JP2004250751A - Silver powder for ceramic multi-layered substrate conductive material, and method for manufacturing the same - Google Patents

Silver powder for ceramic multi-layered substrate conductive material, and method for manufacturing the same Download PDF

Info

Publication number
JP2004250751A
JP2004250751A JP2003042298A JP2003042298A JP2004250751A JP 2004250751 A JP2004250751 A JP 2004250751A JP 2003042298 A JP2003042298 A JP 2003042298A JP 2003042298 A JP2003042298 A JP 2003042298A JP 2004250751 A JP2004250751 A JP 2004250751A
Authority
JP
Japan
Prior art keywords
silver powder
yttrium
oxide
silver
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003042298A
Other languages
Japanese (ja)
Other versions
JP4081387B2 (en
Inventor
Yoshiki Fukatsu
良樹 深津
Akira Nakao
章 中尾
Katsuhisa Nakayama
勝寿 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Osaki Industry Co Ltd
Original Assignee
Asahi Glass Co Ltd
Osaki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Osaki Industry Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003042298A priority Critical patent/JP4081387B2/en
Publication of JP2004250751A publication Critical patent/JP2004250751A/en
Application granted granted Critical
Publication of JP4081387B2 publication Critical patent/JP4081387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide surface-treated silver powder for a ceramic multi-layered substrate conductive material in which phosphor oxide and yttrium oxide are adhered to silver by surface treatment, and baked at a high temperature to form conductive paste of low heat shrinkage, and the paste is baked to form a conductor of low specific resistivity. <P>SOLUTION: Phosphor oxide and yttrium oxide are adhered to spherical silver particles of mean particle size of 0.1-5 μm. Silver powder for a ceramic multi-layered substrate conductor can be obtained by dissolving at least one kind selected from phosphorus acid, phosphite, hypophosphoric acid, and hypo phosphite in water-dispersion slurry of spherical silver powder of the mean particle size of 0.1-5 μm, performing surface treatment of the silver powder, adding aqueous solution of yttrium compound, adjusting pH with alkali, filtering, cleaning and drying the surface-treated silver powder, baking the silver powder at the temperature of 100-700°C under a non-oxidizing atmosphere, and washing the silver powder with aqueous acid. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック多層基板用導電材用銀粉末とその製造方法に関し、詳しくは、銀粒子の表面にリン酸化物とイットリウム酸化物とを被着してなり、高温での焼成において熱収縮率が小さいと共に、導電ペーストとし、これを焼成したとき、比抵抗率の低い導体を与えるセラミック多層基板導電材用表面処理銀粉末とその製造方法に関する。
【0002】
【従来の技術】
従来、ハイブリッドIC基板は主にアルミナ焼結体からなり、これを多層化する場合、焼結温度は1500〜1600℃である。この温度で基板と共に焼結される導体は、モリブデンやタングステンのような高融点金属でなければならない(非特許文献1参照)。しかし、このような高温度での焼成によれば、セラミックス強度や絶縁耐力の低下が避け難い。そこで、近年、1000℃以下の温度で焼結させるLTCC(低温同時焼結セラミック)が主流になりつつある。このLTCCにおいては、基板としてガラス系セラミックスが用いられ、導体として銅や銀等の比較的低融点で低抵抗率の金属が用いられている。即ち、通常、銅又は銀の粉末、有機バインダー、分散剤及び溶剤を用いて導電ペーストを調製し、これを基板上にスクリーン印刷して、かくして、得られたグリーンシートを重ね合わせて接着し、この後、この積層体を900〜1000℃で焼成して、セラミック多層基板とするのである。
【0003】
ここに、銅や銀の粉末は、導電ペーストの調製化において、ビヒクルへの分散が容易なこと、スクリーン印刷精度が高いこと等が要求され、従って、粒度分布が均一で球状の粒子であることが好ましい。また、セラミック成形体との熱収縮率の差ができるだけ小さいことが好ましい。セラミック成形体との熱収縮率の差が大きいときは、セラミック成形体と共に焼成したときに、得られるセラミック基板が反ったり、また、得られる多層基板にクラックやデラミネーションのような構造欠陥が発生する。
【0004】
そこで、銀粉末の場合、従来、熱収縮を抑制するために、銀粉末に無機酸化物を混合する方法が提案されているが、この方法によれば、絶縁体である無機酸化物を比較的多量に混合することが必要であり、従って、本来の導電材としての銀粉末の性能が損なわれる欠点があった。また、銀粒子の表面に金属酸化物を被覆する方法も提案されている(特許文献1参照)。このような方法によれば、銀粉末のスラリーに水溶性金属塩を加え、酸又はアルカリでpH調整して、銀粒子の表面に金属酸化物を付着させた後、更に、メカノケミカル法によって上記金属酸化物を銀粒子の表面に固着させるものである。しかし、このような方法によっても、金属酸化物と銀粒子との間の結合が十分でなく、グリーンシートの焼結に際して、銀粉末の熱収縮を抑制する効果は、未だ不十分であった。
【0005】
【非特許文献1】「電極および電極関連材料」アイピーシー(株)1989年発行)
【特許文献1】特開2001−240901号公報
【0006】
【発明が解決しようとする課題】
本発明は、従来のセラミック多層基板導電材用銀粉末における上述した問題を解決するためになされたものであって、表面処理によってリン酸化物とイットリウム酸化物とをその表面に被着させてなり、高温での焼成において熱収縮率が小さいと共に、導電ペーストとし、これを高温で焼成したとき、低い比抵抗率を有する導体を与えるセラミック多層基板導電材用表面処理銀粉末とその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明によれば、平均粒子径0.1〜5μmの球状の銀粒子にリン酸化物とイットリウム酸化物とを被着させたことを特徴とするセラミック多層基板導電材用銀粉末が提供される。
【0008】
特に、本発明によれば、このようなセラミック多層基板導電材用銀粉末は、五酸化リン(P、以下、同じ)換算でリン酸化物0.03〜0.70重量%と三酸化イットリウム(Y、以下、同じ)換算でイットリウム酸化物0.05〜1.0重量%が表面に被着されたものであることが好ましい。
【0009】
このようなセラミック多層基板導電材用銀粉末は、本発明に従って、平均粒子径0.1〜5μmの球状の銀粉末の水分散スラリーに亜リン酸、亜リン酸塩、次亜リン酸及び次亜リン酸塩から選ばれる少なくとも1種を溶解させて、上記銀粉末を表面処理し、次いで、イットリウム化合物の水溶液を加えた後、アルカリにてpHを調整し、次いで、このように表面処理した銀粉末を濾過し、洗浄し、乾燥し、非酸化性雰囲気下に100〜700℃の温度で焼成し、この後、酸水溶液で洗浄して、五酸化リン換算でリン酸化物0.03〜0.70重量%と三酸化イットリウム換算でイットリウム酸化物0.05〜1.0重量%を被着させることによって得ることができる。
【0010】
【発明の実施の形態】
本発明による銀粉末は、セラミック多層基板導電材として用いるものであるので、先ず、スクリーン印刷適性が重要な特性の一つとして求められる。従って、本発明によれば、母体となる銀粒子は、球状で、平均粒子径が0.1〜5μmの範囲にあることが好ましく、特に、平均粒子径が0.1〜1μmの範囲にあることが好ましい。但し、本発明において、母体となる銀粒子は、その製造方法については、何ら制限されることはない。
【0011】
本発明による銀粉末の製造について説明する。本発明による銀粉末の製造方法は、第1の工程として、銀粒子の表面をリン酸化物とイットリウム酸化物とで被着するリン/イットリウム被着工程、次いで、第2の工程として、このように、リン/イットリウム被着した銀粒子を加熱処理する焼成工程、更に、第3の工程として、このように処理した銀粒子を酸洗して、余剰のリン酸化物とイットリウム酸化物とを溶解させ、除去して、好ましくは、銀粒子に五酸化リン換算でリン酸化物0.03〜0.70重量%と三酸化イットリウム換算でイットリウム酸化物0.05〜1.0重量%を被着させる酸洗工程とからなる。以下に工程ごとに本発明の方法を詳細に説明する。
リン/イットリウム被着工程
本発明の銀粉末の製造方法によれば、先ず、銀粉末の水スラリーを調製する。このスラリー濃度は、特に、限定されるものではないが、通常、50〜300g/Lの範囲であり、好ましくは、100〜200g/Lの範囲である。次に、このスラリーを攪拌しながら、これにリン源として所定量のリン化合物の水溶液を加える。リン化合物としては、亜リン酸、亜リン酸塩、次亜リン酸及び次亜リン酸塩から選ばれる少なくとも1種が用いられる。
【0012】
本発明において、リン源として、このような化合物を用いることによって、先ず、スラリー中の銀粒子の表面の酸化物を還元し、活性な表面を形成して、必ずしも、明確ではないが、亜リン酸系又は次亜リン酸系の吸着層が形成され、かくして、銀粒子の表面にイットリウム酸化物を強固に被着させることができるとみられる。
【0013】
このようなリン化合物は、銀粒子重量に対して、通常、五酸化リン換算で0.3〜1.3重量%、好ましくは、0.5〜1重量%の範囲で用いられる。リン化合物の量が銀粒子重量に対して0.3重量%よりも少ないときは、後の焼成工程において、銀粒子が相互に融着して焼結を起こし、他方、1.3重量%を越えるときは、後の酸洗工程の後も、銀粒子へのリン酸化物の被着量が多すぎて、得られる銀粉末が比抵抗率において劣ることとなる。
【0014】
このように、銀粉末の水スラリーにリン化合物の水溶液を加え、攪拌して、表面処理した後、イットリウム化合物の水溶液を加え、30〜60℃に加温する。イットリウム源としては、酸化イットリウム、水酸化イットリウム、炭酸イットリウム、硝酸イットリウム等が用いられる。水溶性でないイットリウム化合物は、例えば、硝酸に溶解して用いることができる。
【0015】
本発明によれば、このようなイットリウム化合物は、銀粒子重量に対して、三酸化イットリウム換算で0.5〜4重量%の範囲、好ましくは、1〜3重量%の範囲で用いられる。イットリウム化合物の量が銀粒子重量に対して0.5重量%よりも少ないときは、後の焼成工程において、粒子が相互に融着して焼結を起こし、他方、4重量%を越えて過多に用いても、得られる銀粉末がそれに見合って、性能が向上せず、経済的に不利である。
【0016】
一般に、従来より知られている通常の方法によっては、金属粒子の表面に異種の金属やその酸化物を被着することは困難である。しかしながら、本発明によれば、前述したように、銀粒子を予め、亜リン酸、亜リン酸塩、次亜リン酸及び次亜リン酸塩から選ばれる少なくとも1種にて表面処理して、銀粒子の表面を活性化して、リン系の吸着層を形成するので、この後にイットリウム化合物を作用させることによって、上記吸着層とイットリウム化合物との間に何らかの化学反応が生じ、かくして、リン化合物を介在してイットリウム化合物が銀粒子の表面に強固に結合するとみられる。
【0017】
例えば、銀粉末を上記リン化合物で表面処理した後、これを大過剰の酢酸で洗浄しても、銀粉末には、用いたリンの1/2から1/5の量が被着しており、また、上記リン化合物で表面処理した後、イットリウム処理すれば、このようにして得られる銀粉末にも、大過剰の酢酸で洗浄した後も、三酸化イットリウム/五酸化リン重量比が約2.9から約3.3の範囲でイットリウムが被着していることから、リン酸化物とイットリウム酸化物が銀粉末上で何らかの形で結合していることが窺える。
【0018】
このように、リン化合物で処理した銀粉末の水スラリーにイットリウム化合物を加え、攪拌した後、アルカリを加えて、銀粉末のスラリーのpHを7〜9の範囲に調整して、イットリウム酸化物にて銀粉末の表面を被着する。ここに、上記アルカリは、特に、限定されるものではないが、例えば、水酸化ナトリウムのようなアルカリ金属水酸化物が好ましく用いられる。
【0019】
このように、アルカリ処理した後、常法に従って、銀粉末を濾過し、洗浄、乾燥し、粉砕する。但し、上記アルカリ処理によって副生した塩類を水洗し、除去した後、メチルアルコール、エチルアルコール、イソプロピルアルコール等の水溶性有機溶媒で銀粉末のケーキ中の水分を置換しておけば、銀粉末の洗浄後の乾燥温度を100℃より低く設定することができ、かくして、乾燥後に凝集の少ない銀粉末を得ることができ、次の焼成工程において、ソフトな焼成物を得ることができる。
焼成工程
このように、アルカリ処理によって、その表面がリン酸化物とイットリウム酸化物とで被着された銀粉末を得ることができる。そこで、本発明によれば、このような銀粉末を非酸化性雰囲気下に100〜700℃の温度で、例えば、1時間程度、焼成する。この焼成によって、銀の結晶化度を向上させることができるので、焼成は、重要な意味を有する。特に、湿式法で製造された銀粉末は、噴霧法やCVD法等の乾式法で製造された銀粉末に比較して結晶化度が低く、LTCC等の基板焼成段階で熱収縮が大きいところ、本発明によれば、このように、焼成によって銀粒子の結晶化度を高めることによって、熱収縮を抑制することができる。銀粉末を非酸化性雰囲気下に焼成するのは、銀粉末の表面酸化を抑制するためであり、非酸化性雰囲気として、例えば、窒素雰囲気を挙げることができる。
【0020】
従って、本発明によれば、焼成温度は、上述したように、100〜700℃の範囲である。焼成温度が100℃よりも低いときは、銀粒子の結晶化度を高める効果がなく、他方、700℃を越えるときは、銀粒子が相互に融着するので好ましくない。本発明においては、銀粉末の焼成には、回転炉、流動炉、静置炉等、いずれの手段によってもよいが、なかでも、焼成中に粉体が攪拌される回転炉や流動炉等が好ましい。
酸洗工程
このように、銀粉末を焼成した後、室温まで冷却し、再度、水に分散させて、水スラリーとした後、これに所定量の酸を加え、銀粒子表面の余剰のリンとイットリウムを溶解させ、除去して、好ましくは、五酸化リン換算でリン酸化物0.03〜0.70重量%と三酸化イットリウム換算でイットリウム酸化物0.05〜1.0重量%を被着させてなる銀粉末を得る。
【0021】
本発明によれば、リン/イットリウム被着工程において、前述した範囲のリン化合物とイットリウム化合物とを用いて銀粉末を表面処理して、銀粒子の表面をリン/イットリウム被着した後、このような銀粉末を焼成すれば、酸洗後の銀粒子においては、その理由は、必ずしも明らかではないが、三酸化イットリウム/五酸化リン重量比が1.5〜1.7の範囲となるので、酸洗に用いる酸の量を制御して、銀粉末へのイットリウムの被着量を上記範囲に制御することによって、自ずから、上記範囲のリンが被着した銀粉末を得ることができる。
【0022】
本発明によれば、このようにして、銀粒子の表面にリン酸化物とイットリウム酸化物とを所定の範囲で被着させることによって、LTCC基板の焼成時の熱収縮を抑制することができる。
【0023】
上記酸洗のために用いる酸は、特に限定されるものではないが、通常、銀の可溶性塩を生成する硝酸、酢酸等が用いられる。酸洗の条件は特に限定されるものではなく、酸濃度、温度、時間等は、銀粒子表面に上記の量のリン酸化物とイットリウム酸化物とが残存し、被着するように選べばよい。
【0024】
本発明によれば、銀粒子の表面に残存し、被着したイットリウム酸化物の量が三酸化イットリウム換算で0.05重量%よりも少ないときは、セラミック基板の焼成時の熱に対する抵抗力が弱く、他方、1重量%を越えるときは、銀粒子が本来、有するべき電気特性に支障をきたすおそれがある。
【0025】
このようにして得られたリン酸化物とイットリウム酸化物を被着させた銀粉末のスラリーから銀粉末を濾過し、洗浄、乾燥し、粉砕すれば、本発明によるセラミック多層基板導電材用銀粉末を得ることができる。上記酸洗において副生した塩類を水洗、除去した後、メチルアルコール、エチルアルコール、イソプロピルアルコール等の水溶性有機溶媒で銀粉末のケーキ中の水分を置換しておけば、乾燥温度を100℃より低く設定することができ、かくして、乾燥後に凝集の少ない銀粉末を得ることができる。このように、凝集の少ない銀粉末は、導電ペーストの調製時に分散性にすぐれるので好ましい。
【0026】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0027】
実施例1
(リン/イットリウム被着工程)
硝酸銀の水溶液にヒドラジンを還元剤として加え、硝酸銀を還元して得られた湿式法による平均粒子径0.5μm(SEM観察による。)の銀粉末150gを150g/Lとなるように純水に分散させてスラリーとし、これを温度50℃に保持した。このスラリーに次亜リン酸ナトリウム水溶液を五酸化リン換算で1.20g加えて、1時間攪拌した。
【0028】
酸化イットリウムを硝酸に溶解させて、硝酸イットリウム水溶液を調製した。この硝酸イットリウム水溶液を三酸化イットリウム換算で3.75gを上記次亜リン酸ナトリウムを溶解させた銀粉末のスラリーに加え、20分間攪拌した。次いで、得られた混合物に水酸化ナトリウム水溶液を加えて、pHを8に調整した後、このように処理した銀粉末を濾過し、これを洗浄、乾燥し、粉砕して、五酸化リン換算でリン酸化物0.76重量%と三酸化イットリウム換算でイットリウム酸化物2.40重量%を被着させた銀粉末を得た。
【0029】
(焼成工程)
次に、この銀粉末70gを実験室用回転炉に装入し、昇温前に窒素ガスを十分流して、炉内の酸素を除去した後、炉内を500℃まで昇温し、次いで、この温度で1時間保持した後、室温まで冷却した。昇温の開始からこのように室温まで冷却する間、炉内に窒素ガスを微量流し続けた。炉から取り出した銀粉末に焼結はみられず、焼成前の粉体と同様の感触であった。また、SEM(走査型電子顕微鏡)観察によっても、銀粉末のそれぞれの粒子は独立しており、粒子間の融着はみられなかった。
【0030】
(酸洗工程)
この銀粉末50gを150g/Lとなるように純水に分散させて水スラリーとし、これに氷酢酸3.9mLを加え、1時間攪拌して、余剰のリンとイットリウムを溶解させ、除去した。この後、このように処理した銀粉末を濾過し、洗浄、乾燥し、粉砕して、五酸化リン換算でリン酸化物0.11重量%と三酸化イットリウム換算でイットリウム酸化物0.17重量%を被着させた銀粉末を得た。
【0031】
(銀粉末の熱収縮率の測定)
このようにして得た本発明による銀粉末0.5gを100MPaの圧力で加圧して、直径5mm、厚み2.5mmのペレットに成形した。熱分析装置((株)島津製作所製TMA−50H)を用いて、空気を50mL/分の割合で流しながら、加熱速度10℃/分で900℃まで上記ペレットを加熱して、その熱収縮率を測定した。結果を図1及び表1に示す。
【0032】
(導電ペーストの調製とそれからの導体の比抵抗率の測定)
エチルセルロース1重量部をα−テルピネオール9重量部に溶解させて、有機質ワニスを調製した。上記のようにして得られた本発明による銀粉末85重量%に上記有機質ワニス15重量%を配合し、磁器乳鉢中で1時間混練した後、更に、3本ロールで3回分散処理を行って、導電ペーストを得た。このペーストをガラス基板上にスクリーン印刷した後、900℃で焼成して、線幅150μm、線長200mm、厚み10μmの導体を形成させた。この導体の比抵抗率を表1に示す。
【0033】
実施例2
酸洗工程において、氷酢酸3.2mLを用いた以外は、実施例1と同様にして、五酸化リン換算でリン酸化物0.18重量%と三酸化イットリウム換算でイットリウム酸化物0.28重量%を被着させた銀粉末を得た。この銀粉末について、実施例1と同様にして熱収縮率を測定した。結果を図1及び表1に示す。また、実施例1と同様にして導電ペーストを調製し、導体を形成して、その比抵抗率を測定した。結果を表1に示す。
【0034】
実施例3
酸洗工程において、氷酢酸1.9mLを用いた以外は、実施例1と同様にして、五酸化リン換算でリン酸化物0.31重量%と三酸化イットリウム換算でイットリウム酸化物0.50重量%を被着させた銀粉末を得た。この銀粉末について、実施例1と同様にして熱収縮率を測定した。結果を表1に示す。また、実施例1と同様にして導電ペーストを調製し、導体を形成して、その比抵抗率を測定した。結果を表1に示す。
【0035】
実施例4
(リン/イットリウム被着工程)
硝酸銀の水溶液にヒドラジンを還元剤として加えて、硝酸銀を還元して得られた湿式法による平均粒子径1.0μm(SEM観察による。)の銀粉末150gを150g/Lとなるように純水に分散させて水スラリーとし、これを温度50℃に保持した。上記スラリーに亜リン酸ナトリウム水溶液を五酸化リン換算で0.90g加え、1時間攪拌した。
【0036】
酸化イットリウムを硝酸に溶解させて、硝酸イットリウム水溶液を調製した。この硝酸イットリウム水溶液を三酸化イットリウム換算で2.90gを上記亜リン酸ナトリウムを溶解させた銀粉末の水スラリーに加え、30分間攪拌した。次いで、得られた混合物に水酸化ナトリウム水溶液を加えて、pHを8に調整した後、このように処理した銀粉末を濾過し、これを洗浄、乾燥し、粉砕して、五酸化リン換算でリン酸化物0.58重量%と三酸化イットリウム換算でイットリウム酸化物1.88重量%を被着させた銀粉を得た。
【0037】
(焼成工程)
次に、この銀粉末70gを実験室用回転炉に装入し、昇温前に窒素ガスを十分流して、炉内の酸素を除去した後、炉内を300℃まで昇温した。次いで、この温度で1時間保持した後、室温まで冷却した。昇温の開始からこのように室温まで冷却する間、炉内に窒素ガスを微量流し続けた。炉から取り出した銀粉末に焼結はみられず、焼成前の粉体と同様の感触であった。また、SEM観察によっても、銀粉末のそれぞれの粒子は独立しており、粒子相互の間の融着はみられなかった。
【0038】
(酸洗工程)
この銀粉末50gを150g/Lとなるように純水に分散させて水スラリーとし、これに氷酢酸2.6mLを加え、1時間攪拌して、余剰のリンとイットリウムを溶解させ、除去した。この後、このように処理した銀粉末を濾過し、洗浄、乾燥し、粉砕して、五酸化リン換算でリン酸化物0.14重量%と三酸化イットリウム換算でイットリウム酸化物0.23重量%を被着させた銀粉末を得た。
【0039】
(熱収縮率と比抵抗率の測定)
このようにして得た銀粉末について、実施例1と同様にして熱収縮率を測定した。結果を表1に示す。また、実施例1と同様にして導電ペーストを調製し、導体を形成して、その比抵抗率を測定した。結果を表1に示す。
【0040】
実施例5
焼成工程において、加熱温度を600℃とした以外は、実施例4と同様にして、五酸化リン換算でリン酸化物0.18重量%と三酸化イットリウム換算でイットリウム酸化物0.29重量%を被着させた銀粉末を得た。この銀粉末について、実施例1と同様にして熱収縮率を測定した。結果を表1に示す。また、実施例1と同様にして導電ペーストを調製し、導体を形成して、その比抵抗率を測定した。結果を表1に示す。
【0041】
比較例1
実施例2において、硝酸イットリウム水溶液を用いず、次亜リン酸ナトリウム水溶液のみを用いた以外は、同様にして、銀粉末の表面をリン酸化物で被着した後、焼成した。その結果、銀粉は一つの塊に焼結しており、SEM観察によれば、銀粒子は相互に融着していることが認められた。このような銀粉末について、実施例1と同様にして熱収縮率を測定した。結果を図1及び表1に示す。また、実施例1と同様にして導電ペーストを調製し、導体を形成して、その比抵抗率を測定した。結果を表1に示す。
【0042】
比較例2
実施例2において、次亜リン酸ナトリウム水溶液を用いず、硝酸イットリウム水溶液のみを用いた以外は、同様にして、銀粉末の表面をイットリウム酸化物で被覆した後、焼成した。その結果、銀粒子相互の融着は抑制されていたものの、酸洗後、銀粒子に残存するイットリウム酸化物は三酸化イットリウム換算で0.02重量%であって、銀粒子の表面にはイットリウム酸化物は殆ど存在しないことが認められた。このような銀粉末について、実施例1と同様にして熱収縮率を測定した。結果を表1に示す。また、実施例1と同様にして導電ペーストを調製し、導体を形成して、その比抵抗率を測定した。結果を表1に示す。
【0043】
比較例3
実施例1において用いた銀粉末を150g/Lとなるように純水に分散させて水スラリーとし、これを50℃に保持した。上記スラリーに硝酸イットリウムを三酸化イットリウム換算で0.3重量%となるように加え、1時間攪拌した後、水酸化ナトリウム水溶液を加えて、pHを8に調整した。このように処理した銀粉末を濾過し、これを洗浄、乾燥し、粉砕して、三酸化イットリウム換算でイットリウム酸化物0.28重量%を被覆させた銀粉末を得た。
【0044】
この銀粉末について、実施例1と同様にして測定した熱収縮率は13.2%であり、また、実施例1と同様にして導電ペーストを調製し、導体を形成して、測定した比抵抗率は3.2μΩ・cmであった。
【0045】
比較例4
実施例1において用いた銀粉末を150g/Lとなるように純水に分散させて水スラリーとし、これを50℃に保持した。上記スラリーに硝酸アルミニウムを酸化アルミニウム(Al)換算で0.3重量%となるように加え、1時間攪拌した後、水酸化ナトリウム水溶液を加えて、pHを8に調整した。このように処理した銀粉末を濾過し、これを洗浄、乾燥し、粉砕して、酸化アルミニウム換算でアルミニウム酸化物0.29重量%を被覆させた銀粉末を得た。
【0046】
この銀粉末について、実施例1と同様にして測定した熱収縮率は18.6%であり、また、実施例1と同様にして導電ペーストを調製し、導体を形成して、測定した比抵抗率は3.1μΩ・cmであった。
【0047】
比較例5
実施例1において用いた銀粉末を150g/Lとなるように純水に分散させて水スラリーとし、これを50℃に保持した。このスラリーに3号ケイ酸ナトリウムを二酸化ケイ素(SiO)換算で0.3重量%となるように加え、1時間攪拌した後、硝酸水溶液を加えて、pHを8に調整した。このように処理した銀粉末を濾過し、これを洗浄、乾燥し、粉砕して、二酸化ケイ素換算でケイ素酸化物0.25重量%を被覆させた銀粉末を得た。
【0048】
この銀粉末について、実施例1と同様にして測定した熱収縮率は17.5%であり、また、実施例1と同様にして導電ペーストを調製し、導体を形成して、測定した比抵抗率は3.2μΩ・cmであった。
【0049】
【表1】

Figure 2004250751
【0050】
【発明の効果】
本発明によるセラミック多層基板導電材用銀粉末は、リン酸化物とイットリウム酸化物とを被着させてなり、高温に加熱したときの熱収縮率が小さいと共に、導電ペーストとし、これを焼成したとき、低い比抵抗率を有する導体を与えるので、セラミック成形体と共に高温で焼成して、セラミック多層基板を製造するために好適に用いることができる。
【図面の簡単な説明】
【図1】本発明によるセラミック多層基板導電材用銀粉末の熱収縮率を比較例としての銀粉末の熱収縮率と比較して示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silver powder for a conductive material for a ceramic multilayer substrate and a method for producing the same, and more specifically, a thermal contraction rate in firing at a high temperature, which is formed by depositing phosphorus oxide and yttrium oxide on the surface of silver particles. The present invention relates to a surface-treated silver powder for a ceramic multilayer substrate conductive material that gives a conductor having a low specific resistivity when the conductive paste is baked, and a method for producing the same.
[0002]
[Prior art]
Conventionally, a hybrid IC substrate is mainly made of an alumina sintered body, and when the multilayer is formed, the sintering temperature is 1500 to 1600 ° C. The conductor sintered together with the substrate at this temperature must be a refractory metal such as molybdenum or tungsten (see Non-Patent Document 1). However, such firing at high temperatures makes it difficult to avoid a decrease in ceramic strength and dielectric strength. Therefore, in recent years, LTCC (low temperature co-sintered ceramic) sintered at a temperature of 1000 ° C. or less is becoming mainstream. In this LTCC, a glass-based ceramic is used as a substrate, and a metal having a relatively low melting point and a low resistivity such as copper or silver is used as a conductor. That is, usually, a conductive paste is prepared using copper or silver powder, an organic binder, a dispersing agent and a solvent, and this is screen-printed on a substrate, and thus the obtained green sheets are stacked and bonded, Thereafter, the laminate is fired at 900 to 1000 ° C. to obtain a ceramic multilayer substrate.
[0003]
Here, copper and silver powders are required to be easily dispersed in a vehicle and to have high screen printing accuracy in preparation of a conductive paste, and therefore have a uniform particle size distribution and spherical particles. Is preferred. Moreover, it is preferable that the difference in thermal shrinkage with the ceramic molded body is as small as possible. When there is a large difference in thermal shrinkage from the ceramic molded body, the resulting ceramic substrate warps when fired together with the ceramic molded body, and structural defects such as cracks and delamination occur in the resulting multilayer substrate. To do.
[0004]
Thus, in the case of silver powder, conventionally, a method of mixing an inorganic oxide with silver powder has been proposed in order to suppress thermal shrinkage. It is necessary to mix in a large amount, and therefore there is a drawback that the performance of the silver powder as the original conductive material is impaired. A method of coating the surface of silver particles with a metal oxide has also been proposed (see Patent Document 1). According to such a method, after adding a water-soluble metal salt to the slurry of silver powder, adjusting the pH with an acid or alkali, and attaching the metal oxide to the surface of the silver particles, the above is further performed by a mechanochemical method. A metal oxide is fixed to the surface of silver particles. However, even with such a method, the bond between the metal oxide and the silver particles is not sufficient, and the effect of suppressing the thermal shrinkage of the silver powder during the sintering of the green sheet is still insufficient.
[0005]
[Non-Patent Document 1] “Electrodes and electrode-related materials” issued by IPC Corporation in 1989)
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-240901
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems in the conventional silver powder for a ceramic multilayer substrate conductive material, and is formed by depositing phosphor oxide and yttrium oxide on the surface by surface treatment. Provided is a surface-treated silver powder for a ceramic multilayer board conductive material that provides a conductor having a low specific resistance when fired at a high temperature while having a low thermal shrinkage ratio at high temperature firing, and a method for producing the same. The purpose is to do.
[0007]
[Means for Solving the Problems]
According to the present invention, there is provided a silver powder for a ceramic multilayer substrate conductive material, characterized in that phosphorous oxide and yttrium oxide are deposited on spherical silver particles having an average particle diameter of 0.1 to 5 μm. .
[0008]
In particular, according to the present invention, such a silver powder for a ceramic multilayer substrate conductive material has a phosphorous oxide content of 0.03 to 0.70% by weight in terms of phosphorus pentoxide (P 2 O 5 , hereinafter the same). It is preferable that 0.05 to 1.0% by weight of yttrium oxide is deposited on the surface in terms of yttrium oxide (Y 2 O 3 , hereinafter the same).
[0009]
According to the present invention, such a silver powder for a ceramic multilayer substrate conductive material is prepared by adding phosphorous acid, phosphite, hypophosphorous acid and the following to an aqueous dispersion slurry of spherical silver powder having an average particle size of 0.1 to 5 μm. At least one selected from phosphites is dissolved to surface-treat the silver powder, and then an aqueous solution of an yttrium compound is added, and then the pH is adjusted with an alkali, and then the surface is treated in this way. The silver powder is filtered, washed, dried, calcined at a temperature of 100 to 700 ° C. in a non-oxidizing atmosphere, then washed with an acid aqueous solution, and phosphorous oxide 0.03 in terms of phosphorus pentoxide. It can be obtained by depositing 0.05 to 1.0% by weight of yttrium oxide in terms of 0.70% by weight and yttrium trioxide.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Since the silver powder according to the present invention is used as a conductive material for a ceramic multilayer substrate, first, screen printing suitability is required as one of the important characteristics. Therefore, according to the present invention, the base silver particles are preferably spherical and have an average particle diameter in the range of 0.1 to 5 μm, and in particular, the average particle diameter is in the range of 0.1 to 1 μm. It is preferable. However, in the present invention, the production method of the base silver particles is not limited at all.
[0011]
The production of silver powder according to the present invention will be described. In the method for producing silver powder according to the present invention, the first step is a phosphorus / yttrium deposition step in which the surface of silver particles is deposited with phosphorous oxide and yttrium oxide, and the second step is as described above. In addition, as a third step, the silver particles coated with phosphorus / yttrium are heat-treated, and the silver particles thus treated are pickled to dissolve excess phosphorus oxide and yttrium oxide. Preferably, 0.03 to 0.70% by weight of phosphorus oxide in terms of phosphorus pentoxide and 0.05 to 1.0% by weight of yttrium oxide in terms of yttrium trioxide are deposited on the silver particles. The pickling step. Hereinafter, the method of the present invention will be described in detail for each step.
Phosphorus / yttrium deposition process According to the silver powder production method of the present invention, first, an aqueous slurry of silver powder is prepared. Although this slurry density | concentration is not specifically limited, Usually, it is the range of 50-300 g / L, Preferably, it is the range of 100-200 g / L. Next, while stirring the slurry, a predetermined amount of an aqueous solution of a phosphorus compound is added thereto as a phosphorus source. As the phosphorus compound, at least one selected from phosphorous acid, phosphite, hypophosphorous acid and hypophosphite is used.
[0012]
In the present invention, by using such a compound as a phosphorus source, first, the oxide on the surface of the silver particles in the slurry is reduced to form an active surface. It appears that an acid-based or hypophosphorous acid-based adsorption layer is formed, and thus the yttrium oxide can be firmly attached to the surface of the silver particles.
[0013]
Such a phosphorus compound is generally used in a range of 0.3 to 1.3% by weight, preferably 0.5 to 1% by weight in terms of phosphorus pentoxide, based on the weight of silver particles. When the amount of the phosphorus compound is less than 0.3% by weight based on the weight of the silver particles, in the subsequent firing step, the silver particles are fused to each other to cause sintering, while 1.3% by weight is reduced. When exceeding, after the subsequent pickling process, the amount of the phosphor oxide deposited on the silver particles is too large, and the resulting silver powder is inferior in specific resistance.
[0014]
Thus, after adding the aqueous solution of a phosphorus compound to the water slurry of silver powder, stirring and surface-treating, the aqueous solution of an yttrium compound is added and it heats at 30-60 degreeC. As the yttrium source, yttrium oxide, yttrium hydroxide, yttrium carbonate, yttrium nitrate, or the like is used. The yttrium compound which is not water-soluble can be used, for example, dissolved in nitric acid.
[0015]
According to the present invention, such an yttrium compound is used in the range of 0.5 to 4% by weight, preferably in the range of 1 to 3% by weight, in terms of yttrium trioxide, with respect to the silver particle weight. When the amount of the yttrium compound is less than 0.5% by weight based on the weight of the silver particles, in the subsequent firing step, the particles are fused to each other to cause sintering, while the excess exceeds 4% by weight. Even if used, the obtained silver powder is commensurate with it, and the performance is not improved, which is economically disadvantageous.
[0016]
In general, it is difficult to deposit different kinds of metals and their oxides on the surfaces of metal particles by a conventionally known method. However, according to the present invention, as described above, the silver particles are previously surface-treated with at least one selected from phosphorous acid, phosphite, hypophosphorous acid and hypophosphite, Since the surface of the silver particles is activated to form a phosphorus-based adsorption layer, by causing the yttrium compound to act after this, some chemical reaction occurs between the adsorption layer and the yttrium compound. It appears that the yttrium compound is firmly bonded to the surface of the silver particles.
[0017]
For example, even if the silver powder is surface-treated with the above phosphorus compound and then washed with a large excess of acetic acid, the silver powder is deposited in an amount of 1/2 to 1/5 of the phosphorus used. In addition, if the yttrium treatment is performed after the surface treatment with the above phosphorus compound, the weight ratio of yttrium trioxide / phosphorus pentoxide is about 2 even after the silver powder thus obtained is washed with a large excess of acetic acid. Since yttrium is deposited in the range of .9 to about 3.3, it can be seen that phosphorus oxide and yttrium oxide are bonded in some form on the silver powder.
[0018]
Thus, after adding an yttrium compound to the aqueous slurry of the silver powder treated with the phosphorus compound and stirring, an alkali is added to adjust the pH of the silver powder slurry to a range of 7 to 9 to obtain an yttrium oxide. To deposit the surface of the silver powder. Here, the alkali is not particularly limited, but, for example, an alkali metal hydroxide such as sodium hydroxide is preferably used.
[0019]
In this way, after the alkali treatment, the silver powder is filtered, washed, dried and pulverized according to a conventional method. However, after the salt produced as a by-product by the alkali treatment is washed and removed, water in the silver powder cake is replaced with a water-soluble organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, etc. The drying temperature after washing can be set lower than 100 ° C. Thus, a silver powder with less aggregation after drying can be obtained, and a soft fired product can be obtained in the next firing step.
Firing step As described above, a silver powder whose surface is coated with phosphorus oxide and yttrium oxide can be obtained by alkali treatment. Therefore, according to the present invention, such silver powder is baked in a non-oxidizing atmosphere at a temperature of 100 to 700 ° C., for example, for about one hour. Since the degree of crystallinity of silver can be improved by this baking, the baking has an important meaning. In particular, the silver powder produced by the wet method has a low crystallinity compared to the silver powder produced by a dry method such as a spray method or a CVD method, and the thermal shrinkage is large at the substrate firing stage such as LTCC. According to the present invention, heat shrinkage can be suppressed by increasing the crystallinity of silver particles by firing. The reason why the silver powder is fired in a non-oxidizing atmosphere is to suppress surface oxidation of the silver powder, and examples of the non-oxidizing atmosphere include a nitrogen atmosphere.
[0020]
Therefore, according to the present invention, the firing temperature is in the range of 100 to 700 ° C. as described above. When the firing temperature is lower than 100 ° C., there is no effect of increasing the crystallinity of the silver particles. On the other hand, when it exceeds 700 ° C., the silver particles are fused with each other, which is not preferable. In the present invention, the silver powder may be fired by any means such as a rotary furnace, a fluid furnace, a stationary furnace, etc., among which a rotary furnace or a fluid furnace in which the powder is stirred during firing is preferable. .
Pickling step In this way, after firing the silver powder, it is cooled to room temperature, dispersed again in water to form a water slurry, and then a predetermined amount of acid is added thereto, and excess phosphorus on the surface of the silver particles. Yttrium is dissolved and removed, and preferably 0.03 to 0.70% by weight of phosphorus oxide in terms of phosphorus pentoxide and 0.05 to 1.0% by weight of yttrium oxide in terms of yttrium trioxide are deposited. Silver powder is obtained.
[0021]
According to the present invention, in the phosphorus / yttrium deposition step, the surface of the silver particles is coated with phosphorus / yttrium after surface treatment of the silver powder using the phosphorus compound and yttrium compound in the above-mentioned range. If the silver powder is baked, the reason for the silver particles after pickling is not necessarily clear, but the weight ratio of yttrium trioxide / phosphorus pentoxide is in the range of 1.5 to 1.7. By controlling the amount of acid used for pickling and controlling the amount of yttrium deposited on the silver powder within the above range, a silver powder coated with phosphorus in the above range can be naturally obtained.
[0022]
According to the present invention, thermal shrinkage at the time of firing the LTCC substrate can be suppressed by depositing phosphor oxide and yttrium oxide in a predetermined range on the surface of the silver particles in this manner.
[0023]
Although the acid used for the said pickling is not specifically limited, Nitric acid, acetic acid, etc. which produce | generate the soluble salt of silver are used normally. The conditions for pickling are not particularly limited, and the acid concentration, temperature, time, etc. may be selected so that the above amounts of phosphorous oxide and yttrium oxide remain on the surface of the silver particles and are deposited. .
[0024]
According to the present invention, when the amount of yttrium oxide remaining on the surface of the silver particles and deposited is less than 0.05% by weight in terms of yttrium trioxide, the resistance to heat during firing of the ceramic substrate is high. On the other hand, if it exceeds 1% by weight, there is a risk that the silver particles should have an adverse effect on the electrical characteristics that they should have.
[0025]
If the silver powder is filtered, washed, dried, and pulverized from the slurry of the silver powder coated with phosphorus oxide and yttrium oxide thus obtained, the silver powder for a ceramic multilayer substrate conductive material according to the present invention Can be obtained. After washing and removing salts by-produced in the above pickling, if the water in the silver powder cake is replaced with a water-soluble organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, the drying temperature is 100 ° C or higher. It can be set low, and thus a silver powder with less aggregation after drying can be obtained. Thus, a silver powder with little aggregation is preferable because it has excellent dispersibility when the conductive paste is prepared.
[0026]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
[0027]
Example 1
(Phosphorus / yttrium deposition process)
150 g of silver powder with an average particle size of 0.5 μm (according to SEM observation) obtained by adding hydrazine as a reducing agent to an aqueous solution of silver nitrate and reducing silver nitrate is dispersed in pure water so as to be 150 g / L. This was made into a slurry, and this was maintained at a temperature of 50 ° C. To this slurry, 1.20 g of an aqueous sodium hypophosphite solution in terms of phosphorus pentoxide was added and stirred for 1 hour.
[0028]
Yttrium oxide was dissolved in nitric acid to prepare an aqueous yttrium nitrate solution. 3.75 g of this aqueous yttrium nitrate solution in terms of yttrium trioxide was added to the silver powder slurry in which the sodium hypophosphite was dissolved, and the mixture was stirred for 20 minutes. Next, an aqueous sodium hydroxide solution was added to the resulting mixture to adjust the pH to 8, and the silver powder thus treated was filtered, washed, dried, pulverized, and converted to phosphorus pentoxide. A silver powder coated with 0.76% by weight of phosphorus oxide and 2.40% by weight of yttrium oxide in terms of yttrium trioxide was obtained.
[0029]
(Baking process)
Next, 70 g of this silver powder was placed in a laboratory rotary furnace, and after sufficiently flowing nitrogen gas to remove oxygen in the furnace before raising the temperature, the temperature in the furnace was raised to 500 ° C., After holding at this temperature for 1 hour, it was cooled to room temperature. During the cooling to the room temperature in this way from the start of the temperature increase, a small amount of nitrogen gas was kept flowing in the furnace. Sintering was not observed in the silver powder taken out from the furnace, and the feel was the same as that of the powder before firing. Moreover, each particle | grain of silver powder was independent also by SEM (scanning electron microscope) observation, and the fusion | melting between particle | grains was not seen.
[0030]
(Pickling process)
50 g of this silver powder was dispersed in pure water to a concentration of 150 g / L to form a water slurry, and 3.9 mL of glacial acetic acid was added thereto and stirred for 1 hour to dissolve and remove excess phosphorus and yttrium. Thereafter, the silver powder thus treated is filtered, washed, dried, and pulverized, and phosphorous oxide is 0.11% by weight in terms of phosphorus pentoxide and yttrium oxide is 0.17% by weight in terms of yttrium trioxide. A silver powder coated with was obtained.
[0031]
(Measurement of thermal shrinkage of silver powder)
0.5 g of the silver powder according to the present invention thus obtained was pressed at a pressure of 100 MPa to form pellets having a diameter of 5 mm and a thickness of 2.5 mm. Using a thermal analyzer (TMA-50H manufactured by Shimadzu Corporation), the pellet was heated to 900 ° C. at a heating rate of 10 ° C./min while flowing air at a rate of 50 mL / min, and the thermal shrinkage rate Was measured. The results are shown in FIG.
[0032]
(Preparation of conductive paste and measurement of specific resistivity of conductor from it)
An organic varnish was prepared by dissolving 1 part by weight of ethyl cellulose in 9 parts by weight of α-terpineol. After blending 15% by weight of the organic varnish with 85% by weight of the silver powder according to the present invention obtained as described above, and kneading for 1 hour in a porcelain mortar, the mixture is further dispersed three times with three rolls. A conductive paste was obtained. This paste was screen printed on a glass substrate and then fired at 900 ° C. to form a conductor having a line width of 150 μm, a line length of 200 mm, and a thickness of 10 μm. The specific resistivity of this conductor is shown in Table 1.
[0033]
Example 2
In the pickling step, except that 3.2 mL of glacial acetic acid was used, in the same manner as in Example 1, 0.18% by weight of phosphorus oxide in terms of phosphorus pentoxide and 0.28% by weight of yttrium oxide in terms of yttrium trioxide. % Silver powder was obtained. About this silver powder, it carried out similarly to Example 1, and measured the thermal contraction rate. The results are shown in FIG. Moreover, the electrically conductive paste was prepared like Example 1, the conductor was formed, and the specific resistivity was measured. The results are shown in Table 1.
[0034]
Example 3
Except that 1.9 mL of glacial acetic acid was used in the pickling step, 0.31% by weight of phosphorus oxide in terms of phosphorus pentoxide and 0.50% by weight of yttrium oxide in terms of yttrium trioxide were the same as in Example 1. % Silver powder was obtained. About this silver powder, it carried out similarly to Example 1, and measured the thermal contraction rate. The results are shown in Table 1. Moreover, the electrically conductive paste was prepared like Example 1, the conductor was formed, and the specific resistivity was measured. The results are shown in Table 1.
[0035]
Example 4
(Phosphorus / yttrium deposition process)
Add hydrazine as a reducing agent to an aqueous silver nitrate solution and reduce the silver nitrate to a pure water so that 150 g of silver powder with an average particle diameter of 1.0 μm (according to SEM observation) obtained by a wet method is 150 g / L. A water slurry was dispersed to maintain the temperature at 50 ° C. 0.90 g of sodium phosphite aqueous solution was added to the slurry in terms of phosphorus pentoxide, and the mixture was stirred for 1 hour.
[0036]
Yttrium oxide was dissolved in nitric acid to prepare an aqueous yttrium nitrate solution. 2.90 g of this yttrium nitrate aqueous solution in terms of yttrium trioxide was added to the aqueous slurry of silver powder in which the sodium phosphite was dissolved, and the mixture was stirred for 30 minutes. Next, an aqueous sodium hydroxide solution was added to the resulting mixture to adjust the pH to 8, and the silver powder thus treated was filtered, washed, dried, pulverized, and converted to phosphorus pentoxide. A silver powder having 0.58% by weight of phosphorus oxide and 1.88% by weight of yttrium oxide in terms of yttrium trioxide was obtained.
[0037]
(Baking process)
Next, 70 g of this silver powder was charged into a laboratory rotary furnace, and nitrogen gas was sufficiently passed before the temperature was raised to remove oxygen in the furnace, and then the temperature in the furnace was raised to 300 ° C. Subsequently, after maintaining at this temperature for 1 hour, it cooled to room temperature. During the cooling to the room temperature in this way from the start of the temperature increase, a small amount of nitrogen gas was kept flowing in the furnace. Sintering was not observed in the silver powder taken out from the furnace, and the feel was the same as that of the powder before firing. Moreover, also by SEM observation, each particle | grain of silver powder was independent, and the fusion | melting between particle | grains was not seen.
[0038]
(Pickling process)
50 g of this silver powder was dispersed in pure water to a concentration of 150 g / L to form a water slurry, and 2.6 mL of glacial acetic acid was added thereto and stirred for 1 hour to dissolve and remove excess phosphorus and yttrium. Thereafter, the silver powder thus treated is filtered, washed, dried and pulverized, and 0.14% by weight of phosphorus oxide in terms of phosphorus pentoxide and 0.23% by weight of yttrium oxide in terms of yttrium trioxide. A silver powder coated with was obtained.
[0039]
(Measurement of heat shrinkage and resistivity)
The heat shrinkage rate of the silver powder thus obtained was measured in the same manner as in Example 1. The results are shown in Table 1. Moreover, the electrically conductive paste was prepared like Example 1, the conductor was formed, and the specific resistivity was measured. The results are shown in Table 1.
[0040]
Example 5
In the firing step, except that the heating temperature was set to 600 ° C., 0.18% by weight of phosphorus oxide in terms of phosphorus pentoxide and 0.29% by weight of yttrium oxide in terms of yttrium trioxide were obtained in the same manner as in Example 4. An applied silver powder was obtained. About this silver powder, it carried out similarly to Example 1, and measured the thermal contraction rate. The results are shown in Table 1. Moreover, the electrically conductive paste was prepared like Example 1, the conductor was formed, and the specific resistivity was measured. The results are shown in Table 1.
[0041]
Comparative Example 1
In Example 2, the surface of the silver powder was coated with phosphorous oxide and then fired in the same manner except that only the aqueous sodium phosphite solution was used without using the aqueous yttrium nitrate solution. As a result, the silver powder was sintered into one lump, and the SEM observation confirmed that the silver particles were fused together. With respect to such silver powder, the thermal shrinkage rate was measured in the same manner as in Example 1. The results are shown in FIG. Moreover, the electrically conductive paste was prepared like Example 1, the conductor was formed, and the specific resistivity was measured. The results are shown in Table 1.
[0042]
Comparative Example 2
In Example 2, the surface of the silver powder was coated with yttrium oxide and then fired in the same manner except that the sodium hypophosphite aqueous solution was not used and only the yttrium nitrate aqueous solution was used. As a result, although fusion between the silver particles was suppressed, the yttrium oxide remaining in the silver particles after pickling was 0.02% by weight in terms of yttrium trioxide, and the surface of the silver particles was yttrium. It was found that almost no oxide was present. With respect to such silver powder, the thermal shrinkage rate was measured in the same manner as in Example 1. The results are shown in Table 1. Moreover, the electrically conductive paste was prepared like Example 1, the conductor was formed, and the specific resistivity was measured. The results are shown in Table 1.
[0043]
Comparative Example 3
The silver powder used in Example 1 was dispersed in pure water so as to be 150 g / L to form a water slurry, which was kept at 50 ° C. After adding yttrium nitrate to the slurry so as to be 0.3% by weight in terms of yttrium trioxide and stirring for 1 hour, an aqueous sodium hydroxide solution was added to adjust the pH to 8. The silver powder thus treated was filtered, washed, dried and pulverized to obtain a silver powder coated with 0.28% by weight of yttrium oxide in terms of yttrium trioxide.
[0044]
About this silver powder, the heat shrinkage rate measured in the same manner as in Example 1 was 13.2%, and a conductive paste was prepared in the same manner as in Example 1 to form a conductor, and the measured specific resistance. The rate was 3.2 μΩ · cm.
[0045]
Comparative Example 4
The silver powder used in Example 1 was dispersed in pure water so as to be 150 g / L to form a water slurry, which was kept at 50 ° C. Aluminum nitrate was added to the slurry so as to be 0.3% by weight in terms of aluminum oxide (Al 2 O 3 ), and the mixture was stirred for 1 hour, and then an aqueous sodium hydroxide solution was added to adjust the pH to 8. The silver powder thus treated was filtered, washed, dried and pulverized to obtain a silver powder coated with 0.29% by weight of aluminum oxide in terms of aluminum oxide.
[0046]
About this silver powder, the heat shrinkage rate measured in the same manner as in Example 1 was 18.6%, and a conductive paste was prepared in the same manner as in Example 1, a conductor was formed, and the specific resistance measured. The rate was 3.1 μΩ · cm.
[0047]
Comparative Example 5
The silver powder used in Example 1 was dispersed in pure water so as to be 150 g / L to form a water slurry, which was kept at 50 ° C. To this slurry, No. 3 sodium silicate was added in an amount of 0.3% by weight in terms of silicon dioxide (SiO 2 ) and stirred for 1 hour, and then an aqueous nitric acid solution was added to adjust the pH to 8. The silver powder thus treated was filtered, washed, dried and pulverized to obtain a silver powder coated with 0.25% by weight of silicon oxide in terms of silicon dioxide.
[0048]
About this silver powder, the heat shrinkage rate measured in the same manner as in Example 1 was 17.5%, and a conductive paste was prepared in the same manner as in Example 1 to form a conductor, and the measured specific resistance. The rate was 3.2 μΩ · cm.
[0049]
[Table 1]
Figure 2004250751
[0050]
【The invention's effect】
The silver powder for a ceramic multilayer substrate conductive material according to the present invention is formed by depositing phosphorous oxide and yttrium oxide, and has a low thermal shrinkage when heated to a high temperature, and when a conductive paste is fired. Since a conductor having a low specific resistivity is provided, it can be suitably used for producing a ceramic multilayer substrate by firing at a high temperature together with a ceramic molded body.
[Brief description of the drawings]
FIG. 1 is a graph showing the thermal contraction rate of silver powder for a ceramic multilayer substrate conductive material according to the present invention compared with the thermal contraction rate of a silver powder as a comparative example.

Claims (3)

平均粒子径0.1〜5μmの球状の銀粒子にリン酸化物とイットリウム酸化物とを被着させたことを特徴とするセラミック多層基板導電材用銀粉末。A silver powder for a conductive material for a ceramic multilayer substrate, wherein phosphorous oxide and yttrium oxide are deposited on spherical silver particles having an average particle diameter of 0.1 to 5 μm. 五酸化リン(P)換算でリン酸化物0.03〜0.70重量%と三酸化イットリウム(Y)換算でイットリウム酸化物0.05〜1.0重量%を被着させた請求項1に記載のセラミック多層基板導電材用銀粉末。Phosphorus pentoxide (P 2 O 5) phosphorus oxides terms from 0.03 to 0.70 wt% and trioxide yttrium oxide (Y 2 O 3) depositing a 0.05 to 1.0 wt% of yttrium oxide in terms of The silver powder for a ceramic multilayer substrate conductive material according to claim 1. 平均粒子径0.1〜5μmの球状の銀粉末の水分散スラリーに亜リン酸、亜リン酸塩、次亜リン酸及び次亜リン酸塩から選ばれる少なくとも1種を溶解させて、上記銀粉末を表面処理し、次いで、イットリウム化合物の水溶液を加えた後、アルカリにてpHを調整し、次いで、このように表面処理した銀粉末を濾過し、洗浄し、乾燥し、非酸化性雰囲気下に100〜700℃の温度で焼成し、この後、酸水溶液で洗浄して、五酸化リン換算でリン酸化物0.03〜0.70重量%と三酸化イットリウム換算でイットリウム酸化物0.05〜1.0重量%を被着させた銀粉末を得ることを特徴とするセラミック多層基板導電材用銀粉末の製造方法。At least one selected from phosphorous acid, phosphite, hypophosphorous acid and hypophosphite is dissolved in an aqueous dispersion slurry of spherical silver powder having an average particle size of 0.1 to 5 μm, and the silver The powder is surface-treated, and then an aqueous solution of yttrium compound is added, and then the pH is adjusted with alkali. Then, the silver powder thus surface-treated is filtered, washed, dried, and subjected to a non-oxidizing atmosphere. Baked at a temperature of 100 to 700 ° C., and then washed with an acid aqueous solution, 0.03 to 0.70% by weight of phosphorus oxide in terms of phosphorus pentoxide and 0.05% of yttrium oxide in terms of yttrium trioxide. A method for producing a silver powder for a ceramic multilayer substrate conductive material, characterized in that a silver powder coated with ˜1.0% by weight is obtained.
JP2003042298A 2003-02-20 2003-02-20 Silver powder for conductive material of ceramic multilayer substrate and manufacturing method thereof Expired - Fee Related JP4081387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042298A JP4081387B2 (en) 2003-02-20 2003-02-20 Silver powder for conductive material of ceramic multilayer substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042298A JP4081387B2 (en) 2003-02-20 2003-02-20 Silver powder for conductive material of ceramic multilayer substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004250751A true JP2004250751A (en) 2004-09-09
JP4081387B2 JP4081387B2 (en) 2008-04-23

Family

ID=33025613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042298A Expired - Fee Related JP4081387B2 (en) 2003-02-20 2003-02-20 Silver powder for conductive material of ceramic multilayer substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4081387B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156522A (en) * 2004-11-26 2006-06-15 Kyocera Corp Wiring board and its manufacturing method
JP2008108539A (en) * 2006-10-25 2008-05-08 Fujitsu Ltd Conductive paste and its manufacturing method
JP2021152216A (en) * 2017-02-02 2021-09-30 Dowaエレクトロニクス株式会社 Phosphorus-containing silver powder and conductive paste containing the silver powder
CN113649598A (en) * 2021-08-20 2021-11-16 中北大学 SLM (selective laser melting) -based surface cleaning treatment method for formed metal and alloy sample thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156522A (en) * 2004-11-26 2006-06-15 Kyocera Corp Wiring board and its manufacturing method
JP2008108539A (en) * 2006-10-25 2008-05-08 Fujitsu Ltd Conductive paste and its manufacturing method
KR100983065B1 (en) * 2006-10-25 2010-09-20 후지쯔 가부시끼가이샤 Electrically conductive paste and method of making the same
JP2021152216A (en) * 2017-02-02 2021-09-30 Dowaエレクトロニクス株式会社 Phosphorus-containing silver powder and conductive paste containing the silver powder
JP7136970B2 (en) 2017-02-02 2022-09-13 Dowaエレクトロニクス株式会社 Silver powder containing phosphorus and conductive paste containing the silver powder
CN113649598A (en) * 2021-08-20 2021-11-16 中北大学 SLM (selective laser melting) -based surface cleaning treatment method for formed metal and alloy sample thereof

Also Published As

Publication number Publication date
JP4081387B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP4740839B2 (en) Nickel powder and method for producing the same
TWI269312B (en) Conductive paste for terminal electrode of multilayer ceramic electronic part
JP5872998B2 (en) Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
CA2230506C (en) Nickel powder and process for preparing the same
TW567103B (en) Copper powder for use in conductive paste having excellent anti oxidization property and process
JP4588688B2 (en) Method for producing composite nickel particles
JP2001214201A (en) Nickel powder, producing method therefor and paste for forming electrode for electronic part
CA2216457C (en) Nickel powder and process for preparing the same
TWI464751B (en) Conducting particles, process of making thereof, metallic paste, and electrode
JP4924824B2 (en) Method for producing carbon-coated nickel powder
JP4081387B2 (en) Silver powder for conductive material of ceramic multilayer substrate and manufacturing method thereof
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2001064080A (en) Silicon nitride sintered body and its production
JP2008262916A (en) Silver powder for conductive paste, and conductive paste using silver powder
JPWO2008041541A1 (en) Nickel-rhenium alloy powder and conductor paste containing the same
JP4834848B2 (en) Copper powder for low-temperature firing or copper powder for conductive paste
JP2015083714A (en) Method for producing composite powder and conductive thick film paste and multilayer ceramic electronic component using composite powder obtained by the production method
JP2007204315A (en) Method of manufacturing ceramic powder, ceramic powder and laminated ceramic electronic component
JPH087644A (en) High temperature baking complying noble metal powder and conductor paste
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
EP0834368B1 (en) Nickel powder and process for preparing the same
JP3550498B2 (en) Manufacturing method of ceramic powder
WO2018056368A1 (en) Composition for thermoelectric conversion layer formation and method for producing thermoelectric conversion layer
KR20200066066A (en) Manufacturing method of silver powder capable of controlling shrinkage rate
WO2019000671A1 (en) Composite ceramic and preparation method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees