JPH08259842A - Coated inorganic powder and its production - Google Patents

Coated inorganic powder and its production

Info

Publication number
JPH08259842A
JPH08259842A JP7086298A JP8629895A JPH08259842A JP H08259842 A JPH08259842 A JP H08259842A JP 7086298 A JP7086298 A JP 7086298A JP 8629895 A JP8629895 A JP 8629895A JP H08259842 A JPH08259842 A JP H08259842A
Authority
JP
Japan
Prior art keywords
powder
paste
inorganic substance
inorganic
thiol compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7086298A
Other languages
Japanese (ja)
Inventor
Mamoru Kamiyama
守 上山
Yuji Kishigami
裕次 岸上
Kenji Daito
憲治 大東
Noboru Suzuki
昇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Kagaku Kogyo KK
Original Assignee
Daiken Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Kagaku Kogyo KK filed Critical Daiken Kagaku Kogyo KK
Priority to JP7086298A priority Critical patent/JPH08259842A/en
Publication of JPH08259842A publication Critical patent/JPH08259842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: To obtain coated inorganic powder by coating the surface of powder of an inorganic substance with an organic thiol compound or a reaction product of the compound and an inorganic substance, hating high dispersibility in a thick film paste, capable of being readily made into a paste, excellent in printability and coating performance. CONSTITUTION: An inorganic substance such as a smoky silver powder produced by a wet method is sufficiently coated with an organic thiol compound such as octadecyl thiol by pouring the organic thiol compound, shaken and stirred for 10 minutes to give a suspension, which is allowed to stand for 8 hours to treat the surface of the inorganic substance. The suspension is decanted to separate and remove the supernatant liquid. The remaining inorganic substance powder is cleaned with hexane, etc., the inorganic substance is settled, the mixture is decanted to separate and remove the remaining organic thiol compound, the inorganic substance is dried to give the objective coated inorganic powder comprising the powder of the inorganic substance whose surface is coated with the organic thiol compound and/or the reaction product of the compound and the inorganic substance, having high dispersibility in a thick film paste, capable of being readily made into a paste.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分散性に優れた高品質の
金属粉などの無機粉体およびその製造法に関する。本発
明の金属粉体は電子部品用の電極材料の厚膜ペーストお
よび装飾用のペーストなどに用いることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-quality inorganic powder such as metal powder having excellent dispersibility and a method for producing the same. The metal powder of the present invention can be used as a thick film paste of an electrode material for electronic parts, a paste for decoration, and the like.

【0002】[0002]

【従来の技術および課題】セラミック電子部品、電子回
路部品の製造にあたり、セラミックス体の表面や内部に
微細且つ緻密で平滑な導体層、抵抗体層を形成するに
は、一般に厚膜ペーストを用いた厚膜印刷法が用いられ
る。厚膜印刷法は金属単体や合金、あるいは金属酸化物
などの金属粉体を有機バインダに分散してペースト状と
し、これを未焼結のセラミックスグリーンケーキ、又は
焼結したセラミックスに印刷又は塗布し高温で焼成して
焼付を行う。ここで用いられるペーストは、金属粉体お
よび有機バインダ(有機ビヒクル)を、必要に応じてガラ
ス物質などの無機バインダや他の添加剤と共に均一に混
合分散してペースト状としたものである。厚膜ペースト
に配合される金属粉体は、スクリーン印刷や塗布された
場合に、緻密且つ平滑でピンホールや突起などのない一
様な金属膜を形成する必要がある。このため金属粉体は
ペーストに配合される他の成分に対し、濡れ性や分散性
を示すよう金属粒子の純度、大きさ、形状などが適正に
制御されたものでなけらばならない。
2. Description of the Related Art In manufacturing ceramic electronic parts and electronic circuit parts, a thick film paste is generally used to form a fine, dense and smooth conductor layer and a resistor layer on the surface or inside of a ceramic body. Thick film printing method is used. In the thick film printing method, metal powder such as simple metal, alloy, or metal oxide is dispersed in an organic binder to form a paste, which is printed or applied on an unsintered ceramic green cake or a sintered ceramic. Baking is performed by baking at a high temperature. The paste used here is a paste in which metal powder and an organic binder (organic vehicle) are uniformly mixed and dispersed together with an inorganic binder such as a glass substance and other additives as required. The metal powder blended in the thick film paste is required to form a dense and smooth metal film having no pinholes or protrusions when screen-printed or applied. For this reason, the metal powder must be properly controlled in terms of purity, size, shape, etc. of the metal particles so as to exhibit wettability and dispersibility with respect to other components mixed in the paste.

【0003】このような金属粉体としては、金属酸化物
粉を直接還元する方法、金属化合物の水溶液にアルカリ
を作用させて水酸化物あるいは酸化物とし、ついでこの
生成物に還元剤を作用させて金属粉とする方法などがあ
る。また、金属化合物の水溶液に直接還元剤を作用させ
て金属粉を還元、生成することにより製造することもで
きる(湿式還元法)。さらに別法としては、気相中である
いは不活性気相中や真空中で溶融した金属を蒸発させ、
これを凝縮析出させる方法、あるいは有機金属化合物の
ような前駆体を蒸発させてから分解−還元する方法、ア
トマイズ法により微粉体の金属粉を形成する方法などが
ある。
As such a metal powder, a method of directly reducing a metal oxide powder, an alkali is applied to an aqueous solution of a metal compound to form a hydroxide or an oxide, and then a reducing agent is allowed to act on this product. There is a method of making metal powder. Further, it can also be produced by directly acting a reducing agent on an aqueous solution of a metal compound to reduce and generate metal powder (wet reduction method). As a further alternative, evaporate the molten metal in the gas phase or in an inert gas phase or in a vacuum,
There are a method of condensing and depositing this, a method of decomposing and reducing after evaporating a precursor such as an organometallic compound, and a method of forming fine metal powder by an atomizing method.

【0004】このような方法により得られる金属粉は、
粒径が約10μm以上と比較的粗い固体粉体から、粒径
が10μm前後の粉末、あるいは10〜1μmの微粉末
やサブミクロン級の超微粉などがある。
The metal powder obtained by such a method is
From a relatively coarse solid powder having a particle size of about 10 μm or more, a powder having a particle size of around 10 μm, a fine powder having a particle size of 10 to 1 μm, and an ultrafine powder of a submicron class.

【0005】さらに、かかる金属粉はその製造方法によ
って粉体物性上、固有の特徴を有する。すなわち、湿式
還元法で製造した金属粉は出発原料の種類や形態、これ
の酸化剤あるいは還元剤の種類、反応条件などが複雑に
相互に作用するため、従来からの経験的に確立された化
学技術による制御では凝集性が極めて強く、また有機媒
体にも濡れにくい。このため、従来公知のペースト加工
用の資機材では分散性に優れた金属ペーストは得られな
い。
Further, such a metal powder has a unique characteristic in terms of powder physical properties depending on its manufacturing method. That is, the metal powder produced by the wet reduction method interacts in a complicated manner with respect to the type and form of the starting material, the type of oxidizing agent or reducing agent thereof, the reaction conditions, etc. Controlled by the technology, the cohesiveness is extremely strong and it is difficult to wet the organic medium. For this reason, a metal paste excellent in dispersibility cannot be obtained with conventionally known materials for paste processing.

【0006】一方、アトマイズ法では生成する金属粉の
粒径が制御しにくい欠点がある。さらに、熔融金属を蒸
発させて気相とし、これを凝縮析出させるいわゆるCV
D(Chemical Vapar Deposition)法や、PVD(Phisical
Vapar Deposition)法などのような蒸気析出法ではサブ
ミクロン級の超微粉が得られるが、このような金属粉
は、粉体相互の凝集力が非常に強く二次凝集を生じ分散
性に優れた金属粉は得にくい。
On the other hand, the atomizing method has a drawback that it is difficult to control the particle size of the metal powder produced. Further, a so-called CV for evaporating the molten metal into a vapor phase and condensing and depositing this
D (Chemical Vapar Deposition) method and PVD (Phisical Vapor Deposition) method
Although vapor deposition methods such as the Vapar Deposition method can produce submicron-sized ultrafine powders, such metal powders have very strong cohesive forces among the powders and have excellent secondary dispersibility. It is difficult to obtain metal powder.

【0007】このように従来の製造法では、いずれもペ
ーストの原料金属粉として好適な粒径や粉体形態を有
し、二次凝集が少なく分散性に優れた金属粉は得られて
いない。
As described above, none of the conventional manufacturing methods has obtained a metal powder having a particle size and a powder morphology suitable as a raw material metal powder for a paste, and having little secondary aggregation and excellent dispersibility.

【0008】さらに、金属粉の表面は金属粉内部に比べ
て化学的にも物理的にも活性が高い。このために、通常
の金属粉の表面は酸化物、又は水酸化物で覆われてお
り、通常親水性を有する。またその反面、有機溶媒や有
機バインダには極めて濡れにくい。このため、従来、粒
子レベルで金属粉が充分に分散した厚膜ペーストは得ら
れていない。
Further, the surface of the metal powder is chemically and physically more active than the inside of the metal powder. For this reason, the surface of ordinary metal powder is covered with oxide or hydroxide, and usually has hydrophilicity. On the other hand, it is extremely difficult to get wet with an organic solvent or an organic binder. Therefore, conventionally, a thick film paste in which metal powder is sufficiently dispersed at the particle level has not been obtained.

【0009】本発明の目的は、分散性が高く容易に厚膜
ペーストなどとしてペースト化でき、優れた印刷性や塗
布性の得られる高品質の無機物質粉体、特に金属粉を提
供することにある。また、本発明の他の目的はこのよう
な無機粉体を容易に且つ効率的に製造する方法を提供す
ることにある。
An object of the present invention is to provide a high-quality inorganic substance powder, particularly a metal powder, which has high dispersibility and can be easily formed into a thick film paste or the like, and which has excellent printability and coatability. is there. Another object of the present invention is to provide a method for easily and efficiently producing such an inorganic powder.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記の課
題について鋭意検討した結果、金属粉体など無機粉体を
有機チオール化合物により表面処理することにより優れ
た分散性が得られるとの知見を得て本発明を完成するに
至った。
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have found that excellent dispersibility can be obtained by surface-treating an inorganic powder such as a metal powder with an organic thiol compound. The present invention has been completed based on the knowledge obtained.

【0011】本発明は金属など無機物質の粉体の表面
を、有機チオール化合物で被覆してなる被覆無機粉体を
提供するものである。この被覆は前記無機物質と有機チ
オール化合物との反応生成物であってもよく、該反応生
成物と有機チオール化合物とが混ざったものであっても
よい。また、本発明は無機粉体を有機チオール化合物で
処理することを特徴とする被覆無機粉体の製造法を提供
するものである。本発明の被覆無機粉体は、コアをなす
無機粉体とその表面物性を改質する改質シェル層からな
る。
The present invention provides a coated inorganic powder obtained by coating the surface of a powder of an inorganic substance such as metal with an organic thiol compound. This coating may be a reaction product of the inorganic substance and the organic thiol compound, or may be a mixture of the reaction product and the organic thiol compound. The present invention also provides a method for producing a coated inorganic powder, which comprises treating the inorganic powder with an organic thiol compound. The coated inorganic powder of the present invention comprises an inorganic powder that forms a core and a modified shell layer that modifies its surface properties.

【0012】前記の無機粉体としては、金、銀、パラジ
ウム、ロジウム、イリジウム、レニウム、ルテニウムな
どの貴金属粉体;銅、ニッケル、コバルト、鉄、アルミ
ニウム、モリブデン、タングステン等の卑金属粉体;そ
れらの均一混合物又は合金粉体、あるいはこれらの酸化
物などの粉体が挙げられる。さらに、その他酸化カルシ
ウム、酸化バリウムなど、通常の酸化物セラミックス
粉、シリコンカーバイトやアルミニウムナイトライドな
どのような非酸化物セラミックなどの粉体であってもよ
いが、金属粉体が特に好ましい。金属粉体である場合、
粉体は湿式法、還元法、湿式還元法、アトマイズ法など
従来公知の化学的、物理的方法により得られた金属粉体
がいずれも好適に用いることができる。
Examples of the above-mentioned inorganic powder include noble metal powders such as gold, silver, palladium, rhodium, iridium, rhenium and ruthenium; base metal powders such as copper, nickel, cobalt, iron, aluminum, molybdenum and tungsten; And a powder of an oxide or the like. Further, other oxide powders such as ordinary oxide ceramic powders such as calcium oxide and barium oxide and non-oxide ceramics such as silicon carbide and aluminum nitride may be used, but metal powders are particularly preferable. If it is a metal powder,
As the powder, any metal powder obtained by a conventionally known chemical or physical method such as a wet method, a reduction method, a wet reduction method, or an atomizing method can be preferably used.

【0013】無機粉体は、粒径が大き過ぎると懸濁液中
で沈降するなどの障害が生じ、粒径が小さすぎると凝集
体を形成しやすいのでその対策を要する。通常、粒径は
0.01〜10μmが好ましく、0.05〜5μmである
のが特に好ましいが、用途に応じて適宜選定してよい。
If the particle size of the inorganic powder is too large, problems such as sedimentation in the suspension occur, and if the particle size is too small, aggregates are likely to be formed, and therefore countermeasures are required. Usually, the particle size is preferably 0.01 to 10 μm, and particularly preferably 0.05 to 5 μm, but it may be appropriately selected depending on the application.

【0014】被覆物質である有機チオール化合物は、R
(SH)n(Rは炭化水素誘導体ラジカル、n=1〜3)
で表される。かかる有機チオール化合物としては、メチ
ルチオール、エチルチオール、プロピルチオール、ブチ
ルチオール、ヘプチルチオール、ヘキシルチオール、オ
クチルチオール、ノニルチオール、デシルチオール、ウ
ンデシルチオール、ドデシルチオール、テトラデシルチ
オール、オクタデシルチオールなどのようなCnH2
+1SHで表される脂肪族チオール化合物やこれらのジチ
オールなどの多官能チオール、チオフエノール、トルエ
ンチオール、ナフタレンチオール、ビフエニルチオー
ル、ターフェニルチオールのような芳香族チオール化合
物、あるいは
The organic thiol compound which is the coating substance is R
(SH) n (R is a hydrocarbon derivative radical, n = 1 to 3)
It is represented by. Such organic thiol compounds include methylthiol, ethylthiol, propylthiol, butylthiol, heptylthiol, hexylthiol, octylthiol, nonylthiol, decylthiol, undecylthiol, dodecylthiol, tetradecylthiol, octadecylthiol, etc. CnH 2 n
An aliphatic thiol compound represented by +1 SH, a polyfunctional thiol such as dithiol thereof, thiophenol, toluenethiol, naphthalenethiol, biphenylthiol, aromatic thiol compound such as terphenylthiol, or

【化1】 などチオールターミネーテッドオリゴイミド化合物など
が例示される。
Embedded image Examples thereof include thiol terminated oligoimide compounds.

【0015】つぎに、本発明の被覆無機粉体の製造法に
ついて説明する。本発明の被覆無機粉体を製造するに
は、前記の無機物質の粉体を有機チオール化合物で処理
する。処理にあたっては、有機チオール化合物をそのま
ま用いてもよく、また該化合物を有機溶媒に分散又は溶
解して用いてもよい。このような有機チオール化合物又
はその溶液、分散液に無機粉体を分散し、この懸濁液を
静置又は撹拌して無機粉体の表面に有機チオール化合物
を被覆、又は反応結合させる。
Next, the method for producing the coated inorganic powder of the present invention will be described. In order to produce the coated inorganic powder of the present invention, the powder of the above inorganic substance is treated with an organic thiol compound. In the treatment, the organic thiol compound may be used as it is, or the compound may be dispersed or dissolved in an organic solvent before use. Inorganic powder is dispersed in such an organic thiol compound or a solution or dispersion thereof, and this suspension is left standing or stirred to coat or reactively bond the surface of the inorganic powder with the organic thiol compound.

【0016】有機溶媒としては、ヘキサン、ノナンデカ
ン、ウンデカン、ドデカン、テトラデカン、オクタデカ
ンなどの高級炭化水素化合物は高温処理の場合には好ま
しく用いられるが処理温度によっては比較的に沸点の低
い炭化水素でもよい。またこのような目的から脂肪族ア
ルコール、芳香族アルコール、ケトン類、エーテル類、
エステル類など不反応性もしくは反応性の低いものであ
れば特に制限されない。
As the organic solvent, higher hydrocarbon compounds such as hexane, nonanedecane, undecane, dodecane, tetradecane and octadecane are preferably used in the case of high temperature treatment, but hydrocarbons having a relatively low boiling point may be used depending on the treatment temperature. . For such purposes, aliphatic alcohols, aromatic alcohols, ketones, ethers,
There is no particular limitation as long as it is a non-reactive or low-reactive substance such as an ester.

【0017】無機粉体の懸濁液を調製するにあたって、
混合分散を促進するため撹拌が有効であるが、撹拌は粒
子同士が相互に反応したり焼結現象を起こすものでなけ
れば機械的でも物理的であってもよい。
In preparing a suspension of inorganic powder,
Stirring is effective for promoting mixing and dispersion, but stirring may be mechanical or physical as long as particles do not react with each other or cause a sintering phenomenon.

【0018】処理温度は処理時間を考慮し無機粒子相互
間の反応を避けるよう適宜に選定されるが、通常、室温
以上である。処理温度が高い程処理効率は向上するの
で、無機粒子相互の反応が生じない温度以下にまで昇温
することが好ましい。表面処理は有機溶媒の沸騰温度で
還流しながら処理すると、無機粒子の表面処理における
処理温度及び表面処理濃度の制御が容易である。なお、
系の沸騰温度以上、すなわち高温気相中で処理すると無
機物質の外形や内部構造の細部にも系の表面張力の影響
のない状態で処理が均一に進むのでさらに好ましい。こ
のようにして懸濁液中で表面処理を施した無機粉体は表
面処理物質、すなわちチオール化合物および/またはチ
オール化合物と無機物質の反応生成物で均一に処理され
ている。このため極めて高品質な分散性の高い無機物質
粉体に改善される。
The treatment temperature is appropriately selected in consideration of the treatment time so as to avoid the reaction between the inorganic particles, but it is usually room temperature or higher. Since the treatment efficiency increases as the treatment temperature increases, it is preferable to raise the treatment temperature to a temperature at which the mutual reaction of the inorganic particles does not occur. When the surface treatment is carried out while refluxing at the boiling temperature of the organic solvent, it is easy to control the treatment temperature and the surface treatment concentration in the surface treatment of the inorganic particles. In addition,
It is more preferable to carry out the treatment at a temperature above the boiling temperature of the system, that is, in a high temperature gas phase, because the treatment can proceed uniformly without any influence of the surface tension of the system on the outer shape of the inorganic substance and the details of the internal structure. The inorganic powder thus surface-treated in the suspension is uniformly treated with a surface-treating substance, that is, a thiol compound and / or a reaction product of the thiol compound and the inorganic substance. For this reason, the quality of the inorganic substance powder is extremely high and has high dispersibility.

【0019】本発明による表面被覆無機粉体は、粉体が
金属物質の場合には本発明者らの推定によればM・・・・
(SH)Rまたは、M−(SR)の構成になっているものと
思われる。
The surface-coated inorganic powder according to the present invention is, when the powder is a metal substance, estimated by the present inventors to be M ...
It seems that it has a composition of (SH) R or M- (SR).

【0020】本発明の被覆無機粉体は、金属粉体の場
合、常法により有機バインダ、溶剤等と混練し、電子材
料の電極材料に、またその他装飾品用として優れた品質
を有する。また焼成後の金属膜が均一であるので塗膜の
品質も高く高価な貴金属粉などの場合には原料使用量の
低減をも図ることができる。
The coated inorganic powder of the present invention, in the case of metal powder, is kneaded with an organic binder, a solvent and the like by a conventional method, and has excellent quality as an electrode material for electronic materials and other decorative articles. Further, since the metal film after baking is uniform, the quality of the coating film is high and in the case of expensive precious metal powder, the amount of raw material used can be reduced.

【0021】さらに、本発明によれば金属粉体相互の反
応、焼結現象がないのみならず、凝集もなく有機チオー
ル化合物および/または該チオール化合物と金属物質と
の反応生成物で表面が被覆できる。したがって、従来、
厚膜ペーストに加工する工程で生じていた金属粉体の凝
集や金属学的な、融着による結合あるいはペースト加工
工程で生じる粉体の粉体形状の変形などの問題も解消で
きる。したがって、従来、金属粉の取り扱い時に問題と
なっていたペースト中での不均一な分散に関わる問題が
全く解消する。本発明の被覆無機粉体は、このように分
散性が良好で、高品質の表面処理金属粉が容易に製造で
きる。
Further, according to the present invention, the surface is coated with the organic thiol compound and / or the reaction product of the thiol compound and the metal substance without causing the mutual reaction and sintering phenomenon of the metal powders and the aggregation. it can. Therefore, conventionally,
Problems such as agglomeration of metal powder generated in the process of processing into a thick film paste, metallurgical bonding by fusion, or deformation of the powder shape of the powder caused in the paste processing process can be solved. Therefore, the problem relating to the non-uniform dispersion in the paste, which has been a problem when handling metal powders, can be completely eliminated. The coated inorganic powder of the present invention has good dispersibility as described above, and high-quality surface-treated metal powder can be easily produced.

【0022】[0022]

【実施例】つぎに本発明を実施例に基づきさらに具体的
に説明する。
EXAMPLES Next, the present invention will be described more specifically based on examples.

【0023】[実施例1]湿式法により製造したスモー
ク状銀粉(粒度1μm:沈降法)100gに、オクタデシ
ルチオール50gを注いで銀粉を充分に覆った。10分
間振盪撹拌して懸濁液とした後、8時間静置して銀粉の
表面処理を行った。この懸濁液をデカンテーションして
上澄液を分離除去した。残留した銀粉にさらにヘキサン
を過剰量加えて洗浄した後、銀粉を沈降させ、同様にデ
カンテーションして残存する遊離のオクタデシルチオー
ルを分離回収した。同様の洗浄処理を合計3回繰り返し
てから、得られた銀粉を2時間室温にて乾燥し、表面処
理されたスモーク銀粉を得た。得られた銀粉をSEM観
察したところ処理前の状態と外見的には変化はなく、銀
粉相互にあらたに金属学的または化学的、物理的に結合
した様な形態は全くみられなかった。
Example 1 To 100 g of smoked silver powder (particle size 1 μm: sedimentation method) produced by a wet method, 50 g of octadecyl thiol was poured to sufficiently cover the silver powder. The mixture was shaken and stirred for 10 minutes to form a suspension, and then left standing for 8 hours to perform surface treatment of silver powder. The suspension was decanted to separate and remove the supernatant. Hexane was further added to the residual silver powder to wash it, and then the silver powder was allowed to settle and similarly decanted to separate and collect the remaining free octadecylthiol. The same washing treatment was repeated 3 times in total, and the obtained silver powder was dried at room temperature for 2 hours to obtain surface-treated smoked silver powder. When the obtained silver powder was observed by SEM, there was no apparent change from the state before the treatment, and no morphology such as a new metallurgical, chemical, or physical bond between the silver powders was observed.

【0024】つぎに、この表面処理した銀粉100gに
対して、エチルセルロース3gを溶解したテルピネオー
ル15gの溶液を添加し、三本ロールで銀粉の粒子が変
形しない範囲で10分間軽く混練してペーストに加工し
た。得られたペースト中の銀粉粒子の変形はほとんどみ
られなかった。
Next, a solution of 15 g of terpineol in which 3 g of ethyl cellulose was dissolved was added to 100 g of the surface-treated silver powder, and the mixture was lightly kneaded with a triple roll for 10 minutes within a range in which the particles of the silver powder were not deformed to form a paste. did. Almost no deformation of the silver powder particles in the obtained paste was observed.

【0025】得られたペーストを用いて、研磨アルミナ
基板(アルミナ含有率96%)にスクリーン印刷法で厚膜
(厚さ10μm)を形成し、大気炉で650℃にて焼成し
銀厚膜を焼付けた。焼付けられた銀厚膜の表面粗さはR
maxで0.5μmであった。
Using the obtained paste, a thick film was formed on a polished alumina substrate (alumina content of 96%) by screen printing.
(Thickness 10 μm) was formed and baked in an air furnace at 650 ° C. to print a silver thick film. The surface roughness of the baked thick silver film is R
The maximum value was 0.5 μm.

【0026】[比較例1]実施例1と同様にして、但しオ
クタデシルチオールによる表面処理を行わずに、エチル
セルロースを溶解したテルピネオールの溶液を添加、混
練してペーストとした。このペーストは感覚的に判定し
たところではざらざらでペースト状態を示さなかった。
そこで更に30分強くロール混練してペーストに仕上げ
た。得られたペーストはSEM観察したところ銀粉粒子
が偏平に変形していた。このペーストを用い、実施例1
と同様の方法でアルミナ基板上に銀厚膜を焼付けた。厚
膜の表面粗さはRmaxで2.5μmと著しく粗く、また表
面に激しく凹凸が発生していた。
Comparative Example 1 In the same manner as in Example 1, except that the surface treatment with octadecylthiol was not performed, a solution of terpineol in which ethyl cellulose was dissolved was added and kneaded to obtain a paste. This paste was rough when judged sensuously and did not show a paste state.
Then, the mixture was further roll-kneaded for 30 minutes to complete the paste. When the obtained paste was observed by SEM, the silver powder particles were flatly deformed. Using this paste, Example 1
A thick silver film was baked on an alumina substrate in the same manner as in. The surface roughness of the thick film was Rmax of 2.5 μm, which was extremely rough, and the surface was markedly roughened.

【0027】[実施例2]湿式法により製造したスモー
ク状金粉(平均粒径1.0μm:沈降法)100gに、オ
クタデシルチオール50gを注いで銀粉を充分に覆っ
た。10分間振盪撹拌して懸濁液とした後、24時間静
置して金粉の表面処理を行った。この懸濁液をデカンテ
ーションして上澄液を分離除去した。残留した金粉にさ
らにヘキサンを過剰量加えて洗滌した後、金粉を沈降さ
せ、同様にデカンテーションして残存する遊離のオクタ
デシルチオールを分離除去した。同様の洗浄処理を合計
3回繰り返してから、得られた金粉を室温にて2時間乾
燥し、表面処理されたスモーク金粉を得た。得られた金
粉をSEM観察したところ処理前の状態とほとんど変化
がなく、粉体相互間の金属学的な結合反応は全くみられ
なかった。つぎに、この表面処理した金粉100gに対
して、エチルセルロース3gを溶解したブチルカルビト
ール15gの溶液を添加し、シリコンゴムロールを用い
て金粉粒子の形状が変形しない範囲で10分間軽く混練
してペーストに加工した。得られたペースト中の金粉は
ほとんど混練前の形状と変わらなかった。
Example 2 100 g of smoked gold powder (average particle size 1.0 μm: sedimentation method) produced by a wet method was poured with 50 g of octadecylthiol to sufficiently cover the silver powder. The mixture was shaken and stirred for 10 minutes to give a suspension, which was then left to stand for 24 hours for surface treatment of the gold powder. The suspension was decanted to separate and remove the supernatant. Hexane was further added to the remaining gold powder to wash it, and then the gold powder was allowed to settle and similarly decanted to separate and remove the remaining free octadecylthiol. The same washing treatment was repeated a total of three times, and then the obtained gold powder was dried at room temperature for 2 hours to obtain a surface-treated smoked gold powder. When the obtained gold powder was observed by SEM, there was almost no change from the state before the treatment, and no metallurgical binding reaction between the powders was observed at all. Next, to 100 g of the surface-treated gold powder, a solution of 15 g of butyl carbitol in which 3 g of ethyl cellulose was dissolved was added, and the mixture was lightly kneaded with a silicon rubber roll for 10 minutes within a range where the shape of the gold powder particles was not deformed to form a paste. processed. The gold powder in the obtained paste was almost the same as the shape before kneading.

【0028】得られたペーストを用いて、実施例1と同
様にして研磨アルミナ基板で金厚膜(厚さ5μm)を焼き
付けた。焼付けられた銀厚膜の表面粗さはRmaxで0.3
μmであった。
Using the obtained paste, a gold thick film (thickness 5 μm) was baked on a polished alumina substrate in the same manner as in Example 1. The surface roughness of the baked thick silver film is 0.3 at Rmax.
μm.

【0029】[比較例2]実施例2で用いた金粉100g
を、オクタデシルチオールによる表面処理を行わずに、
エチルセルロース3gを溶解したテルピネオール15g
の溶液を添加して、シリコンゴムロールで10分間軽く
混練してペーストとした。このペーストはざらざらして
おり、つやのあるペーストにはならなかった。そこで更
に30分間ロール混練を追加してペーストに仕上げた。
得られたペーストはSEM観察したところペースト中の
スモーク金は、多数の粒子が相互に金属学的に融着して
おり、また偏平に著しく変形していた。このペーストを
用い、実施例2と同様の方法でアルミナ基板上に5μm
の厚さの金厚膜を焼付けた。厚膜の表面粗さはRmaxで
2μmであり著しく表面が粗く光沢も劣っていた。
Comparative Example 2 100 g of gold powder used in Example 2
Without surface treatment with octadecyl thiol,
15 g of terpineol in which 3 g of ethyl cellulose was dissolved
The above solution was added and the mixture was lightly kneaded with a silicon rubber roll for 10 minutes to obtain a paste. The paste was rough and did not give a glossy paste. Therefore, roll kneading was further added for 30 minutes to complete the paste.
SEM observation of the obtained paste revealed that many particles of the smoked gold in the paste were metallurgically fused to each other and were significantly deformed flat. Using this paste, 5 μm was formed on an alumina substrate in the same manner as in Example 2.
A thick film of gold was baked. The surface roughness of the thick film was 2 μm in Rmax, and the surface was remarkably rough and the gloss was inferior.

【0030】[実施例3]湿式還元法にて製造した球状
銀粉(平均粒径1.0μm、SEM観測)100gに、1
0gのオクタデシルチオールを含有するヘキサン200
gの溶液を注ぎ、4時間還流処理した。つぎに、この懸
濁液を室温に戻してからデカンテーションして上澄液を
分離し表面処理された銀粉を得た。ついで、得られた表
面処理銀粉に過剰量のヘキサンを注いで洗滌し、同様に
デカンテーションして残存するオクタデシルチオールを
分離除去した。この洗浄操作を合計3回繰返してから室
温で2時間乾燥して表面処理された銀粉を得た。
Example 3 To 100 g of spherical silver powder (average particle size 1.0 μm, observed by SEM) produced by the wet reduction method, 1
Hexane 200 containing 0 g of octadecyl thiol
g solution was poured and refluxed for 4 hours. Next, this suspension was returned to room temperature and then decanted to separate a supernatant liquid to obtain a surface-treated silver powder. Then, an excess amount of hexane was poured into the obtained surface-treated silver powder to wash it, and decantation was performed in the same manner to separate and remove the remaining octadecylthiol. This washing operation was repeated three times in total and then dried at room temperature for 2 hours to obtain a surface-treated silver powder.

【0031】この銀粉はSEM観察したところ、球状銀
粉体の周囲が白色に近い輪郭を形成しており、表面処理
がなされていることをうかがわせた。また熱天秤による
熱分解挙動を追跡したところ、オクタデシルチオール単
独の熱分解温度より30℃程高温域にシフトするととも
に熱分解がゆっくりと進み、オクタデシルチオールが化
学的に結合した状態であることが推測された。
The SEM observation of this silver powder showed that the periphery of the spherical silver powder had a contour close to white, suggesting that the surface treatment was performed. Also, when the thermal decomposition behavior was traced by a thermobalance, it was estimated that octadecylthiol was in a chemically bonded state, with a shift to a temperature range of about 30 ° C higher than the thermal decomposition temperature of octadecylthiol alone, and thermal decomposition proceeded slowly. Was done.

【0032】つぎに、この表面処理された銀粉100g
にエチルセルロース3gを溶解したテルピネオール10
gの溶液を添加し、三本ロールで10分間軽く混練して
ペーストにした。得られたペーストではペースト中の球
状銀粉粒子はほとんど変形が見られず且つSEM観察レ
ベルでは凝集粉体のない均一な分散状態を成していた。
ついで、このペーストを用いて実施例1と同様にして銀
厚膜を10μmの厚さで焼付けた。このようにして得ら
れた銀厚膜の表面粗さはRmaxで1.0〜1.5μmであ
り異状な凹凸は全く見られなかった。
Next, 100 g of this surface-treated silver powder
Terpineol 10 in which 3 g of ethyl cellulose was dissolved in
g of the solution was added, and the mixture was lightly kneaded with a triple roll for 10 minutes to form a paste. In the obtained paste, the spherical silver powder particles in the paste showed almost no deformation, and at the SEM observation level, a uniform dispersed state without aggregated powder was formed.
Then, a silver thick film having a thickness of 10 μm was baked using this paste in the same manner as in Example 1. The surface roughness of the thick silver film thus obtained was 1.0 to 1.5 μm in Rmax, and no irregularities were found.

【0033】[比較例3]実施例3と同様にして、但し
オクタデシルチオールによる表面処理を行わずに、エチ
ルセルロースを溶解したテルピネオールの溶液を添加
し、実施例3と同一条件で30分間ロール混練してペー
ストを製造した。このペースト中の銀粉の粒子はSEM
観察したところ粉体相互の間で金属学的な融着が生じて
おり変形も著しく進み偏平な形状になっていた。つぎ
に、このペーストを用い、実施例1と同様の工程でアル
ミナ基板上に10μmの銀厚膜を形成したところ表面粗
さはRmaxで2.5〜3μmと粗く著しい凹凸がみられ
た。
Comparative Example 3 In the same manner as in Example 3, except that the surface treatment with octadecylthiol was not carried out, a solution of terpineol in which ethyl cellulose was dissolved was added, and the mixture was roll-kneaded for 30 minutes under the same conditions as in Example 3. To produce a paste. The silver powder particles in this paste are SEM
Upon observation, metallurgical fusion was generated between the powders, and the deformation was significantly advanced, resulting in a flat shape. Next, using this paste, a silver thick film of 10 μm was formed on the alumina substrate in the same process as in Example 1, and the surface roughness was Rmax of 2.5 to 3 μm, and remarkable unevenness was observed.

【0034】[0034]

【発明の効果】本発明の被覆無機粉体は、金属などの無
機物質粒子が有機チオール化合物で化学的に極めて均一
に被覆されており、非常に分散性に優れ容易にペースト
化できる。本発明のペーストは電子部品の電極材料用厚
膜ペーストや、装飾用ペーストとして好適に用いられ
る。また、本発明の製造法によれば、極めて容易かつ効
率的に分散性に優れた無機粉体が製造でき経済性にも優
れている。
INDUSTRIAL APPLICABILITY In the coated inorganic powder of the present invention, particles of an inorganic substance such as a metal are chemically and uniformly coated with an organic thiol compound, and they have excellent dispersibility and can be easily made into a paste. The paste of the present invention is suitably used as a thick film paste for electrode materials of electronic parts and a decorative paste. In addition, according to the production method of the present invention, an inorganic powder having excellent dispersibility can be produced extremely easily and efficiently, and it is also excellent in economic efficiency.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 1/00 7244−5L H01B 1/00 A // C09D 11/00 PTF C09D 11/00 PTF (72)発明者 鈴木 昇 栃木県宇都宮市若草町1丁目2番20号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01B 1/00 7244-5L H01B 1/00 A // C09D 11/00 PTF C09D 11/00 PTF ( 72) Inventor Noboru Suzuki 1-2-20 Wakakusa-cho, Utsunomiya City, Tochigi Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 無機物質の粉体表面を、有機チオール化
合物および/または該化合物と前記無機物質との反応生
成物で被覆してなる被覆無機粉体。
1. A coated inorganic powder obtained by coating the surface of a powder of an inorganic substance with an organic thiol compound and / or a reaction product of the compound and the inorganic substance.
【請求項2】 無機物質が金属であり、有機チオール化
合物が脂肪族チオールである請求項1の被覆無機粉体。
2. The coated inorganic powder according to claim 1, wherein the inorganic substance is a metal and the organic thiol compound is an aliphatic thiol.
【請求項3】 無機物質の粉体を有機チオール化合物で
処理することを特徴とする被覆無機粉体の製造法。
3. A method for producing a coated inorganic powder, which comprises treating the powder of an inorganic substance with an organic thiol compound.
【請求項4】 有機チオール化合物による処理を有機媒
体中で行う請求項3の被覆無機粒子の製造法。
4. The method for producing coated inorganic particles according to claim 3, wherein the treatment with the organic thiol compound is carried out in an organic medium.
【請求項5】 請求項1の被覆無機粉体を含有してなる
ペースト。
5. A paste containing the coated inorganic powder according to claim 1.
JP7086298A 1995-03-17 1995-03-17 Coated inorganic powder and its production Pending JPH08259842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7086298A JPH08259842A (en) 1995-03-17 1995-03-17 Coated inorganic powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7086298A JPH08259842A (en) 1995-03-17 1995-03-17 Coated inorganic powder and its production

Publications (1)

Publication Number Publication Date
JPH08259842A true JPH08259842A (en) 1996-10-08

Family

ID=13882935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7086298A Pending JPH08259842A (en) 1995-03-17 1995-03-17 Coated inorganic powder and its production

Country Status (1)

Country Link
JP (1) JPH08259842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278593A1 (en) * 2008-04-30 2011-01-26 Hitachi Chemical Company, Ltd. Connecting material and semiconductor device
KR20140027935A (en) 2011-03-17 2014-03-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Composite nickel nanoparticles and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278593A1 (en) * 2008-04-30 2011-01-26 Hitachi Chemical Company, Ltd. Connecting material and semiconductor device
EP2278593A4 (en) * 2008-04-30 2013-08-28 Hitachi Chemical Co Ltd Connecting material and semiconductor device
KR20140027935A (en) 2011-03-17 2014-03-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Composite nickel nanoparticles and method for producing same

Similar Documents

Publication Publication Date Title
US5011804A (en) Ceramic dielectric compositions and method for improving sinterability
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP5358877B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JPH08259847A (en) Coated inorganic powder and its production
JP4213921B2 (en) Method for producing silver powder for conductive paste
WO2006070571A1 (en) Atomized gold powder, conductive gold paste using same and gold clay for decoration
JPH08259842A (en) Coated inorganic powder and its production
JP2005060779A (en) Copper powder and copper paste/paint and electrode obtained by using the same
JPH08259843A (en) Double coated inorganic powder and its production
JPH087644A (en) High temperature baking complying noble metal powder and conductor paste
JPS622003B2 (en)
JP4208705B2 (en) Method for producing metal powder
JPS5855204B2 (en) Method for producing platinum powder for printing paste
US3320057A (en) Metal structure fabrication
JP2005154861A (en) Double layer-coated copper powder, method of producing the double layer-coated copper powder, and electrically conductive paste using the double layer-coated copper powder
JPH08134501A (en) Sintered material for noble-metal product
JP3600278B2 (en) Conductive alumina-based composite ceramics and method for producing the same
JP2005163141A (en) Copper powder, its production method, flowable composition with the same blended, and electrode obtained by using the same
JP2004250751A (en) Silver powder for ceramic multi-layered substrate conductive material, and method for manufacturing the same
JPH11241103A (en) Production of spherical platinum powder to be used for platinum paste
WO2004066319A1 (en) Platinum-coated powder, method for producing same, and conductive paste
JP7069311B2 (en) How to make silver powder and conductive paste containing silver powder
KR20080114008A (en) Composition of conductor paste and manufacturing method of conductor paste using it
JP2000001707A (en) Silver particle, its production and conductor paste consisting of silver particle
JPH0796681B2 (en) Method for producing palladium-coated silver powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

A131 Notification of reasons for refusal

Effective date: 20051004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221