JP2005060779A - Copper powder and copper paste/paint and electrode obtained by using the same - Google Patents

Copper powder and copper paste/paint and electrode obtained by using the same Download PDF

Info

Publication number
JP2005060779A
JP2005060779A JP2003292862A JP2003292862A JP2005060779A JP 2005060779 A JP2005060779 A JP 2005060779A JP 2003292862 A JP2003292862 A JP 2003292862A JP 2003292862 A JP2003292862 A JP 2003292862A JP 2005060779 A JP2005060779 A JP 2005060779A
Authority
JP
Japan
Prior art keywords
copper
group
copper powder
silicone oil
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003292862A
Other languages
Japanese (ja)
Other versions
JP4164009B2 (en
Inventor
Masanori Tomonari
雅則 友成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003292862A priority Critical patent/JP4164009B2/en
Publication of JP2005060779A publication Critical patent/JP2005060779A/en
Application granted granted Critical
Publication of JP4164009B2 publication Critical patent/JP4164009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper powder which has excellent oxidation resistance and excellent electric conductivity. <P>SOLUTION: Silicone oil containing at least one kind of functional group selected from among a mercapto group, an amino group, an amide group, an epoxy group, a carboxyl group, a carbinol group, a methacrylic group and a phenol group is treated to copper grains, and is made present on the surface of copper. The modified silicone oil is preferably treated in the range of 0.2 to 20 wt% to the copper grains, and when the quantity to be treated lies in the range, desired oxidation resistance can be obtained while maintaining the electroconductivity of the copper grains. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐酸化性に優れた銅粉末、及びこの銅粉末を用いた銅ペースト・塗料、更には電極に関する。   The present invention relates to a copper powder excellent in oxidation resistance, a copper paste / paint using the copper powder, and further to an electrode.

銅粉末は良好な電気伝導性を有する廉価な材料であり、コンデンサー等の外部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として幅広く用いられている。また、近年、積層セラミックスコンデンサーの内部電極にも用いられ始めている。積層セラミックスコンデンサーは、電解コンデンサー、フィルムコンデンサー等他の形式のコンデンサーと比較して、大容量が得られ易く、実装性に優れ、安全性・安定性が高いので、急速に普及している。最近の電子機器の小型化に伴い、積層セラミックスコンデンサーも小型化する方向にあるが、大容量を維持するには、セラミックスシートの積層数を減らさずに小型化する必要があり、強度等の点でシートの薄層化には限界があるため、パラジウム、ニッケルや銅などの微細な金属粒子を用い内部電極を薄層化することで、積層セラミックスコンデンサーの小型化を実現している。   Copper powder is an inexpensive material with good electrical conductivity, and as a material to ensure electrical continuity such as external electrodes such as capacitors, electrode members such as printed wiring board circuits, and various electrical contact members. Widely used. In recent years, it has begun to be used for internal electrodes of multilayer ceramic capacitors. Multilayer ceramic capacitors are rapidly spreading because they are easy to obtain a large capacity compared to other types of capacitors such as electrolytic capacitors and film capacitors, are excellent in mountability, and have high safety and stability. With the recent miniaturization of electronic equipment, multilayer ceramic capacitors are also in the direction of miniaturization, but in order to maintain a large capacity, it is necessary to miniaturize without reducing the number of laminated ceramic sheets. However, since there is a limit to thinning the sheet, the miniaturization of the multilayer ceramic capacitor is realized by thinning the internal electrode using fine metal particles such as palladium, nickel and copper.

このような分野では、一般的に、金属粒子をエポキシ樹脂、フェノール樹脂などのバインダーと混合してペースト化あるいは塗料化し、この金属ペースト・塗料を、例えば、プリント配線板であれば、基板にスクリーン印刷した後、積層セラミックスコンデンサーであれば、薄層のセラミックスシート上に塗布し、シートを積層した後、それぞれ加熱焼成して電気回路、電極等を形成している。電気的導通を確保するには、用いる金属粒子に金属酸化物ができる限り含まれないものが良いが、銅粉末は非常に酸化され易く、加熱焼成を窒素ガス等の不活性ガスを用いて非酸化性雰囲気下で行っても、銅粒子表面の酸化を十分に防げず、所望の性能の電極等が得られない。このため、耐酸化性に優れた銅粉末が求められており、例えば、導電性ペーストに用いる樹枝状銅粉末に、高級脂肪酸、リン酸エステル類、高級脂肪族アミン、カップリング剤、シリコーンオイル等を表面処理する技術(特許文献1参照)や、オルガノシラン化合物の加水分解生成物を銅粒子の表面で縮合反応させる等して、銅粒子の表面にシリカ系ゲルコート膜を被覆させる技術(特許文献2参照)等が提案されている。   In such fields, generally, metal particles are mixed with a binder such as an epoxy resin or a phenol resin to form a paste or paint, and the metal paste / paint is, for example, a printed wiring board on a substrate. In the case of a multilayer ceramic capacitor after printing, it is applied onto a thin ceramic sheet, the sheets are laminated, and then heated and fired to form an electric circuit, an electrode, and the like. In order to ensure electrical continuity, the metal particles used should not contain metal oxides as much as possible. However, copper powder is very easy to oxidize, and heat firing is performed using an inert gas such as nitrogen gas. Even if it is performed in an oxidizing atmosphere, the oxidation of the surface of the copper particles cannot be sufficiently prevented, and an electrode having a desired performance cannot be obtained. For this reason, copper powder excellent in oxidation resistance has been demanded. For example, higher fatty acids, phosphate esters, higher aliphatic amines, coupling agents, silicone oils, etc. are used for dendritic copper powders used in conductive pastes. For surface treatment (see Patent Document 1), and technology for coating a silica gel coat film on the surface of copper particles by condensation reaction of the hydrolysis product of organosilane compound on the surface of the copper particles (Patent Document 1) 2) and the like have been proposed.

特開平10−147801号公報(第3頁)JP 10-147801 A (page 3) 特開2003−16832号公報JP 2003-16832 A

銅粉末の表面に前記特許文献1に記載の高級脂肪酸、リン酸エステル類、高級脂肪族アミン、カップリング剤、シリコーンオイル、前記特許文献2記載のシリカ系ゲルコート膜を処理すると、耐酸化性が向上するものの十分ではなく、高性能の電極等を製造するために更なる耐酸化性の改善が求められている。そこで、本発明は、より一層耐酸化性に優れ、しかも導電性に優れた銅粉末を提供するものである。   When the surface of the copper powder is treated with the higher fatty acid, phosphate ester, higher aliphatic amine, coupling agent, silicone oil, and silica gel coat film described in Patent Document 2 described in Patent Document 1, oxidation resistance is improved. The improvement is not sufficient, and further improvement in oxidation resistance is required to produce high performance electrodes and the like. Therefore, the present invention provides a copper powder that is further excellent in oxidation resistance and excellent in conductivity.

本発明者は、このような問題点を解決すべく鋭意研究を重ねた結果、銅粒子の表面を特定の官能基を含むシリコーンオイルで処理することにより、銅粒子の耐酸化性が改善できることを見出し、本発明を完成した。   As a result of intensive studies to solve such problems, the present inventors have found that the oxidation resistance of copper particles can be improved by treating the surface of copper particles with silicone oil containing a specific functional group. The headline and the present invention were completed.

即ち、本発明は、銅粒子の表面に、メルカプト基、アミノ基、アミド基、エポキシ基、カルボキシル基、カルビノール基、メタクリル基、フェノール基から選ばれる少なくとも1種の官能基を含むシリコーンオイルが処理されていることを特徴とする銅粉末である。また、本発明は、前記銅粉末を配合してなる銅ペーストまたは銅塗料であり、前記銅粉末を用いた電極である。   That is, the present invention provides a silicone oil containing at least one functional group selected from a mercapto group, amino group, amide group, epoxy group, carboxyl group, carbinol group, methacryl group, and phenol group on the surface of copper particles. The copper powder is characterized by being treated. Moreover, this invention is a copper paste or copper coating material which mix | blends the said copper powder, and is an electrode using the said copper powder.

本発明は、銅粉末に含まれる銅粒子の表面に特定の官能基を含むシリコーンオイルを処理することにより、銅粉末の導電性を損なわずに耐酸化性を改善することができ、コンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として幅広く用いることができる。特に、コンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材に適用すると、薄膜で高密度の電極が得られる。また、本発明の銅粉末は前記シリコーンオイルを処理しているため、バインダー樹脂や溶媒との親和性が良く分散が容易で、少量のバインダー樹脂、溶媒でペースト化や塗料化が容易にできる。   The present invention can improve the oxidation resistance without impairing the conductivity of the copper powder by treating the silicone oil containing a specific functional group on the surface of the copper particles contained in the copper powder. It can be widely used as a material for ensuring electrical continuity, such as electrode members for external electrodes, internal electrodes, printed wiring board circuits, and various electrical contact members. In particular, when applied to an electrode member such as an external electrode such as a capacitor, an internal electrode, or a circuit of a printed wiring board, a thin film and a high-density electrode can be obtained. Further, since the copper powder of the present invention is treated with the silicone oil, it has good affinity with the binder resin and solvent and can be easily dispersed, and can be easily made into a paste or paint with a small amount of the binder resin or solvent.

本発明は、銅粒子の表面にシリコーンオイルが処理された耐酸化性の優れた銅粉末であって、前記シリコーンオイルがメルカプト基、アミノ基、アミド基、エポキシ基、カルボキシル基、カルビノール基、メタクリル基、フェノール基から選ばれる少なくとも1種の官能基を含むものである。前記の変性シリコーンオイルは、シリコーンオイル同士がほとんど反応せず、一方でシリコーンオイルに含まれる官能基が銅粒子の表面と強く結合するので、銅粒子の表面を効果的に被覆できるものと推測される。これに対し、従来のシリコーンオイル(所謂ジメチルポリシロキサン)は、銅粒子とほとんど反応しないので、被覆効果が低いと考えられる。また、オルガノシラン化合物の加水分解生成物は銅粒子の表面と結合するが、加水分解生成物同士も反応し、加水分解生成物の一部が銅粒子とは別相に重縮合物を生成し易いため、所望の耐酸化性が得られないと考えられる。前記シリコーンオイルは銅粒子に対して、0.2〜20重量%の範囲で処理するのが好ましく、処理量がこの範囲内であれば、銅粒子の導電性を保持しながら、所望の耐酸化性が得られる。より好ましい処理量の範囲は1〜15重量%である。   The present invention is a copper powder having excellent oxidation resistance in which silicone oil is treated on the surface of copper particles, wherein the silicone oil is a mercapto group, amino group, amide group, epoxy group, carboxyl group, carbinol group, It contains at least one functional group selected from a methacryl group and a phenol group. The modified silicone oil is presumed to be able to effectively cover the surface of the copper particles because the silicone oils hardly react with each other while the functional groups contained in the silicone oil are strongly bonded to the surface of the copper particles. The On the other hand, conventional silicone oil (so-called dimethylpolysiloxane) hardly reacts with the copper particles, so it is considered that the coating effect is low. In addition, the hydrolysis product of the organosilane compound binds to the surface of the copper particles, but the hydrolysis products also react with each other, and a part of the hydrolysis product forms a polycondensate in a phase separate from the copper particles. Therefore, it is considered that desired oxidation resistance cannot be obtained. The silicone oil is preferably treated in the range of 0.2 to 20% by weight with respect to the copper particles. If the treatment amount is within this range, the desired oxidation resistance is maintained while maintaining the conductivity of the copper particles. Sex is obtained. A more preferable range of the treatment amount is 1 to 15% by weight.

金属銅が完全に酸化されるとCuOとなり、理論上約25%の重量増加率となるが、例えば、耐酸化性の指標として加熱焼成後の重量増加率を用いると、本発明の銅粉末は最大でも15%の重量増加率(即ち0〜15%)であり、好ましくは10%以下の重量増加率(即ち0〜10%)であり、より好ましくは8%以下の重量増加率(即ち0〜8%)である。重量増加率は、銅粉末を窒素ガス、ヘリウムガス、アルゴンガスなどの非酸化性雰囲気下60℃の温度で10時間加熱した後の金属銅重量(W)に対して、その後更に、空気、酸素ガスなどの酸化性雰囲気下500℃の温度で20分間加熱した後の重量(W)の増加率((W−W)/W×100)で算出する。 When the copper metal is completely oxidized, it becomes CuO and theoretically has a weight increase rate of about 25%. For example, when the weight increase rate after heating and firing is used as an index of oxidation resistance, the copper powder of the present invention is The maximum weight increase rate is 15% (ie 0 to 15%), preferably 10% or less (ie 0 to 10%), more preferably 8% or less (ie 0%). ~ 8%). The weight increase rate is based on the weight of copper metal (W 1 ) after heating the copper powder at a temperature of 60 ° C. for 10 hours in a non-oxidizing atmosphere such as nitrogen gas, helium gas, and argon gas. The weight (W 2 ) increase rate ((W 2 −W 1 ) / W 1 × 100) after heating for 20 minutes at a temperature of 500 ° C. in an oxidizing atmosphere such as oxygen gas is calculated.

前記変性シリコーンオイルは、シロキサン結合(−O−Si−O−)からなる直鎖状の分子構造を有し、その側鎖や末端がメチル基であって、これらメチル基のうち少なくとも一つが、メルカプト基、アミノ基、アミド基、エポキシ基、カルボキシル基、カルビノール基、メタクリル基、フェノール基から選ばれる少なくとも1種の官能基を含む置換基で変性されたものである。本発明の効果を損ねない範囲なら、側鎖や末端に、メチル基及び前記官能基以外の官能基、例えば、水素基、水酸基などの反応性基、アルキル基、フェニル基などの非反応性基等の有機基または無機基を含んでいても良い。具体的には、下記の式(1)で表される化合物が好ましく、例えば、側鎖変性型(X4、X5が前記官能基から選ばれる同種または異種の官能基でX1〜3がメチル基、またはX3〜5が前記官能基から選ばれる同種または異種の官能基でX1、X2がメチル基)、両末端変性型(X1、X2が前記官能基から選ばれる同種または異種の官能基でX3〜5がメチル基)、片末端変性型(X1が前記官能基でX2〜5がメチル基)、側鎖末端変性型(X1〜4が前記官能基から選ばれる同種または異種の官能基でX5がメチル基、またはX1〜5が前記官能基から選ばれる同種または異種の官能基)等いずれの形態も用いることができる。本発明ではこれらのシリコーンオイルを1種で用いても、2種以上を混合物または共重合体として用いても良い。
(化1)
CH CH CH CH CH
│ │ │ │ │
式(1):X1―SiO(SiO)(SiO)(SiO)Si―X2
│ │ │ │ │
CH X3 X4 X5 CH
[式(1)中、X1〜5がメチル基またはメルカプト基、アミノ基、アミド基、エポキシ基、カルボキシル基、カルビノール基、メタクリル基、フェノール基から選ばれる少なくとも1種の官能基で、nは1以上の整数でm、lはそれぞれ0または1以上の整数であり、X1〜5の少なくとも2個が官能基の場合、官能基は同種であっても異種であっても良い。]
The modified silicone oil has a linear molecular structure composed of a siloxane bond (—O—Si—O—), and its side chain and terminal are methyl groups, and at least one of these methyl groups is It is modified with a substituent containing at least one functional group selected from a mercapto group, amino group, amide group, epoxy group, carboxyl group, carbinol group, methacryl group, and phenol group. As long as the effect of the present invention is not impaired, the side chain or terminal has a functional group other than the methyl group and the functional group, for example, a reactive group such as a hydrogen group or a hydroxyl group, an unreactive group such as an alkyl group or a phenyl group. It may contain an organic group or an inorganic group. Specifically, a compound represented by the following formula (1) is preferable, for example, a side chain modified type (X4 and X5 are the same or different functional groups selected from the functional groups, and X1 to 3 are methyl groups, Or X3-5 is the same or different functional group selected from the above functional groups and X1 and X2 are methyl groups), both terminal modified types (X1 and X2 are the same or different functional groups selected from the above functional groups, X3 5 is a methyl group), one-end modified type (X1 is the functional group and X2 to 5 are methyl groups), side chain end-modified type (X1 to 4 are the same or different functional groups selected from the functional groups, and X5 is Any form such as a methyl group or the same or different functional group wherein X1 to X5 are selected from the above functional groups can be used. In the present invention, these silicone oils may be used alone or two or more of them may be used as a mixture or a copolymer.
(Chemical formula 1)
CH 3 CH 3 CH 3 CH 3 CH 3
│ │ │ │ │
Formula (1): X1-SiO (SiO) n (SiO) m (SiO) lSi -X2
│ │ │ │ │
CH 3 X3 X4 X5 CH 3
[In the formula (1), X1 to 5 are at least one functional group selected from methyl group, mercapto group, amino group, amide group, epoxy group, carboxyl group, carbinol group, methacryl group, and phenol group, and n Is an integer of 1 or more, m and l are each 0 or an integer of 1 or more, and when at least two of X1 to 5 are functional groups, the functional groups may be the same or different. ]

銅粒子の形状は特に制限を受けないが、充填性が優れているので、ほぼ真球の球状粒子とするのが好ましい。また、粒子径は平均粒子径を1.0μm以下にすると、欠陥がほとんど無い高密度の電極が得られ易く、0.005μm以上にするとペースト、塗料等への分散性に優れているので、0.005〜1.0μmの範囲とするのが好ましい。より好ましい範囲は0.05〜1.0μmであり、更に好ましい範囲は0.1〜1.0μmであり、最も好ましい範囲は0.2〜1.0μmである。平均粒子径は電子顕微鏡法により測定した累積50%径で表され、粒子形状も電子顕微鏡で観察される。   The shape of the copper particles is not particularly limited, but is preferably a substantially spherical particle because of excellent filling properties. In addition, when the average particle size is 1.0 μm or less, a high-density electrode having almost no defects is easily obtained, and when the average particle size is 0.005 μm or more, the dispersibility in paste, paint, etc. is excellent. A range of 0.005 to 1.0 μm is preferable. A more preferable range is 0.05 to 1.0 μm, a further preferable range is 0.1 to 1.0 μm, and a most preferable range is 0.2 to 1.0 μm. The average particle diameter is expressed as a cumulative 50% diameter measured by electron microscopy, and the particle shape is also observed with an electron microscope.

本発明の銅粉末を得るには、先ず、銅粒子を製造する。銅粒子の製造には種々の方法を用いることができ、例えば、(1)アトマイズ法等の気相で銅化合物を還元反応させる方法、(2)湿式還元法等の液相で銅化合物を還元反応させる方法等が挙げられる。中でも、特別な設備を要しない(2)の方法が工業的に有利でる。   In order to obtain the copper powder of the present invention, first, copper particles are produced. Various methods can be used for the production of copper particles. For example, (1) a method in which a copper compound is reduced in a gas phase such as an atomizing method, and (2) a copper compound is reduced in a liquid phase such as a wet reduction method. The method of making it react is mentioned. Among these, the method (2) that does not require special equipment is industrially advantageous.

前記(2)の方法では、媒液中、例えば水またはアルコール類等の有機系の媒液中で、好ましくは水中で、銅化合物と還元剤とを混合して、好ましくは保護コロイドの存在下で、還元反応を行うのが好ましい方法である。反応温度は10℃〜用いた媒液の沸点の範囲であれば反応が進み易いので好ましく、40〜95℃の範囲であれば更に好ましい。反応液のpHを酸またはアルカリで3〜12の範囲に予め調整すると、銅化合物の沈降を防ぎ、均一に反応させることができるので好ましい。還元剤の使用量は、銅化合物から銅粒子を生成できる量であれば適宜設定することができ、銅化合物中に含まれる銅1モルに対し0.2〜5モルの範囲にあるのが好ましい。   In the method (2), a copper compound and a reducing agent are mixed in a medium, for example, water or an organic medium such as alcohol, preferably in water, and preferably in the presence of a protective colloid. Thus, it is preferable to carry out the reduction reaction. The reaction temperature is preferably in the range of 10 ° C. to the boiling point of the liquid medium used, since the reaction is easy to proceed, and more preferably in the range of 40 to 95 ° C. It is preferable to adjust the pH of the reaction solution in the range of 3 to 12 in advance with an acid or an alkali because precipitation of the copper compound can be prevented and the reaction can be performed uniformly. The amount of the reducing agent used can be appropriately set as long as it is an amount capable of generating copper particles from the copper compound, and is preferably in the range of 0.2 to 5 mol with respect to 1 mol of copper contained in the copper compound. .

原料の銅化合物としては、銅酸化物、塩化銅、塩素酸銅、臭化銅、ヨウ化銅、硫酸銅、硝酸銅、炭酸銅、炭酸水酸化銅、テトラアンミン銅硫酸塩、テトラシアノ銅酸カリウム等やそれらの水和物の無機銅化合物、蟻酸銅、酢酸銅、シュウ酸銅等やそれらの水和物の有機銅化合物を用いることができ、中でも銅酸化物が好ましい。尚、本発明では銅酸化物を、通常の銅の酸化物の他に、銅の含水酸化物、銅の水酸化物を包含する意味で用いており、銅の酸化物としては亜酸化銅(または酸化第一銅)、酸化銅(または酸化第二銅)等を用いることができる。   Examples of the raw material copper compound include copper oxide, copper chloride, copper chlorate, copper bromide, copper iodide, copper sulfate, copper nitrate, copper carbonate, copper carbonate hydroxide, tetraammine copper sulfate, potassium tetracyanocuprate, etc. And inorganic copper compounds of these hydrates, copper formate, copper acetate, copper oxalate and the like, and organic copper compounds of these hydrates can be used, among which copper oxide is preferred. In the present invention, a copper oxide is used in the sense of including a copper hydrated oxide and a copper hydroxide in addition to a normal copper oxide. As the copper oxide, cuprous oxide ( Alternatively, cuprous oxide), copper oxide (or cupric oxide), or the like can be used.

還元剤としては公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその金属塩、次亜リン酸及び次亜リン酸ナトリウム等のその金属塩、アルデヒド類、アルコール類、アミン類、糖類等が挙げられ、これらを1種または2種以上を用いても良い。特に、ヒドラジン系還元剤は還元力が強く好ましい。   As the reducing agent, known ones can be used, for example, hydrazine, hydrazine reducing agents such as hydrazine compounds such as hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate, sodium borohydride, sodium sulfite, sodium bisulfite, Metal salts such as sodium thiosulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and sodium phosphite, metal salts such as hypophosphorous acid and sodium hypophosphite, aldehydes, alcohols, amines And saccharides may be used, and one or more of these may be used. In particular, hydrazine-based reducing agents are preferred because of their strong reducing power.

保護コロイドとして公知のものを用いることができ、例えば、ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系、デンプン、デキストリン、寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース系、ポリビニルアルコール、ポリビニルピロリドン等のビニル系、ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等のアクリル酸系、ステアリン酸等の高級脂肪酸、ポリエチレングリコール等の合成高分子、クエン酸等の多価カルボン酸、アニリンまたはそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。保護コロイドは、生成した銅粒子の分散安定化剤として作用するものであり、その使用量は銅化合物100重量部に対し1〜100重量部の範囲にすると、生成した銅粒子が分散安定化し易いので好ましく、2〜50重量部の範囲が更に好ましい。   Known protective colloids can be used, for example, protein systems such as gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, natural polymers such as starch, dextrin, agar, sodium alginate, and hydroxyethyl cellulose. , Celluloses such as carboxymethylcellulose, methylcellulose and ethylcellulose; vinyls such as polyvinyl alcohol and polyvinylpyrrolidone; acrylic acids such as sodium polyacrylate and ammonium polyacrylate; higher fatty acids such as stearic acid; Examples include molecules, polyvalent carboxylic acids such as citric acid, aniline or derivatives thereof, and one or more of these may be used. The protective colloid acts as a dispersion stabilizer for the produced copper particles. When the amount used is in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the copper compound, the produced copper particles are easily dispersed and stabilized. Therefore, the range of 2 to 50 parts by weight is more preferable.

銅粒子を生成させた後、適宜、濾過、洗浄、乾燥を行い、必要に応じて粉砕する。乾燥は銅粒子が酸化し難いように、窒素ガス、ヘリウムガス、アルゴンガス等の非酸化性ガス(不活性ガス)の雰囲気下で行うのが好ましい。   After producing | generating a copper particle, it filters, wash | cleans and dries suitably, and grind | pulverizes as needed. Drying is preferably performed in an atmosphere of a non-oxidizing gas (inert gas) such as nitrogen gas, helium gas, or argon gas so that the copper particles are not easily oxidized.

次いで、銅粒子の表面に前記シリコーンオイルを処理する。処理方法としては、(a)銅粒子とシリコーンオイルをヘンシェルミキサー、スーパーミキサー等の高速撹拌機を用いて混合する所謂乾式処理、(b)アルコール類等の有機系溶媒、または分散剤を加えた水等を媒液に用い、媒液中で銅粒子とシリコーンオイルを接触させる所謂湿式処理等を用いることができる。   Next, the silicone oil is treated on the surface of the copper particles. As a treatment method, (a) a so-called dry treatment in which copper particles and silicone oil are mixed using a high-speed stirrer such as a Henschel mixer or a super mixer, (b) an organic solvent such as alcohols, or a dispersant is added. A so-called wet process or the like in which copper particles and silicone oil are brought into contact with each other in water can be used.

シリコーンオイルの処理後、必要に応じて適宜、固液分離(濾過)、洗浄、乾燥、粉砕する。乾燥は銅粒子が酸化し難いように、窒素ガス、ヘリウムガス、アルゴンガス等の非酸化性ガス(不活性ガス)の雰囲気下で行うのが好ましい。また、シリコーンオイルの処理後に加熱処理すると、更に耐酸化性が向上するので好ましい。加熱温度は80〜400℃の範囲が好ましく、100〜350℃の範囲が更に好ましい。加熱処理は銅粒子が酸化し難いように、窒素ガス、ヘリウムガス、アルゴンガス等の非酸化性ガス(不活性ガス)の雰囲気下で行うのが好ましい。加熱処理後の銅粉末は、必要に応じて再度粉砕しても良い。   After the silicone oil treatment, solid-liquid separation (filtration), washing, drying, and pulverization are performed as necessary. Drying is preferably performed in an atmosphere of a non-oxidizing gas (inert gas) such as nitrogen gas, helium gas, or argon gas so that the copper particles are not easily oxidized. Moreover, it is preferable to heat-treat after the silicone oil treatment since the oxidation resistance is further improved. The heating temperature is preferably in the range of 80 to 400 ° C, more preferably in the range of 100 to 350 ° C. The heat treatment is preferably performed in an atmosphere of a non-oxidizing gas (inert gas) such as nitrogen gas, helium gas, or argon gas so that the copper particles are not easily oxidized. You may grind | pulverize the copper powder after heat processing again as needed.

本発明の銅粉末は、必要に応じて溶媒あるいはバインダー樹脂と混合して、銅ペーストあるいは銅塗料(銅インク)にして用いられる。溶媒は用途に応じて適宜選択することができ、例えば、比較的高沸点の非極性溶剤あるいは低極性溶剤、具体的には、テルピネオール、ミネラルスピリット、キシレン、トルエン、エチルベンゼン、メシチレン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、シクロヘキサン、シクロオクタン等を用いることができる。また、バインダー樹脂も用途に応じて適宜選択することができ、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイミドトリアジン樹脂、フラン樹脂、ユリア樹脂、ポリウレタン樹脂、メラミン樹脂、シリコン樹脂等の熱硬化性樹脂を挙げることができ、フェノール樹脂、エポキシ樹脂は、基板との密着性が良好であるので、樹脂成分としてより好ましいものである。溶媒、バインダー樹脂の配合量は用途に応じて適宜設定することができ、例えば、銅粉末100重量部に対して、溶媒は1〜500重量部程度、バインダー樹脂は1〜50重量部程度とすることができる。このような銅ペーストあるいは銅塗料(銅インク)は、通常の方法により基板に塗布後、加熱焼成して、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路等や、その他の電極を製造するのに用いることができる。本発明の銅粉末は耐酸化性に優れているので、これを用いて製造した前記の電極は電気特性の優れたものとなる。   The copper powder of the present invention is used as a copper paste or a copper paint (copper ink) by mixing with a solvent or a binder resin as necessary. The solvent can be appropriately selected depending on the application, for example, a relatively high boiling nonpolar solvent or low polarity solvent, specifically, terpineol, mineral spirit, xylene, toluene, ethylbenzene, mesitylene, hexane, heptane, Octane, decane, dodecane, cyclohexane, cyclooctane and the like can be used. Further, the binder resin can also be appropriately selected according to the application, for example, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleimide triazine resin, Examples include thermosetting resins such as furan resin, urea resin, polyurethane resin, melamine resin, and silicon resin. Phenol resin and epoxy resin are more preferable as resin components because they have good adhesion to the substrate. It is. The blending amount of the solvent and the binder resin can be appropriately set according to the use. For example, the solvent is about 1 to 500 parts by weight and the binder resin is about 1 to 50 parts by weight with respect to 100 parts by weight of the copper powder. be able to. Such a copper paste or copper paint (copper ink) is applied to a substrate by a normal method and then heated and fired to produce an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and other electrodes. Can be used. Since the copper powder of the present invention is excellent in oxidation resistance, the electrode manufactured using the copper powder has excellent electrical characteristics.

以下に実施例を挙げて、本発明を更に詳細に説明するが、本発明はこれらの実施例により制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1
保護コロイドとしてアラビアゴム2gを2900ミリリットルの純水に添加した後、工業用酸化銅(N−120:エヌシーテック社製)125gを添加し撹拌しながら、80%ヒドラジン一水和物を360ミリリットル添加した。ヒドラジン一水和物の添加後から3時間かけ室温から60℃に昇温し、更に2時間かけて酸化銅と反応させ、平均粒子径が0.6μmの銅粒子を生成させた。その後、濾液比抵抗が100μS/cm以下になるまで濾過洗浄し、窒素ガスの雰囲気下で60℃の温度で10時間かけて乾燥し、銅粒子を得た。次いで、銅粒子とこれに対し8重量%に相当するメルカプト変性シリコーンオイル(KF−2004:前式(1)中のlが0でありX4がメルカプト基でX1〜X3がメチル基のもの、信越化学工業社製)とを、ブレンダーを用いて5分間撹拌して乾式処理した後、窒素ガスの雰囲気下で120℃の温度で2時間加熱処理して本発明の銅粉末(試料A)を得た。
Example 1
Add 2 g of gum arabic as protective colloid to 2900 ml of pure water, then add 125 g of industrial copper oxide (N-120: manufactured by NC Tech) and add 360 ml of 80% hydrazine monohydrate with stirring. did. After addition of hydrazine monohydrate, the temperature was raised from room temperature to 60 ° C. over 3 hours, and further reacted with copper oxide over 2 hours to produce copper particles having an average particle size of 0.6 μm. Thereafter, the solution was filtered and washed until the filtrate specific resistance was 100 μS / cm or less, and dried at a temperature of 60 ° C. for 10 hours in an atmosphere of nitrogen gas to obtain copper particles. Next, copper particles and mercapto-modified silicone oil corresponding to 8% by weight (KF-2004: l in the above formula (1) is 0, X4 is a mercapto group, and X1 to X3 are methyl groups, Shin-Etsu (Chemical Industry Co., Ltd.) was dry-treated by stirring for 5 minutes using a blender, and then heat-treated at a temperature of 120 ° C. for 2 hours under an atmosphere of nitrogen gas to obtain the copper powder (sample A) of the present invention. It was.

実施例2
メルカプト変性シリコーンオイルをアミノ変性シリコーンオイル(KF−867:前式(1)のlが0でありX4がアミノ基、X1〜X3がメチル基のもの、信越化学工業社製)に替えたこと以外は実施例1と同様にして本発明の銅粉末(試料B)を得た。
Example 2
Other than replacing mercapto-modified silicone oil with amino-modified silicone oil (KF-867: l in the above formula (1) is 0, X4 is an amino group, X1 to X3 are methyl groups, manufactured by Shin-Etsu Chemical Co., Ltd.) Obtained the copper powder (sample B) of the present invention in the same manner as in Example 1.

比較例1、2
メルカプト変性シリコーンオイルに替えて通常のシリコーンオイル(ジメチルポリシロキサン)(SH−200:前式(1)のm、lが0でありX1〜X3がメチル基のもの、東レダウコーニングシリコーン社製)またはメチルハイドロジェンポリシロキサン(SH−1107:前式(1)のm、lが0でありX3が水素基、X1、X2がメチル基のもの、東レダウコーニングシリコーン社製)に替えたこと以外は、実施例1と同様にして銅粉末(試料C、D)を得た。それぞれを比較例1、2とする。
Comparative Examples 1 and 2
Normal silicone oil (dimethylpolysiloxane) instead of mercapto-modified silicone oil (SH-200: m and l in formula (1) are 0 and X1 to X3 are methyl groups, manufactured by Toray Dow Corning Silicone) Or methyl hydrogen polysiloxane (SH-1107: m and l in the formula (1) are 0, X3 is a hydrogen group, X1 and X2 are methyl groups, manufactured by Toray Dow Corning Silicone) Obtained copper powder (samples C and D) in the same manner as in Example 1. These are designated as Comparative Examples 1 and 2, respectively.

比較例3
実施例1と同様にして銅粒子を得た後、銅粒子を2−プロパノール中に分散させ143g/リットルのスラリーとし、銅粒子に対して17.4重量%に相当する(SiO換算で5重量%に相当)テトラエトキシランと純水20gをこのスラリーに添加した。次いで、28%アンモニア水を30分間かけ添加してスラリーのpHが8.5になるよう調整した後、40℃に昇温してから1時間撹拌し、銅粒子にテトラエトキシランの加水分解生成物の重縮合物を被着させた。その後、銅粒子を瀘別し、窒素ガスの雰囲気下で120℃の温度で2時間加熱処理した後、乳鉢で粉砕し銅粉末(試料E)を得た。
Comparative Example 3
After obtaining copper particles in the same manner as in Example 1, the copper particles are dispersed in 2-propanol to form a slurry of 143 g / liter, which corresponds to 17.4% by weight with respect to the copper particles (5 in terms of SiO 2). Tetraethoxylane and 20 g of pure water were added to this slurry. Next, 28% ammonia water was added over 30 minutes to adjust the pH of the slurry to 8.5, and then the temperature was raised to 40 ° C. and stirred for 1 hour to hydrolyze tetraethoxylane into copper particles. A polycondensate of the product was deposited. Thereafter, the copper particles were separated, heat-treated at 120 ° C. for 2 hours in an atmosphere of nitrogen gas, and then pulverized in a mortar to obtain a copper powder (Sample E).

比較例4
実施例1において、メルカプト変性シリコーンオイルを処理しないこと以外は同様にして銅粉末(試料F)を得た。
Comparative Example 4
A copper powder (sample F) was obtained in the same manner as in Example 1 except that the mercapto-modified silicone oil was not treated.

評価1:耐酸化性の評価
実施例1、2、比較例1〜4で得られた試料A〜F10gを、非酸化性窒素ガス雰囲気下60℃の温度で10時間加熱した後の金属銅重量と、その後更に、酸化性空気雰囲気下150℃、200℃、300℃、400℃、500℃の温度で、それぞれ20分間加熱焼成した後の重量を測定し、重量増加率を算出した。結果を表1に示す。重量増加が少ない程、耐酸化性が優れていることを示しており、本発明の銅粉末は、従来のシリコーンオイル及びオルガノシラン化合物の加水分解生成物の処理や、水素基で変性されたメチルハイドロジェンポリシロキサン処理より、重量増加率が低く、耐酸化性が優れていることが判る。特に、本発明の銅粉末は、500℃の温度で加熱焼成した後の重量増加率が15%以下であり、良好であった。
Evaluation 1: Evaluation of oxidation resistance Metal copper weight after heating Samples A to F 10g obtained in Examples 1 and 2 and Comparative Examples 1 to 4 at a temperature of 60 ° C in a non-oxidizing nitrogen gas atmosphere for 10 hours After that, the weight after heating and baking for 20 minutes at 150 ° C., 200 ° C., 300 ° C., 400 ° C., and 500 ° C. in an oxidizing air atmosphere was measured, and the weight increase rate was calculated. The results are shown in Table 1. The smaller the increase in weight, the better the oxidation resistance. The copper powder of the present invention is a conventional treatment of hydrolysis products of silicone oils and organosilane compounds and methyl groups modified with hydrogen groups. From the hydrogen polysiloxane treatment, it can be seen that the rate of weight increase is lower and the oxidation resistance is superior. In particular, the copper powder of the present invention had a good weight increase rate of 15% or less after being heated and fired at a temperature of 500 ° C.

Figure 2005060779
Figure 2005060779

本発明の実施例で得られた銅粉末を用いて、溶媒、バインダー樹脂と混合して、銅ペーストあるいは銅塗料(銅インク)を調製し、通常の方法により基板に塗布後、加熱焼成して、電極とした。得られた電極は電気特性の優れたものとなることを確認した。   Using the copper powder obtained in the examples of the present invention, a copper paste or a copper paint (copper ink) is prepared by mixing with a solvent and a binder resin, applied to a substrate by a normal method, and then heated and fired. The electrode was used. It was confirmed that the obtained electrode had excellent electrical characteristics.

本発明は、コンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として有用である。特に、本発明の銅粉末を銅ペースト、銅塗料(銅インク)等にして、例えば、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路等や、その他の電極に用いると、電気特性の優れたものが得られると期待される。
INDUSTRIAL APPLICABILITY The present invention is useful as a material for ensuring electrical continuity, such as external electrodes such as capacitors, internal electrodes, electrode members such as printed wiring board circuits, and various electrical contact members. In particular, when the copper powder of the present invention is used as a copper paste, copper paint (copper ink) or the like, for example, for an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, or other electrodes, it has excellent electrical characteristics. Expect to get something.

Claims (3)

銅粒子の表面に、メルカプト基、アミノ基、アミド基、エポキシ基、カルボキシル基、カルビノール基、メタクリル基、フェノール基から選ばれる少なくとも1種の官能基を含むシリコーンオイルが処理されていることを特徴とする銅粉末。 The surface of the copper particles is treated with a silicone oil containing at least one functional group selected from mercapto groups, amino groups, amide groups, epoxy groups, carboxyl groups, carbinol groups, methacrylic groups, and phenol groups. Features copper powder. 請求項1記載の銅粉末を配合してなる銅ペーストまたは銅塗料。 A copper paste or copper paint comprising the copper powder according to claim 1. 請求項1記載の銅粉末を用いた電極。

An electrode using the copper powder according to claim 1.

JP2003292862A 2003-08-13 2003-08-13 Copper powder, copper paste and paint using the same, electrode Expired - Fee Related JP4164009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292862A JP4164009B2 (en) 2003-08-13 2003-08-13 Copper powder, copper paste and paint using the same, electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292862A JP4164009B2 (en) 2003-08-13 2003-08-13 Copper powder, copper paste and paint using the same, electrode

Publications (2)

Publication Number Publication Date
JP2005060779A true JP2005060779A (en) 2005-03-10
JP4164009B2 JP4164009B2 (en) 2008-10-08

Family

ID=34370045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292862A Expired - Fee Related JP4164009B2 (en) 2003-08-13 2003-08-13 Copper powder, copper paste and paint using the same, electrode

Country Status (1)

Country Link
JP (1) JP4164009B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184143A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Mining Co Ltd Surface treatment method of conductive powder, and conductive powder and conductive paste
EP2587899A1 (en) 2011-10-27 2013-05-01 Hitachi Ltd. Sinterable bonding material using copper nanoparticles, process for producing same, and method of bonding electronic component
CN103153503A (en) * 2010-10-06 2013-06-12 旭硝子株式会社 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
WO2020071432A1 (en) 2018-10-04 2020-04-09 三菱マテリアル株式会社 Particles for joining material and production method thereof, joining paste and preparation method thereof, and production method of joined body
KR20210068468A (en) 2018-10-04 2021-06-09 미쓰비시 마테리알 가부시키가이샤 Particles for bonding material and manufacturing method thereof, bonding paste and preparation method thereof, and manufacturing method of bonded body
CN115353788A (en) * 2022-09-26 2022-11-18 杭州海维特化工科技有限公司 Anti-virus skin touch gloss oil applied to automotive interior membrane and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882960B2 (en) 2013-08-13 2016-03-09 Jx金属株式会社 Surface-treated metal powder and method for producing the same
JP5843821B2 (en) 2013-08-13 2016-01-13 Jx日鉱日石金属株式会社 Metal powder paste and method for producing the same
JP6549298B1 (en) * 2018-09-21 2019-07-24 Jx金属株式会社 Pulverizable copper powder and method for producing the same
JP6914999B2 (en) * 2019-07-16 2021-08-04 Jx金属株式会社 Surface treatment copper powder
JP2021014634A (en) * 2019-07-16 2021-02-12 Jx金属株式会社 Surface-treated copper powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184143A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Mining Co Ltd Surface treatment method of conductive powder, and conductive powder and conductive paste
CN103153503A (en) * 2010-10-06 2013-06-12 旭硝子株式会社 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
EP2587899A1 (en) 2011-10-27 2013-05-01 Hitachi Ltd. Sinterable bonding material using copper nanoparticles, process for producing same, and method of bonding electronic component
WO2020071432A1 (en) 2018-10-04 2020-04-09 三菱マテリアル株式会社 Particles for joining material and production method thereof, joining paste and preparation method thereof, and production method of joined body
KR20210068468A (en) 2018-10-04 2021-06-09 미쓰비시 마테리알 가부시키가이샤 Particles for bonding material and manufacturing method thereof, bonding paste and preparation method thereof, and manufacturing method of bonded body
CN115353788A (en) * 2022-09-26 2022-11-18 杭州海维特化工科技有限公司 Anti-virus skin touch gloss oil applied to automotive interior membrane and preparation method thereof
CN115353788B (en) * 2022-09-26 2023-07-21 杭州海维特化工科技有限公司 Antiviral skin touch sensitive oil applied to automotive interior film and preparation method thereof

Also Published As

Publication number Publication date
JP4164009B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
TWI665165B (en) Silver fine particle disperant, silver fine particle and production method thereof and bonding composition
JP5294851B2 (en) Method for producing nickel fine particles
JP4164009B2 (en) Copper powder, copper paste and paint using the same, electrode
JP4781604B2 (en) Method for producing metal colloid solution, two-component coating material containing the metal colloid solution, and method and use thereof
JP2006002228A (en) Spherical silver powder and its production method
JP5239191B2 (en) Silver fine particles and method for producing the same
WO2018080092A1 (en) Silver powder and preparation method therefor
KR102035115B1 (en) Conductive coated composite body and method for producing same
JPWO2009060803A1 (en) Copper fine particles, production method thereof and copper fine particle dispersion
KR100713241B1 (en) Method of manufacturing silver powder by chemical reduction
JP5882960B2 (en) Surface-treated metal powder and method for producing the same
EP1949403A4 (en) Metallic ink, and method for forming of electrode using the same and substrate
JP3746884B2 (en) Magnetic fluid and manufacturing method thereof
CN104115237A (en) Metal powder paste and method for producing same
JP2014222619A (en) Conductive film
JP5922388B2 (en) Silver powder for sintered conductive paste
JP4252349B2 (en) Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode
JPH08259847A (en) Coated inorganic powder and its production
JP2011089153A (en) Method for producing copper fine particle
JP4208705B2 (en) Method for producing metal powder
KR100631025B1 (en) Method of manufacturing silver powder by chemical reduction
JP4164008B2 (en) Copper powder, method for producing the same, copper paste / paint using the same, and electrode
JP2015036440A (en) Surface-treated metal powder and method for producing the same
JP4208704B2 (en) Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4164009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees