatures in the range of 1100 to 1300 ° C.
wt%, 0.36 wt% SiO 2 and 0.45 wt% CaO were added to obtain various mixed calcined powders. Then, the various mixed calcined powders obtained were crushed and molded in a wet magnetic field according to a conventional method, and further sintered at 1225 ° C. for 1 hour to obtain an Sr ferrite sintered body.

【0023】このようにして得られたSrフェライト焼
結体の磁気特性を表1に示す。この表に示す結果から明
らかなように、通常の仮焼温度1275℃で仮焼した仮焼粉
に1150℃以上でかつ前記仮焼温度1275℃以下の温度で仮
焼した低温仮焼粉を添加することにより、高Brでかつ
高iHcのSrフェライト磁石を得ることができる。
Table 1 shows the magnetic characteristics of the Sr ferrite sintered body thus obtained. As is clear from the results shown in this table, a low temperature calcined powder calcined at a temperature of 1150 ° C. or higher and the calcined temperature of 1275 ° C. or lower is added to the calcined powder calcined at a normal calcining temperature of 1275 ° C. By doing so, an Sr ferrite magnet with high Br and high iHc can be obtained.

【0024】(実施例2)Fe2O3 /SrO がモル比で5.8
である原料粉末を1275℃で1時間仮焼して仮焼粉を得
た。次いで、得られた仮焼粉に、添加量を0〜30wt%の
範囲で種々変化させた,1200℃にて1時間仮焼した低温
仮焼粉と、0.36wt%のSiO2および0.45wt%のCaO を添加
し、各種混合仮焼粉を得た。そして、得られた各種混合
仮焼粉を、常法に従って、粉砕, 湿式磁場中成形し、さ
らに、1200〜1260℃にて1時間焼成してSrフェライト
焼結体を得た。
(Example 2) Fe 2 O 3 / SrO is 5.8 in molar ratio.
Was calcined at 1275 ° C. for 1 hour to obtain a calcined powder. Then, the low-temperature calcined powder obtained by calcining the obtained calcined powder at 1200 ° C. for 1 hour with various addition amounts in the range of 0 to 30 wt%, 0.36 wt% SiO 2 and 0.45 wt% CaO was added to obtain various mixed calcined powders. Then, the various mixed calcined powders obtained were pulverized and molded in a wet magnetic field according to a conventional method, and further calcined at 1200 to 1260 ° C. for 1 hour to obtain an Sr ferrite sintered body.

【0025】このようにして得られたSrフェライト焼
結体の磁気特性を図1に示す。この図に示す結果から明
らかなように、通常の仮焼温度1275℃で仮焼した仮焼粉
に5〜25wt%の低温仮焼粉を添加することにより、高B
rでかつ高iHcのSrフェライト磁石を得ることがで
きる。
The magnetic characteristics of the Sr ferrite sintered body thus obtained are shown in FIG. As is clear from the results shown in this figure, by adding 5 to 25 wt% of low temperature calcined powder to the calcined powder calcined at a normal calcining temperature of 1275 ° C, high B
It is possible to obtain an Sr ferrite magnet having r and high iHc.

【0026】図2には、本実施例における微粉砕粉の粒
度分布測定結果を示す。この粒度分布は、1275℃で仮焼
した仮焼粉に1200℃で仮焼した低温仮焼粉を20wt%添加
した本発明例の場合と、低温仮焼粉を添加しない従来例
の場合とを比較したものである。この図に示す結果から
明らかなように、通常の仮焼温度1275℃で仮焼した仮焼
粉に1200℃で仮焼した低温仮焼粉を添加することによ
り、分布が微粉側にシフトすることが判った。
FIG. 2 shows the results of particle size distribution measurement of finely pulverized powder in this example. This particle size distribution shows the case of the present invention example in which 20 wt% of the low temperature calcinated powder calcined at 1200 ° C. is added to the calcinated powder calcined at 1275 ° C. and the case of the conventional example in which the low temperature calcinated powder is not added. It is a comparison. As is clear from the results shown in this figure, the distribution shifts to the fine powder side by adding the low-temperature calcined powder calcined at 1200 ° C to the calcined powder calcined at the normal calcination temperature of 1275 ° C. I understood.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上説明したように本発明製造方法によ
れば、Srフェライト仮焼粉として、通常の仮焼温度12
00℃〜1350℃で仮焼したSrフェライト仮焼粉に、磁場
中成形での配向性を劣化させることのない温度で仮焼し
た低温仮焼粉を添加したものを使用するので、微粉を多
く含有する粒度分布を示す微粉砕粉を得ることができ、
それ故に、高Brでかつ高iHcのSrフェライト磁石
を容易に製造することができる。
As described above, according to the manufacturing method of the present invention, as the Sr ferrite calcined powder, the normal calcining temperature 12
Since Sr ferrite calcined powder calcined at 00 ℃ to 1350 ℃ is added with low temperature calcined powder calcined at a temperature that does not deteriorate the orientation in molding in a magnetic field, a large amount of fine powder is used. It is possible to obtain a finely pulverized powder showing the particle size distribution contained,
Therefore, it is possible to easily manufacture the Sr ferrite magnet having high Br and high iHc.

【0029】しかも、この低温仮焼粉は、焼結促進剤や
粒成長促進剤とともに、粉砕過程の際に添加されるの
で、従来の工程をそのまま利用することができ、極めて
簡便な方法でSrフェライト磁石の特性改善を図ること
ができる。
Moreover, since this low-temperature calcined powder is added during the crushing process together with the sintering promoter and grain growth promoter, the conventional process can be used as it is, and Sr can be used in an extremely simple manner. It is possible to improve the characteristics of the ferrite magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】低温仮焼粉の添加量と磁気特性の関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the amount of low-temperature calcined powder added and magnetic properties.

【図2】微粉砕粉の粒度分布を示す図である。FIG. 2 is a diagram showing a particle size distribution of finely pulverized powder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料を1200〜1350℃の温度で仮焼し粉砕
して得られるSrフェライト仮焼粉を、その後、粉砕し
磁場中で成形してから、本焼成して酸化物永久磁石を製
造する方法に当たり、 前記成形に供する仮焼粉として、上記Srフェライト仮
焼粉に対して、さらに1150℃以上でかつ前記仮焼温度以
下の温度域で仮焼したSrフェライト粉を5〜25wt%添
加したものを用いることを特徴とする酸化物永久磁石の
製造方法。
1. An Sr ferrite calcined powder obtained by calcining and pulverizing a raw material at a temperature of 1200 to 1350 ° C., then pulverizing and molding in a magnetic field, and then main-calcining the oxide permanent magnet. In the method for producing, as the calcined powder to be subjected to the molding, 5 to 25 wt% of Sr ferrite powder calcined in the temperature range of 1150 ° C. or higher and the calcining temperature or lower is added to the Sr ferrite calcined powder. A method for producing an oxide permanent magnet, characterized in that an additive is used.
JP4215006A 1992-08-12 1992-08-12 Manufacture of oxide permanent magnet Pending JPH0661029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4215006A JPH0661029A (en) 1992-08-12 1992-08-12 Manufacture of oxide permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4215006A JPH0661029A (en) 1992-08-12 1992-08-12 Manufacture of oxide permanent magnet

Publications (1)

Publication Number Publication Date
JPH0661029A true JPH0661029A (en) 1994-03-04

Family

ID=16665154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4215006A Pending JPH0661029A (en) 1992-08-12 1992-08-12 Manufacture of oxide permanent magnet

Country Status (1)

Country Link
JP (1) JPH0661029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416476A (en) * 2011-12-09 2012-04-18 东阳市金砖磁业有限公司 Method for preparing low-resistivity ferrite magnet material
JP2014207282A (en) * 2013-04-11 2014-10-30 Fdk株式会社 Magnetic material, magnetic ceramic composition, ferrite magnet, and method for manufacturing magnetic ceramic composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416476A (en) * 2011-12-09 2012-04-18 东阳市金砖磁业有限公司 Method for preparing low-resistivity ferrite magnet material
JP2014207282A (en) * 2013-04-11 2014-10-30 Fdk株式会社 Magnetic material, magnetic ceramic composition, ferrite magnet, and method for manufacturing magnetic ceramic composition

Similar Documents

Publication Publication Date Title
TWI434302B (en) Oxide magnetic material and preparation method thereof, and ferrite iron sintered magnet and preparation method thereof
JP4506989B2 (en) Ferrite magnetic material, ferrite sintered magnet and manufacturing method thereof
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
US5958284A (en) Ferrite magnet and method for producing same
US20070009767A1 (en) Ferrite magnetic material and method for producing hexagonal w type ferrite magnetic material
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JPH0661029A (en) Manufacture of oxide permanent magnet
JPH0766027A (en) Manufacture of strontium ferrite magnet
JPH11307331A (en) Ferrite magnet
JP2908631B2 (en) Manufacturing method of ferrite magnet
JP2002141212A (en) Rotating machine
KR102357085B1 (en) Magnetic powder and manufacturing method of magnetic powder
JP2002343616A (en) Method for manufacturing oxide containing rare earth element
JPH03177002A (en) Manufacture of strontium ferrite magnet having high residual flux density and coercive force
JPS58156575A (en) Manufacture of oxide permanent magnet
JPH0438807A (en) Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force
JP2007191374A (en) Method for producing ferrite magnetic material
JPS6050324B2 (en) Manufacturing method of oxide permanent magnet
JP2006001752A (en) Method for production of ferrite magnetic material
KR20200090038A (en) Method for preparing ferrite sintered magnet and ferrite sintered magnet
JPH0653020A (en) Oxide permanent magnet
JPH0529122A (en) Production of magnetic powder for ferrite magnet
JPH0562818A (en) Method of manufacturing oxide permanent magnet