JPH08250769A - Optical semiconductor element - Google Patents

Optical semiconductor element

Info

Publication number
JPH08250769A
JPH08250769A JP8194995A JP8194995A JPH08250769A JP H08250769 A JPH08250769 A JP H08250769A JP 8194995 A JP8194995 A JP 8194995A JP 8194995 A JP8194995 A JP 8194995A JP H08250769 A JPH08250769 A JP H08250769A
Authority
JP
Japan
Prior art keywords
layer
electrode pad
electrode
current
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8194995A
Other languages
Japanese (ja)
Other versions
JP3841460B2 (en
Inventor
Norikatsu Koide
典克 小出
Junichi Umezaki
潤一 梅崎
Masami Yamada
正巳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP8194995A priority Critical patent/JP3841460B2/en
Publication of JPH08250769A publication Critical patent/JPH08250769A/en
Application granted granted Critical
Publication of JP3841460B2 publication Critical patent/JP3841460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide an optical semiconductor element, which prevents reduction in the durability and deterioration in the vicinity of an electrode from being generated and has an electrode pad, which utilizes efficiently a current which is made to flow. CONSTITUTION: It is found out that an an electrode is formed by an ultrasonic machining at the time of electrode formation, a semiconductor layer under an electrode pad is subjected to damage by an ultrasonic wave and the crystallizability of a semiconductor optical element is reduced to result in a reduction of the durability of the optical element. Therefore, a high-resistance layer (an SiO2 layer) 15, which makes a current hard to flow, is formed thin in the region of a p-type layer under an electrode pad 10 having no relation directly with a light signal. By the existence of this layer 15, the current is made hard to flow under the lower part of the region of the pad 10 and is made to flow to the p-type layer which contributes to the light emission of the element. In the case of an LED, as a current to contribute to the light emission of the LED is increased, the luminous efficiency of the LED is improved. As the current does not flow so much to the region under the pad 10, the generation of a migration is inhibited, the life required as a product of the optical element is prolonged and the quality of the optical element is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、pn接合を少なくとも一
つ有する発光素子あるいは光検出素子等の半導体光素子
に関し、特に、ワイヤボンディング用の電極パッドを有
する半導体光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical device such as a light emitting device or a photodetector having at least one pn junction, and more particularly to a semiconductor optical device having an electrode pad for wire bonding.

【0002】[0002]

【従来の技術】従来、ワイヤボンディング用の電極パッ
ドを有する半導体光素子は、図5の半導体チップ500
で示される構成が多い。即ち、電極パッド10、11が
形成された側が発光面または受講面という機能面として
利用される。つまり、ボンディング用の電極パッド10
を発光面(または受光面)領域に形成している。通常は
pn接合面が発光面、受光面となるので、その面の一部の
上に電極パッド10を形成した構成としている。またも
う一方の電極パッド11は、pn接合の下側と接続するた
め、発光面の一部を切り欠き、下側の半導体活性層を露
出させて形成してある。そして電極パッド10、11の
上に、超音波ボンディング装置等を用いて図示しないボ
ンディングワイヤを接続させ、発光素子( LED)の場合
では、利用する際に発光のための電圧を印加する。
2. Description of the Related Art Conventionally, a semiconductor optical device having an electrode pad for wire bonding is a semiconductor chip 500 shown in FIG.
There are many configurations shown in. That is, the side on which the electrode pads 10 and 11 are formed is used as a functional surface such as a light emitting surface or a learning surface. That is, the electrode pad 10 for bonding
Are formed in the light emitting surface (or light receiving surface) region. Normally
Since the pn junction surface serves as a light emitting surface and a light receiving surface, the electrode pad 10 is formed on a part of the surface. Since the other electrode pad 11 is connected to the lower side of the pn junction, a part of the light emitting surface is cut out and the lower semiconductor active layer is exposed. Then, a bonding wire (not shown) is connected to the electrode pads 10 and 11 by using an ultrasonic bonding device or the like, and in the case of a light emitting element (LED), a voltage for light emission is applied when used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この構
造の半導体光素子において、室温連続点灯試験や高温連
続点灯試験などの耐久試験を実施すると、電極パッド付
近で劣化が生じて、製品としての品質を低下させている
問題があった。
However, when a semiconductor optical device having this structure is subjected to a durability test such as a room temperature continuous lighting test or a high temperature continuous lighting test, deterioration occurs in the vicinity of the electrode pad and the product quality is deteriorated. There was a deteriorating problem.

【0004】従って本発明の目的は、耐久性を低下させ
ないために、電極付近の劣化を防ぎ、流れる電流を効率
良く利用するワイヤボンディング電極を有する半導体光
素子を提供することである。
Therefore, an object of the present invention is to provide a semiconductor optical device having a wire bonding electrode that prevents deterioration in the vicinity of the electrode and efficiently utilizes the flowing current so as not to deteriorate the durability.

【0005】[0005]

【課題を解決するための手段】発明者らは、この電極パ
ッドにワイヤボンディングする際に、電極パッド直下の
半導体領域に、ボンディング手段である超音波によって
ダメージが与えられていることを確認したので、このダ
メージが、通電時にマイグレーションとして劣化を早め
ていると判定し、電極パッドに隠れて発光または受光に
寄与しない領域を通電させないようにすることが解決す
る手段と判断した。そこで、上記の課題を解決するため
本発明の構成は、ワイヤボンディング用の電極パッドを
有し、pn接合を少なくとも一つ有する半導体光素子にお
いて、前記pn接合の利用面上の電極パッドの下部に通電
電流を制限する高抵抗層を設けたことである。また関連
発明の構成は、前記高抵抗層が、前記電極パッド直下の
透明電極の下に形成されていることである。さらに加え
て特徴ある構成は、前記高抵抗層が酸化シリコン(SiO2)
層または窒化シリコン(Si3N4) 層となっていることであ
る。
The inventors of the present invention have confirmed that, at the time of wire bonding to this electrode pad, the semiconductor region immediately below the electrode pad is damaged by ultrasonic waves as a bonding means. It is determined that this damage accelerates the deterioration due to migration at the time of energization, and it is determined to prevent energization of a region hidden by the electrode pad and not contributing to light emission or light reception. Therefore, in order to solve the above problems, the structure of the present invention has an electrode pad for wire bonding, and in a semiconductor optical device having at least one pn junction, in the lower part of the electrode pad on the utilization surface of the pn junction. That is, the high-resistance layer for limiting the applied current is provided. Further, in the configuration of the related invention, the high resistance layer is formed under the transparent electrode immediately below the electrode pad. In addition, the characteristic structure is that the high resistance layer is made of silicon oxide (SiO 2 ).
It is a layer or a silicon nitride (Si 3 N 4 ) layer.

【0006】[0006]

【作用】ワイヤボンディング電極を形成する際に、ワイ
ヤを電極パッドにあてて超音波加工等によりボンディン
グを形成することから、電極パッド下の半導体層が超音
波のエネルギーでダメージを受け、結晶性が低下して、
電圧を印加した際の通電電流によってダメージを受けた
領域がマイグレージョン等を引き起こし、耐久性低下に
つながっていることが判明した。そのため、光取り出し
または光検出等の光信号に直接関係しない電極パッド下
部の半導体領域に、電流を流しにくくする高抵抗層もし
くは絶縁層を薄く形成する。この高抵抗層の存在によっ
て電流は電極パッド領域下部には流れにくくなり、電極
パッド領域以外の発光(もしくは受光)に寄与する半導
体層に流れる。
When the wire bonding electrode is formed, the wire is applied to the electrode pad and the bonding is formed by ultrasonic processing or the like. Therefore, the semiconductor layer under the electrode pad is damaged by the ultrasonic energy, and the crystallinity is deteriorated. Drop,
It was found that the region damaged by the applied current when a voltage was applied caused migration and the like, leading to a decrease in durability. Therefore, a high resistance layer or an insulating layer that makes it difficult for current to flow is formed thinly in the semiconductor region below the electrode pad that is not directly related to an optical signal such as light extraction or light detection. Due to the presence of this high resistance layer, it becomes difficult for current to flow under the electrode pad region, and the current flows through the semiconductor layer other than the electrode pad region that contributes to light emission (or light reception).

【0007】光素子が発光素子で、半導体層の上側がp
層である時、その上に形成される電極パッドの下部、透
明電極を介した下に高抵抗層として酸化シリコン(SiO2)
が形成してある場合、この酸化シリコン(SiO2)層の下の
p層にはほとんど電流が流れず、電極パッドが形成され
た以外のp領域で電流が流れ、電極パッドで覆われてい
ない領域で発光される。このように、高抵抗層は電極パ
ッドの下の半導体層に電極を流さないようにする。
The optical element is a light emitting element, and the upper side of the semiconductor layer is p.
When it is a layer, silicon oxide (SiO 2 ) is formed as a high resistance layer under the electrode pad formed on the layer and through the transparent electrode.
, The p-layer under the silicon oxide (SiO 2 ) layer has almost no current flowing, and the p-region other than the electrode pad has the current flowing, and is not covered with the electrode pad. Light is emitted in the area. Thus, the high resistance layer prevents the electrodes from flowing into the semiconductor layer below the electrode pad.

【0008】[0008]

【発明の効果】ワイヤボンディングされる電極パッドの
下部の半導体層に電流が流れないので、ボンディング工
程でダメージを受けた、電極パッド下部の半導体層が、
それ以上ダメージを増大させず、劣化が抑制される。ま
た不透明な電極の下部には電流が流れず、信号に寄与す
る領域側に流れるので、通電電流が効率的に利用され
る。 LEDの場合、発光に寄与する電流が多くなることか
ら、発光効率が向上する。ボンディングでダメージを受
けている電極パッド下の領域にはあまり電流が流れない
ため、マイグレーションが抑制され、製品としての寿命
が長くなり、品質が向上する。それは加速劣化試験にお
いて、著しい改善が得られていることからも判る。
Since the current does not flow in the semiconductor layer below the electrode pad to be wire-bonded, the semiconductor layer below the electrode pad damaged in the bonding process is
Deterioration is suppressed without further increasing damage. Further, since the current does not flow under the opaque electrode but flows toward the region that contributes to the signal, the conduction current is efficiently used. In the case of an LED, the current that contributes to light emission increases, and thus the light emission efficiency improves. Since a small amount of current does not flow in the region under the electrode pad damaged by bonding, migration is suppressed, the life of the product is extended, and the quality is improved. It can be seen from the remarkable improvement obtained in the accelerated deterioration test.

【0009】[0009]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。 (第一実施例)図1は、本発明をGaN 系LED 100のp
電極パッド10の下部に酸化シリコン(SiO2)層15を形
成した場合の模式的見取り図である。LED 100の基板
はサファイヤ基板1であり、その上にpn接合(p層1
3、n層14)が縦型接合に形成され、上面にp電極と
なる透明電極12が形成され、その一部にp電極パッド
10が形成されている。このp電極パッド10と、図1
に示すようなn電極パッド11とに、それぞれ図示しな
いワイヤでボンディングされて電気的接続がなされ、通
電してp層を通して発光させる。両電極パッド11、1
2はワイヤボンディングするために少なくともその表面
がアルミ(Al)や金(Au)などの金属材料で形成されてい
る。
EXAMPLES The present invention will be described below based on specific examples. (First Embodiment) FIG. 1 shows the structure of a GaN-based LED 100 according to the present invention.
2 is a schematic sketch of a case where a silicon oxide (SiO 2 ) layer 15 is formed under the electrode pad 10. FIG. The substrate of the LED 100 is a sapphire substrate 1, on which a pn junction (p layer 1
3, the n layer 14) is formed in a vertical junction, the transparent electrode 12 serving as the p electrode is formed on the upper surface, and the p electrode pad 10 is formed on a part thereof. This p-electrode pad 10 and FIG.
The n electrode pad 11 as shown in FIG. 3 is electrically connected by bonding with wires (not shown), and is energized to emit light through the p layer. Both electrode pads 11, 1
At least the surface of the wire 2 is formed of a metal material such as aluminum (Al) or gold (Au) for wire bonding.

【0010】このp電極パッド10の下に、酸化シリコ
ン(SiO2)の高抵抗層15が形成してあり、その高抵抗層
15から下の半導体層領域にはp電極パッド10(正確
には透明電極12)から電流が流れないようになってい
る。電流は酸化シリコン(SiO2)の高抵抗層15を通過し
ないため、透明電極12を介して高抵抗層15の周辺に
流れる。結局、 LED100として、電極パッド10のな
い発光面側にほとんど流れ、電流が発光に寄与する領域
へほとんど流れる。
A high resistance layer 15 of silicon oxide (SiO 2 ) is formed under the p electrode pad 10, and the p electrode pad 10 (to be exact, in a semiconductor layer region below the high resistance layer 15). No current flows from the transparent electrode 12). Since the current does not pass through the high resistance layer 15 of silicon oxide (SiO 2 ), it flows through the transparent electrode 12 to the periphery of the high resistance layer 15. After all, as the LED 100, almost all of the current flows to the light emitting surface side where the electrode pad 10 is not provided, and almost all the current flows to the region contributing to light emission.

【0011】上の実施例では絶縁膜を酸化シリコン(SiO
2)で示したが、これ以外の絶縁体、例えば窒化シリコン
(Si3N4) などの絶縁膜でももちろん構わない。
In the above embodiment, the insulating film is made of silicon oxide (SiO 2
2 ), but other insulators such as silicon nitride
Of course, an insulating film such as (Si 3 N 4 ) may be used.

【0012】(製法)ここでp電極パッド10直下で透
明電極12の下部に高抵抗層15を形成する製造方法を
図2を用いて説明する。 (1) 図2(a) でウエハ状態の各チップにRIEエッチン
グによってチップの発光部分のp領域となる形状(矩形
に一部切り欠きを有する形状)を形成する。図に示した
枠内は非エッチング領域で発光面として残す部分(p領
域)である。ここでは各チップが二つ並んでいる所を示
してある。二つのチップの間は分離するための領域であ
る。 (2) 次に、p電極パッド10を形成する範囲(図の右下
の矩形切り欠き部)に酸化シリコン(SiO2)層15を形成
する(図2(b))。これはマスクを用いて形成する。そし
て場合によっては、その酸化シリコン(SiO2)層15上面
に、コンタクト用のチタン(Ti)もしくはクロム(Cr)の薄
膜を形成する。 (3) 次にこのp領域全体にわたってニッケル(Ni)を20
Å、その上に金(Au)を50Å程度の透明電極12を蒸着法
などで形成する(図2(c))。 (4) そしてその上に電極パッド10および11をp電極
とn電極に、金(Au)またはアルミ(Al)またはニッケル(N
i)で 1.7μm程度の厚さに形成する。透明電極12と同
じ材料で形成する場合、電極パッド部分だけを厚く形成
する形になる。透明電極12と同一でない材料の場合
は、接続面がオーミック性を持つように、必要に応じて
バリア層を形成するなどして電極パッドを形成する(図
2(d))。
(Manufacturing Method) A manufacturing method for forming the high resistance layer 15 below the transparent electrode 12 directly below the p electrode pad 10 will be described with reference to FIG. (1) In FIG. 2 (a), each chip in a wafer state is formed by RIE etching into a shape serving as a p region of a light emitting portion of the chip (a shape having a rectangular cutout). The inside of the frame shown in the figure is a portion (p region) left as a light emitting surface in the non-etching region. Here, two chips are shown side by side. An area for separating the two chips is provided. (2) Next, the silicon oxide (SiO 2 ) layer 15 is formed in the area where the p-electrode pad 10 is to be formed (the rectangular cutout in the lower right of the figure) (FIG. 2 (b)). This is formed using a mask. Then, in some cases, a thin film of titanium (Ti) or chromium (Cr) for contact is formed on the upper surface of the silicon oxide (SiO 2 ) layer 15. (3) Next, nickel (Ni) was
Å, and the transparent electrode 12 of about 50 Å is formed thereon by gold (Au) by a vapor deposition method or the like (FIG. 2 (c)). (4) Then, the electrode pads 10 and 11 are formed on the p-electrode and the n-electrode, and gold (Au) or aluminum (Al) or nickel (N
Formed in i) to a thickness of about 1.7 μm. When the transparent electrode 12 is made of the same material, only the electrode pad portion is thickly formed. If the material is not the same as that of the transparent electrode 12, an electrode pad is formed by forming a barrier layer as necessary so that the connection surface has ohmic properties (FIG. 2D).

【0013】このような構成とすることで、p電極パッ
ド10を流れる電流はp電極パッド10下部の領域を流
れずに、透明電極12を通じてpn接合の発光に寄与する
領域へと流れるため、通電による電極パッド直下部分の
ダメージ拡大、あるいは耐久性低下が抑制される。
With this structure, the current flowing through the p-electrode pad 10 does not flow in the region under the p-electrode pad 10 but flows through the transparent electrode 12 into the region that contributes to the light emission of the pn junction, and therefore the current is supplied. It is possible to prevent the damage immediately under the electrode pad from increasing or the deterioration of the durability.

【0014】(第二実施例)図3は、p電極パッド10
の部分を横から見た模式的構造断面図である。図1では
p層の一部を切り欠いて酸化シリコン(SiO2)層15とし
たが、ここでは酸化シリコン(SiO2)層16をp層13の
上に形成して絶縁層(高抵抗層)として使う例である。
この場合、用いる酸化シリコン(SiO2)層(高抵抗層)1
6は厚く形成する必要はない(なお図3は膜厚の比を反
映していない)。しかしこの酸化シリコン(SiO2)層16
は、電子線照射して半導体層13をp伝導型に形成する
際に電子線を遮るマスクとして存在するので、半導体層
13の酸化シリコン(SiO2)層16の下の部分はマスクの
ない領域よりはキャリア濃度が少ない。すなわち高抵抗
のままとなる。そしてこの上の領域も含めてp層13の
上に透明電極12を形成する。なお、場合によっては、
図示したように、酸化シリコン(SiO2)層16の上にシリ
サイドの形成を防ぐチタン(Ti)やクロム(Cr)のバリア層
17を薄く形成しても良い。
(Second Embodiment) FIG. 3 shows a p-electrode pad 10
FIG. 3 is a schematic structural cross-sectional view of the portion of FIG. In FIG. 1, a part of the p layer is cut out to form a silicon oxide (SiO 2 ) layer 15, but here, a silicon oxide (SiO 2 ) layer 16 is formed on the p layer 13 to form an insulating layer (high resistance layer). ) Is used as an example.
In this case, the silicon oxide (SiO 2 ) layer (high resistance layer) used 1
6 does not need to be formed thick (note that FIG. 3 does not reflect the film thickness ratio). However, this silicon oxide (SiO 2 ) layer 16
Exists as a mask for blocking the electron beam when the semiconductor layer 13 is irradiated with the electron beam to form the p-conductivity type, and therefore the portion below the silicon oxide (SiO 2 ) layer 16 of the semiconductor layer 13 is a region without a mask. Carrier concentration is lower than that. That is, the resistance remains high. Then, the transparent electrode 12 is formed on the p layer 13 including the region above this. In some cases,
As illustrated, a barrier layer 17 of titanium (Ti) or chromium (Cr) that prevents the formation of silicide may be thinly formed on the silicon oxide (SiO 2 ) layer 16.

【0015】そして透明電極12の上から、酸化シリコ
ン(SiO2)層16を形成した領域上にp電極パッド10を
蒸着等で形成する。このように高抵抗層16を形成して
もp電極を流れる電流は、p層13の厚さが薄いので、
p層13の電極パッド10の下側には回り込まず、発光
に寄与する領域を流れる。なお酸化シリコン(SiO2)層の
代わりに窒化シリコン(Si3N4) 層や他の絶縁層を用いて
も良い。
Then, the p electrode pad 10 is formed on the transparent electrode 12 on the region where the silicon oxide (SiO 2 ) layer 16 is formed by vapor deposition or the like. Even if the high resistance layer 16 is formed in this manner, the current flowing through the p electrode is small because the p layer 13 is thin.
The p-layer 13 does not go under the electrode pad 10 and flows in a region that contributes to light emission. A silicon nitride (Si 3 N 4 ) layer or another insulating layer may be used instead of the silicon oxide (SiO 2 ) layer.

【0016】(第三実施例)図4はGaN 系LED 200に
おけるp電極部分の断面を示した模式的構成断面図であ
る。この LED200は上側にp層を形成する際にクラッ
ド層である p-AlGaN(Mg-doped)層36とGaN(Mg-doped)
層37に電子線照射して得ている。ここで電子線照射を
全ての領域に施さないで、図3に示すようなイメージ
で、酸化シリコン(SiO2)のマスク38でp電極パッド1
0が形成される領域を覆って電子線が照射されないよう
にする。そうすることで、クラッド層36、およびGaN
層37はp伝導型とならず高抵抗のままとなる。その
後、マスク38を除去して、その上に透明電極12を形
成すれば、p電極パッド10の下側領域には高抵抗な層
が形成されたまま(図4の36、37のハッチング部
分)となり、ボンディングによってこの領域がダメージ
を受けたとしても、この領域にはほとんど通電されずに
ダメージを増大しにくく、LED の寿命を伸ばすことがで
きる。
(Third Embodiment) FIG. 4 is a schematic sectional view showing the cross section of the p-electrode portion of the GaN-based LED 200. This LED 200 has a p-AlGaN (Mg-doped) layer 36 and a GaN (Mg-doped) layer which are clad layers when a p-layer is formed on the upper side.
The layer 37 is obtained by electron beam irradiation. Here, the electron beam irradiation is not applied to all the regions, and the p-electrode pad 1 is formed with the silicon oxide (SiO 2 ) mask 38 as shown in FIG.
The region where 0 is formed is covered so that the electron beam is not irradiated. By doing so, the cladding layer 36 and the GaN
Layer 37 does not become p-conducting and remains highly resistive. After that, if the mask 38 is removed and the transparent electrode 12 is formed on the mask 38, the high-resistance layer remains formed in the lower region of the p electrode pad 10 (hatched portions 36 and 37 in FIG. 4). Therefore, even if this area is damaged by bonding, this area is hardly energized and damage is unlikely to increase, and the life of the LED can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体光素子(GaN系LED)の模式的構成
見取り図。
FIG. 1 is a schematic configuration sketch of a semiconductor optical device (GaN-based LED) of the present invention.

【図2】本発明の半導体光素子の構成の形成方法。FIG. 2 is a method for forming the configuration of the semiconductor optical device of the present invention.

【図3】第二実施例のGaN 系LED(一部)の模式的構成断
面図。
FIG. 3 is a schematic configuration sectional view of a GaN-based LED (a part) of the second embodiment.

【図4】第三実施例のGaN 系LED(一部)の模式的構成断
面図。
FIG. 4 is a schematic configuration cross-sectional view of a GaN-based LED (a part) of the third embodiment.

【図5】従来の半導体光素子の模式的構成見取り図。FIG. 5 is a schematic diagram of a conventional semiconductor optical device.

【符号の説明】[Explanation of symbols]

100、200 半導体光素子(窒素化合物系半導体発
光素子) 1 サファイヤ基板 10 p電極パッド 11 n電極パッド 12 透明電極 13 p層(半導体活性層) 14 n層(半導体活性層) 15 高抵抗層(酸化シリコン(SiO2)絶縁層) 16 高抵抗層(酸化シリコン(SiO2)絶縁層) 17 バリア層(チタン(Ti)やクロム(Cr)など) 35 p層以外の接合層(i層およびn層) 36 クラッド層(AlGaN(P,Mg-doped)) 37 GaN( P, Mg-doped) 層 38 マスク(酸化シリコン(SiO2))
100, 200 Semiconductor optical device (nitrogen compound semiconductor light emitting device) 1 Sapphire substrate 10 p electrode pad 11 n electrode pad 12 transparent electrode 13 p layer (semiconductor active layer) 14 n layer (semiconductor active layer) 15 high resistance layer (oxidation) Silicon (SiO 2 ) insulating layer 16 High resistance layer (silicon oxide (SiO 2 ) insulating layer) 17 Barrier layer (titanium (Ti), chromium (Cr), etc.) 35 Bonding layer other than p layer (i layer and n layer) ) 36 clad layer (AlGaN (P, Mg-doped)) 37 GaN (P, Mg-doped) layer 38 mask (silicon oxide (SiO 2 ))

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ワイヤボンディング用の電極パッドを有
し、pn接合を少なくとも一つ有する半導体光素子におい
て、 前記pn接合の利用面上の電極パッドの下部に通電電流を
制限する高抵抗層を設けたことを特徴とする半導体発光
素子。
1. A semiconductor optical device having an electrode pad for wire bonding and having at least one pn junction, wherein a high resistance layer for limiting a current flowing is provided below the electrode pad on a utilization surface of the pn junction. A semiconductor light emitting device characterized by the above.
【請求項2】前記高抵抗層が、前記電極パッド直下の透
明電極の下に形成されていることを特徴とする請求項1
に記載の半導体発光素子。
2. The high resistance layer is formed under a transparent electrode immediately below the electrode pad.
The semiconductor light-emitting device according to.
【請求項3】前記高抵抗層が、酸化シリコン(SiO2)層ま
たは窒化シリコン(Si3N4) 層であることを特徴とする請
求項1または2に記載の半導体発光素子。
3. The semiconductor light emitting device according to claim 1, wherein the high resistance layer is a silicon oxide (SiO 2 ) layer or a silicon nitride (Si 3 N 4 ) layer.
JP8194995A 1995-03-13 1995-03-13 Semiconductor optical device Expired - Lifetime JP3841460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8194995A JP3841460B2 (en) 1995-03-13 1995-03-13 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8194995A JP3841460B2 (en) 1995-03-13 1995-03-13 Semiconductor optical device

Publications (2)

Publication Number Publication Date
JPH08250769A true JPH08250769A (en) 1996-09-27
JP3841460B2 JP3841460B2 (en) 2006-11-01

Family

ID=13760755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8194995A Expired - Lifetime JP3841460B2 (en) 1995-03-13 1995-03-13 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JP3841460B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042030A1 (en) * 1997-03-19 1998-09-24 Sharp Kabushiki Kaisha Semiconductor light emitting element
WO1998044569A1 (en) * 1997-03-31 1998-10-08 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
US6268618B1 (en) 1997-05-08 2001-07-31 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
JP2003017748A (en) * 2001-06-27 2003-01-17 Seiwa Electric Mfg Co Ltd Gallium nitride-based compound semiconductor light emitting element and manufacturing method therefor
JP2008047871A (en) * 2006-07-18 2008-02-28 Mitsubishi Electric Corp Semiconductor light emitting diode
EP1953838A2 (en) 2007-02-01 2008-08-06 Nichia Corporation Semiconductor light emitting element
JP2008192710A (en) * 2007-02-01 2008-08-21 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2008288624A (en) * 2008-09-05 2008-11-27 Sharp Corp Manufacturing method of light emitting element
JP2009010280A (en) * 2007-06-29 2009-01-15 Nichia Corp Semiconductor light-emitting element
WO2010024375A1 (en) * 2008-08-29 2010-03-04 日亜化学工業株式会社 Semiconductor light emitting element and semiconductor light emitting device
WO2010100900A1 (en) * 2009-03-02 2010-09-10 昭和電工株式会社 Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
WO2010100949A1 (en) * 2009-03-06 2010-09-10 昭和電工株式会社 Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
JP2011517100A (en) * 2008-06-26 2011-05-26 ブリッジラックス・インク LED with reduced electrode area
JP2013033921A (en) * 2011-06-30 2013-02-14 Mitsubishi Chemicals Corp Nitride-based light-emitting diode element and manufacturing method of the same
US8461618B2 (en) 2010-07-20 2013-06-11 Sharp Kabushiki Kaisha Semiconductor light-emitting device and method of producing the same
JP2014022737A (en) * 2012-07-17 2014-02-03 Advanced Optoelectronic Technology Inc Light-emitting diode chip and method for manufacturing the same
US8829559B2 (en) 2011-03-31 2014-09-09 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and production method thereof
US8835966B2 (en) 2010-07-09 2014-09-16 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, lamp, electronic device and machine
TWI472062B (en) * 2010-10-25 2015-02-01 Samsung Electronics Co Ltd Semiconductor light emitting device and manufacturing method thereof
EP2291869A4 (en) * 2008-06-26 2015-11-18 Toshiba Kk Led with reduced electrode area

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417525B1 (en) 1997-03-19 2002-07-09 Sharp Kabushiki Kaisha Semiconductor light emitter with current block region formed over the semiconductor layer and electrode connection portion for connecting the pad electrode to the translucent electrode
WO1998042030A1 (en) * 1997-03-19 1998-09-24 Sharp Kabushiki Kaisha Semiconductor light emitting element
KR100434242B1 (en) * 1997-03-19 2004-06-04 샤프 가부시키가이샤 Semiconductor light emitting element
WO1998044569A1 (en) * 1997-03-31 1998-10-08 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
CN100346487C (en) * 1997-03-31 2007-10-31 夏普株式会社 Light element device and method for manufacturing same
US7057210B2 (en) 1997-05-08 2006-06-06 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
US6403987B1 (en) 1997-05-08 2002-06-11 Showa Denko K.K. Electrode for light-emitting semiconductor devices
US6800501B2 (en) 1997-05-08 2004-10-05 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
US6326223B1 (en) 1997-05-08 2001-12-04 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
US6268618B1 (en) 1997-05-08 2001-07-31 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
JP2003017748A (en) * 2001-06-27 2003-01-17 Seiwa Electric Mfg Co Ltd Gallium nitride-based compound semiconductor light emitting element and manufacturing method therefor
JP2008047871A (en) * 2006-07-18 2008-02-28 Mitsubishi Electric Corp Semiconductor light emitting diode
US8581295B2 (en) 2006-07-18 2013-11-12 Mitsubishi Electric Corporation Semiconductor light-emitting diode
US7982236B2 (en) 2007-02-01 2011-07-19 Nichia Corporation Semiconductor light emitting element
JP2008192710A (en) * 2007-02-01 2008-08-21 Nichia Chem Ind Ltd Semiconductor light-emitting element
KR101332053B1 (en) * 2007-02-01 2013-11-22 니치아 카가쿠 고교 가부시키가이샤 Semiconductor light emitting element
EP1953838A2 (en) 2007-02-01 2008-08-06 Nichia Corporation Semiconductor light emitting element
EP3258506A1 (en) 2007-02-01 2017-12-20 Nichia Corporation Semiconductor light emitting element
USRE49406E1 (en) 2007-02-01 2023-01-31 Nichia Corporation Semiconductor light emitting element
USRE49298E1 (en) 2007-02-01 2022-11-15 Nichia Corporation Semiconductor light emitting element
EP3454383A1 (en) 2007-02-01 2019-03-13 Nichia Corporation Semiconductor light emitting element
EP4068398A1 (en) 2007-02-01 2022-10-05 Nichia Corporation Semiconductor light emitting element
US8120057B2 (en) 2007-02-01 2012-02-21 Nichia Corporation Semiconductor light emitting element
JP2009010280A (en) * 2007-06-29 2009-01-15 Nichia Corp Semiconductor light-emitting element
EP2291869A4 (en) * 2008-06-26 2015-11-18 Toshiba Kk Led with reduced electrode area
JP2011517100A (en) * 2008-06-26 2011-05-26 ブリッジラックス・インク LED with reduced electrode area
JP5177227B2 (en) * 2008-08-29 2013-04-03 日亜化学工業株式会社 Semiconductor light emitting device and semiconductor light emitting device
US8461617B2 (en) 2008-08-29 2013-06-11 Nichia Corporation Semiconductor light emitting element and semiconductor light emitting device
WO2010024375A1 (en) * 2008-08-29 2010-03-04 日亜化学工業株式会社 Semiconductor light emitting element and semiconductor light emitting device
JP2008288624A (en) * 2008-09-05 2008-11-27 Sharp Corp Manufacturing method of light emitting element
JP2010232642A (en) * 2009-03-02 2010-10-14 Showa Denko Kk Group-iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
WO2010100900A1 (en) * 2009-03-02 2010-09-10 昭和電工株式会社 Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
US8502254B2 (en) 2009-03-06 2013-08-06 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting device and method of manufacturing the same, and lamp
KR101324442B1 (en) * 2009-03-06 2013-10-31 도요다 고세이 가부시키가이샤 Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
JP2010232649A (en) * 2009-03-06 2010-10-14 Showa Denko Kk Group-iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
WO2010100949A1 (en) * 2009-03-06 2010-09-10 昭和電工株式会社 Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
US8835966B2 (en) 2010-07-09 2014-09-16 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, lamp, electronic device and machine
US8461618B2 (en) 2010-07-20 2013-06-11 Sharp Kabushiki Kaisha Semiconductor light-emitting device and method of producing the same
TWI472062B (en) * 2010-10-25 2015-02-01 Samsung Electronics Co Ltd Semiconductor light emitting device and manufacturing method thereof
US8969895B2 (en) 2010-10-25 2015-03-03 Samsung Electronics Co., Ltd. Semiconductor light emitting device and manufacturing method thereof
US9105762B2 (en) 2010-10-25 2015-08-11 Samsung Electronics Co., Ltd. Semiconductor light emitting device and manufacturing method thereof
US8829559B2 (en) 2011-03-31 2014-09-09 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and production method thereof
JP2013033921A (en) * 2011-06-30 2013-02-14 Mitsubishi Chemicals Corp Nitride-based light-emitting diode element and manufacturing method of the same
JP2014022737A (en) * 2012-07-17 2014-02-03 Advanced Optoelectronic Technology Inc Light-emitting diode chip and method for manufacturing the same

Also Published As

Publication number Publication date
JP3841460B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US6933169B2 (en) Optical semiconductor device
JPH08250769A (en) Optical semiconductor element
KR101028965B1 (en) Light emitting diode including barrier layers and manufacturing methods therefor
US6969873B2 (en) Nitride gallium compound semiconductor light emission device
JP3821128B2 (en) Semiconductor element
JP5191837B2 (en) Semiconductor light emitting device and semiconductor light emitting device
US20060163604A1 (en) Gallium nitride-based light emitting device having light emitting diode for protecting electrostatic discharge, and melthod for manufacturing the same
US20020063256A1 (en) Method and structure for forming an electrode on a light emitting device
US7491974B2 (en) Light-emitting device
JPH08316525A (en) Light emitting diode
WO2005096399A1 (en) Nitride semiconductor light emitting element
JP3960636B2 (en) Light emitting element
JP2004079972A (en) Surface-emitting type light emitting element
KR100601143B1 (en) Semiconductor Light Emitting Device
KR101209163B1 (en) Semiconductor light emitting device
JPH10242516A (en) Gallium nitride compound semiconductor light emitting element and its manufacture
WO2002071450A2 (en) Led lead for improved light extraction
JPH1187772A (en) Electrode for semiconductor light emitting element
JPH09213996A (en) Semiconductor light emitting element and manufacture method thereof
US9553239B2 (en) Light emitting device and light emitting device package
JP2522952Y2 (en) Gallium nitride based compound semiconductor device
JP3489395B2 (en) Semiconductor light emitting device
JP3342336B2 (en) Semiconductor light emitting device
KR101373765B1 (en) Semiconductor light emitting device
JP2591521B2 (en) Gallium nitride based compound semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041013

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

EXPY Cancellation because of completion of term