JP2004079972A - Surface-emitting type light emitting element - Google Patents

Surface-emitting type light emitting element Download PDF

Info

Publication number
JP2004079972A
JP2004079972A JP2002242103A JP2002242103A JP2004079972A JP 2004079972 A JP2004079972 A JP 2004079972A JP 2002242103 A JP2002242103 A JP 2002242103A JP 2002242103 A JP2002242103 A JP 2002242103A JP 2004079972 A JP2004079972 A JP 2004079972A
Authority
JP
Japan
Prior art keywords
layer
light
light emitting
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002242103A
Other languages
Japanese (ja)
Inventor
Akira Mizuyoshi
水由 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002242103A priority Critical patent/JP2004079972A/en
Publication of JP2004079972A publication Critical patent/JP2004079972A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a large emitted light quantity from a light emitting diode which is increased in chip size by improving the luminous efficiency of the diode. <P>SOLUTION: The light emitting diode is provided with an n-type GaAs buffer layer 2, n-type Al<SB>0.75</SB>Ga<SB>0.25</SB>As layer 3, p-type Al<SB>0.4</SB>Ga<SB>0.6</SB>As light emitting layer 4, p-type Al<SB>0.75</SB>Ga<SB>0.25</SB>As layer 5, and p-type GaAs contact layer 6 successively laminated upon an n-type GaAs substrate 1 and an n-side electrode 7 on the rear surface of the substrate 1. The surface of the diode on the p-side electrode 8 side which is the main light emitting surface of the diode is divided into six parts by forming grooves 9 on the surface by etching the surface to the surface of the p-type Al<SB>0.4</SB>Ga<SB>0.6</SB>As light emitting layer 4. Thereafter, cleaving is performed at every element in a size of about 1.0 mm×0.65 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体の積層方向に垂直な面が主たる光取出し面となっている面発光型発光素子に関するものである。
【0002】
【従来の技術】
半導体の積層方向に垂直な面が主たる光取出し面となっている面発光型発光素子において、発光素子からの発光量を大きくするための一手段として、チップサイズを大きくすることが考えられる。しかし、チップサイズを大きくすると、p側電極およびn側電極との接触領域も大きくなり、接触の不均一によって電流注入の不均一が生じるため発光にバラツキが生じる。
【0003】
そこで、チップサイズを大きくし、電極を分割してコンタクトをとることにより複数のチップが配列されたものと同等の発光素子を得る方法がある。
【0004】
【発明が解決しようとする課題】
一般的な、一辺が0.25〜0.5mm程度の正方形の発光素子の場合、発光領域から鋭角に放出される光はチップ側面から取り出されるが、チップサイズを大きくすると、発光領域から鋭角に放出される光はチップ側面から放射されず、上面光取出し面に到達し反射され、発光領域に戻り吸収される。このため光取出し効率が低下し、チップサイズに比例して発光効率が上がらないという問題がある。
【0005】
また、チップサイズを大きくすると、電流がチップ内の結晶欠陥等に起因する発光量の少ない部分に集中し、さらに、その部分で発光しないために生じる発熱に起因して半導体の抵抗値が減少し、さらなる電流の増加、発熱および結晶欠陥の増殖と加速的に素子劣化が生じ、素子内の最も結晶欠陥が多い部分から順次劣化し、その結果、発光効率が低下するという問題もある。さらに結晶欠陥による不均一な電流パスによって、発光ムラおよび輝度ムラ等が発生したり、経時信頼性が低下したりする。
【0006】
本発明は上記事情に鑑みて、発光効率が高く、大発光量を得ることが可能な発光ダイオードを提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明の第1の面発光型発光素子は、基板上に、p型およびn型の一方の半導体層、発光層および他方の半導体層をこの順に積層してなり、発光層に対して基板と反対側の面が主たる光取出し面である面発光型発光素子において、反対側の面から少なくとも他方の半導体層の途中までの深さの、光取出し面を複数に分割する溝が設けられていることを特徴とするものである。
【0008】
本発明の第2の面発光型発光素子は、基板上に、p型およびn型の一方の半導体層、発光層および他方の半導体層をこの順に積層してなり、基板の裏面が主たる光取出し面である面発光型発光素子において、発光層に対して基板と反対側の面から少なくとも他方の半導体層の途中までの深さの、光取出し面を複数に分割する第1の溝が設けられていることを特徴とするものである。第2の面発光型発光素子において、基板に、発光光を主な光取出し面方向に光学的に案内する切出し面が設けられていてもよい。
【0009】
【発明の効果】
本発明の第1の面発光型発光素子によれば、基板上に、p型およびn型の一方の半導体層、発光層および他方の半導体層をこの順に積層してなり、発光層に対して基板と反対側の面が主たる光取出し面である面発光型発光素子において、反対側の面から少なくとも他方の半導体層の途中までの深さの、光取出し面を複数に分割する溝が設けられていることにより、結果的に発光効率を上げることができ、大発光量を得ることができる。具体的には、前述のような結晶欠陥による不均一な電流パスや電極接触の不均一による生じる発光ムラ等の悪影響を、分割された一領域内に留めることができ、チップサイズを単に大きくする場合に比べて発光ムラ等を抑制することができる。
【0010】
また、本発明の第2の面発光型発光素子によれば、基板上に、p型およびn型の一方の半導体層、発光層および他方の半導体層をこの順に積層してなり、基板の裏面が主たる光取出し面である面発光型発光素子において、発光層に対して基板と反対側の面から少なくとも他方の半導体層の途中までの深さの、光取出し面を複数に分割する第1の溝が設けられていることにより、上記同様にチップサイズを大きくして発光効率を上げることができ、大発光量を得ることができる。
【0011】
さらに第2の面発光型発光素子において、基板に、発光光を主な光取出し面方向に光学的に案内する切出し面が設けられていることにより、素子内部で反射し発光層により吸収されていた光を光取出し面である基板裏面側へとりだすことができるので、光取出し効率を上げることができ、発光量を向上させることができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて詳細に説明する。
【0013】
本発明の第1の実施の形態による赤色発光ダイオードについてその製造方法に沿って説明する。図1にその発光ダイオードの作製過程における斜視図を示す。
【0014】
以下のようにして、n型GaAs基板1上に、エピタキシャル多層膜を形成する。n型GaAs基板1(キャリア濃度(cm−3):1×1018〜3×1018)を、表面の自然酸化膜を除去するために、エッチング処理(HSO:H:HO=4:1:1)後、水洗し、液層エピタキシャル装置にセットする。液層エピタキシャル装置内には所望の各層に対応して組成調整された金属ガリウムメルトがカーボンボートの枠内にセットされている。必要により、厚膜化が必要な場合には、2種類のメルトを使用する。装置内を水素置換し所定の温度に上げて基板およびメルトからガス出しを行った後、所定の温度に到達後、炉内を除冷しつつ、基板の入ったカーボン製スライダーを横に順次移動させてエピタキシャル層を形成する。
【0015】
上記方法により、図1(a)に示すように、n−GaAs基板1上に、n−GaAsバッファ層2(キャリア濃度:1×1018〜3×1018(cm−3)、図示せず)、n−Al0.75Ga0.25As層3(キャリア濃度:0.7×1018〜2×1018(cm−3))、p−Al0.4Ga0.6As発光層4(キャリア濃度:0.7×1018〜3×1018(cm−3))、p−Al0.75Ga0.25As層5、p−GaAsコンタクト層6(キャリア濃度:3×1018〜20×1018(cm−3))を順次積層する。
【0016】
次に、フォトリソグラフィ工程により、p側電極7の形状にレジストに窓を開ける。その後、Crを真空蒸着法により、およそ5〜30nm程度の厚さで形成し、次に金を約50〜300nm形成する。その後、レジストとレジスト上の金属をリフトオフするために、アセトン等の溶媒につける。とれにくい場合は、超音波洗浄装置に入れる。こうしてp側電極7のパターンのみが基板上に形成される。
【0017】
次に、p側電極7の上に、電子ビーム蒸着法やプラズマCVD法などによりSiO膜、SiNx、SiON等の誘電体膜を約200nm程度形成する。フォトリソグラフィ工程により、溝形成を行う部分以外をレジストで覆う。バッファードフッ酸によりウェットエッチング、あるいは窒化物を含む誘電体を使用した場合にはCF等のガスを用いてドライエッチングを行い、レジストで覆われていない部分の誘電体膜を除去する。次に、レジストをオゾンアッシャーで除去する。図1(b)に示すように、誘電体膜をエッチングマスクとして、例えばクエン酸系エッチャントを用いてウェットエッチングにより、p−Al0.4Ga0.6As発光層4の上面までの深さで幅約0.05mmの溝9を形成する。
【0018】
次に、基板1裏面を研磨し、全体の厚さを100〜200μm程度まで薄くする。その後、硫酸・過酸化水素水系エッチング液により、基板1裏面を3〜30μm程度除去して裏面に残る研磨ダメージ層を除去する。その後、p側を覆っていた誘電体膜をフッ酸系水溶液で除去する。
【0019】
次に、基板1裏面に、n側電極を形成するために、真空蒸着法で金とゲルマニウムの合金を30〜100nm程度で形成し、続いてニッケルを30〜80nm、さらに金を150から600nm程度形成する。その後、不活性ガスあるいは水素ガス中370〜550℃程度で数分間熱処理により、シンタリングを行ってn側電極8を形成する。その後、約1.0mm×0.65mmのサイズに素子毎にへき開して発光ダイオード10を完成させる。
【0020】
なお、この溝の形状は作製方法により異なり、ドライエッチングであれば、異方性を制御することにより、溝の断面形状を垂直にも放物形状に似た形にも形成可能である。
【0021】
本実施の形態による発光ダイオードは、n−GaAs基板1上に、n−GaAsバッファ層2、n−Al0.75Ga0.25As層3、p−Al0.4Ga0.6As発光層4、p−Al0.75Ga0.25As層5およびp−GaAsコンタクト層6を積層してなり、コンタクト層6上にp側電極7を備え、基板1の裏面にn側電極8を備えるものである。主な光取出し面はp側電極7側の面であって、該面の表面からn側半導体層の一部までの深さの溝9が形成されており、主な光取出し面が6分割されているものである。一般的な正方形の発光ダイオードのチップ一辺が0.25〜0.5mmであるので、約6倍の発光面積を有するものである。
【0022】
このように、チップを複数の領域に分離することにより、特にp側での結晶欠陥による不均一な電流パスの影響や電極接触の不均一により電流が不均一に流れて生じる発光ムラを分割された一領域への影響に抑えることができ、チップサイズを単に大型化する場合に比べて、発光効率を上げることができ、大発光量を得ることができる。
【0023】
本実施の形態では、溝9はp−Al0.4Ga0.6As発光層4の表面まで、すなわちp型半導体の途中まで除去して形成したが、図2(a)に示すように、さらにp−Al0.4Ga0.6As発光層4を除去して溝を形成してもよい。あるいは図2(b)に示すように、n−GaAsバッファ層2の途中、すなわちn型半導体層の途中までエッチングして溝を形成してもよい。
【0024】
本実施の形態による発光ダイオードをリードフレームに実装した図を図3に示す。p側電極7を上にして、リードフレーム21に固設する。そしてワイヤ22によって電極端子23に接続する。その後、図4に示すように、樹脂モールド24によって封止する。
【0025】
次に本発明の第2の実施の形態による青色発光ダイオードについて説明する。その発光ダイオードの断面図を図5に示す。
【0026】
図5(a)に示すように、サファイア基板31を前処理し、有機金属気相成長法(MOCVD)により、AlNバッファ層32、Siドープn型GaN層33、Siドープn型AlGaN層34、SiとMgを適当量ドープしたGaN量子井戸バリア層と発光層であるInGaN層とを交互に複数層積層してなる多重量子井戸層35、Mgドープp型AlGaN層36およびMgドープp型GaN層37をこの順に積層し、p型キャリアの活性化処理を行う。
【0027】
次に、図5(b)に示すように、フォトリソグラフィとの蒸着工程およびエッチング工程により、p側透明電極38およびp側電極39を形成する。Siドープn型GaN層33の途中まで素子へき開位置から0.35mm程度の領域をエッチング除去する。このとき同時に幅約0.05mmの溝41を形成する。露出したSiドープn型GaN層33の上にn側電極40を形成した後、約1.05mm×1.05mmのサイズで素子毎にへき開して発光ダイオード51を完成させる。
【0028】
本実施の形態による発光ダイオード51は、サファイア基板31上に、AlNバッファ層32、Siドープn型GaN層33、Siドープn型AlGaN層34、SiとMgを適当量ドープしたGaN量子井戸バリア層と発光層であるInGaN層とを交互に複数層積層してなる多重量子井戸層35、Mgドープp型AlGaN層36、Mgドープp型GaN層37、p側透明電極38およびp側電極39をこの順に積層してなり、n側電極40が、p側電極39が形成されている面と同方向に形成されており、n型導電層はつながっているが、p型導電層については溝41により分離された構造となっている。青色の発光光は、サファイア基板31、へき開面およびn側電極40により反射されて透明電極側から取り出される。
【0029】
本実施の形態による発光ダイオードにおいては、溝41はn型電極40を形成するためにSiドープn型GaN層33の途中まで除去する際に同時に作製しているので、溝形成のための特別な工程を必要としないという利点がある。
【0030】
本実施の形態においても、上記第1の実施の形態同様、発光効率および発光量を向上させることができる。
【0031】
上記第2の実施の形態による発光ダイオードにおいて、p側透明電極38のかわりに、チタン層20〜80nm、アルミニウム層20〜80nm、チタン層20〜100nm、白金層50〜200nm、金層100〜500nmを積層した電極として、発光領域からの発光をサファイア基板31で反射させる構造とし、さらにp側とn側の高さの差をなくす構造、つまりn側電極40上にさらに金メッキ層65を1.5〜4μm程度積層したものを、絶縁層62を介して金による導出配線63,64が設けられた基板61上に、はんだ66により電極側の端面を下にしてボンディング(いわゆるフリップチップ実装)し、サファイア基板側を光取出し面としている発光装置について説明する。その発光装置の断面図を図6に示す。フリップチップ実装の場合、輝度ムラは低減されるが、図6に示すように、発光光の一部は、基板表面で反射されて光取出し面方向とは異なる方向に放射される。また、基板表面で反射された光のうち発光層に戻った光は、発光層に吸収されるために、結果的にチップ外へ光を取出すことができない。このため、光取出し効率が低下し、輝度が低下するという問題がある。
【0032】
そこで、本発明の第3の実施の形態による発光ダイオードについて説明する。
その発光ダイオードの断面図を図7に示す。本実施の形態による発光ダイオードは、上記第2の実施の形態による発光ダイオードと同構造であって、サファイア基板31に溝71および切出し面72を有するものである。上記第2の実施の形態による発光ダイオードと同要素には同符号を付し説明を省略する。
【0033】
図7に示すように、上記第2の実施の形態による発光ダイオードと同構造であって、サファイア基板31に溝71および切出し面72が形成された素子が、絶縁層62を介して金による導出配線63,64が設けられた基板61上に、はんだ66により接着されてなるものである。基板61には、熱伝導性の良い銅、アルミ、鉄軽合金、コバールあるいは銅系合金(アンビロイ、三菱マテリアル(商品名))等の金属、中心が銅で外側が金属モリブデン、タンタル、チタンあるいはタングステン等で構成されるクラッド材、あるいはアルミナ、窒化アルミニウムまたはc−BN等のセラミックが好ましい。はんだ66にはクリーム半田を用いてもよい。
【0034】
発光ダイオードのサファイア基板31に設けられた溝71および切出し面72は、サファイア基板31の裏面に、誘電体あるいは金属層のマスクをフォトリソグラフィ工程により所望の形状に形成してドライエッチングによる方法、あるいは、さらに短時間で処理する場合にはフィルムレジスト等を用いて所望のパターンを形成し、ボロンやダイヤモンドを用いたサンドブラスト法により形成することができる。さらに、加工面での光散乱を減らすために、表面粗さを小さくする方法として、ブレード切削しながらフィルム研磨を行う、いわゆるエイペックス研磨と呼ばれる方法がさらに適している。
【0035】
本実施の形態による発光ダイオードは、発光面であるサファイア基板31に切出し面が設けられていることにより、図7に示したように進む光を切出し面により屈折および反射させて、光取出し方向へ導くため、光取出し効率が向上されたものとすることができ、溝41のみを形成した場合に比べ、さらに発光量の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による発光ダイオードの製造過程を示す斜視図
【図2】本発明の他の形態による発光ダイオードを示す斜視図
【図3】第1の実施の形態による発光ダイオードをリードフレームに実装した断面図
【図4】第1の実施の形態による発光ダイオードをモールド封止した断面図
【図5】本発明の第2の実施の形態による発光ダイオードの製造過程を示す断面図
【図6】フリップチップ実装された発光ダイオードのサファイア基板に切りだし面を設けない場合の光路を示す断面図
【図7】本発明の第3の実施の形態による発光ダイオードを示す断面図
【符号の説明】
1  n−GaAs基板
2  n−GaAsバッファ層
3  n−Al0.75Ga0.25As層
4  p−Al0.4Ga0.6As発光層
5  p−Al0.75Ga0.25As層
6  p−GaAsコンタクト層
7  p側電極
8  n側電極
9  溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-emitting light emitting element in which a surface perpendicular to a semiconductor stacking direction is a main light extraction surface.
[0002]
[Prior art]
In a surface-emitting light emitting device in which a surface perpendicular to the semiconductor stacking direction is a main light extraction surface, it is conceivable to increase the chip size as one means for increasing the amount of light emitted from the light emitting device. However, when the chip size is increased, the contact area between the p-side electrode and the n-side electrode also increases, and nonuniformity in current injection occurs due to nonuniformity in contact, resulting in variations in light emission.
[0003]
Therefore, there is a method of obtaining a light emitting element equivalent to one in which a plurality of chips are arranged by increasing the chip size and dividing the electrodes to make contacts.
[0004]
[Problems to be solved by the invention]
In the case of a general square light emitting element with a side of about 0.25 to 0.5 mm, light emitted from the light emitting area at an acute angle is extracted from the side surface of the chip. The emitted light does not radiate from the side surface of the chip, reaches the upper light extraction surface, is reflected, returns to the light emitting region, and is absorbed. For this reason, there is a problem that the light extraction efficiency is lowered and the light emission efficiency does not increase in proportion to the chip size.
[0005]
In addition, when the chip size is increased, the current is concentrated in a portion where the amount of light emission is small due to crystal defects in the chip, and further, the resistance value of the semiconductor is reduced due to heat generated due to no light emission in that portion. Further, there is a problem that the device deterioration is accelerated due to further increase in current, heat generation, and growth of crystal defects, and the light emission efficiency is lowered as a result of the deterioration starting from the portion having the most crystal defects in the device. Further, uneven current paths due to crystal defects cause uneven light emission, uneven brightness, etc., and reliability over time decreases.
[0006]
In view of the above circumstances, an object of the present invention is to provide a light emitting diode that has high luminous efficiency and can obtain a large light emission amount.
[0007]
[Means for Solving the Problems]
The first surface-emitting light-emitting device of the present invention is formed by laminating one of a p-type and an n-type semiconductor layer, a light-emitting layer, and the other semiconductor layer in this order on a substrate. The surface-emitting light-emitting device in which the opposite surface is the main light extraction surface is provided with a groove that divides the light extraction surface into a plurality of depths from the opposite surface to at least the middle of the other semiconductor layer. It is characterized by this.
[0008]
The second surface-emitting light-emitting device of the present invention is formed by laminating one of p-type and n-type semiconductor layers, a light-emitting layer, and the other semiconductor layer in this order on a substrate, and the back surface of the substrate is the main light extraction. In the surface-emitting light emitting device that is a surface, a first groove that divides the light extraction surface into a plurality of depths from the surface opposite to the substrate to the light emitting layer to at least the middle of the other semiconductor layer is provided. It is characterized by that. In the second surface-emitting light emitting device, the substrate may be provided with a cut-out surface that optically guides the emitted light in the main light extraction surface direction.
[0009]
【The invention's effect】
According to the first surface-emitting light-emitting device of the present invention, one of the p-type and n-type semiconductor layers, the light-emitting layer, and the other semiconductor layer are laminated in this order on the substrate. In the surface-emitting light-emitting device in which the surface opposite to the substrate is the main light extraction surface, a groove is provided to divide the light extraction surface into a plurality of depths from the opposite surface to at least the middle of the other semiconductor layer. As a result, the light emission efficiency can be increased as a result, and a large light emission amount can be obtained. Specifically, adverse effects such as non-uniform current paths due to crystal defects and non-uniformity in electrode contact as described above can be kept within one divided area, and the chip size is simply increased. As compared with the case, unevenness in light emission and the like can be suppressed.
[0010]
According to the second surface-emitting light-emitting device of the present invention, one of the p-type and n-type semiconductor layers, the light-emitting layer, and the other semiconductor layer are laminated in this order on the substrate, and the back surface of the substrate In the surface-emitting light-emitting device in which is the main light extraction surface, a first light-emitting surface having a depth from the surface opposite to the substrate to the light emitting layer to at least the middle of the other semiconductor layer is divided into a plurality of portions. Since the groove is provided, the chip size can be increased as described above to increase the light emission efficiency, and a large light emission amount can be obtained.
[0011]
Furthermore, in the second surface-emitting light emitting device, the substrate is provided with a cut-out surface for optically guiding emitted light in the direction of the main light extraction surface, so that it is reflected inside the device and absorbed by the light emitting layer. Therefore, the light extraction efficiency can be increased and the amount of emitted light can be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
The red light emitting diode according to the first embodiment of the present invention will be described along the manufacturing method thereof. FIG. 1 shows a perspective view in the process of manufacturing the light emitting diode.
[0014]
An epitaxial multilayer film is formed on the n-type GaAs substrate 1 as follows. The n-type GaAs substrate 1 (carrier concentration (cm −3 ): 1 × 10 18 to 3 × 10 18 ) is subjected to etching treatment (H 2 SO 4 : H 2 O 2 : After H 2 O = 4: 1: 1), it is washed with water and set in a liquid layer epitaxial apparatus. In the liquid layer epitaxial apparatus, a metal gallium melt whose composition is adjusted corresponding to each desired layer is set in a frame of a carbon boat. If necessary, when a thick film is required, two types of melts are used. After replacing the inside of the device with hydrogen and raising the temperature to a predetermined temperature and degassing the substrate and melt, after reaching the predetermined temperature, the carbon slider containing the substrate is sequentially moved sideways while the furnace is cooled. To form an epitaxial layer.
[0015]
1A, an n-GaAs buffer layer 2 (carrier concentration: 1 × 10 18 to 3 × 10 18 (cm −3 ), not shown) is formed on the n-GaAs substrate 1. ), N-Al 0.75 Ga 0.25 As layer 3 (carrier concentration: 0.7 × 10 18 to 2 × 10 18 (cm −3 )), p-Al 0.4 Ga 0.6 As light emitting layer 4 (carrier concentration: 0.7 × 10 18 to 3 × 10 18 (cm −3 )), p-Al 0.75 Ga 0.25 As layer 5, p-GaAs contact layer 6 (carrier concentration: 3 × 10 18 to 20 × 10 18 (cm −3 )) are sequentially stacked.
[0016]
Next, a window is opened in the resist in the shape of the p-side electrode 7 by a photolithography process. Thereafter, Cr is formed with a thickness of about 5 to 30 nm by a vacuum deposition method, and then gold is formed with a thickness of about 50 to 300 nm. Then, in order to lift off the resist and the metal on the resist, it is put in a solvent such as acetone. If it is difficult to remove, place in an ultrasonic cleaning device. Thus, only the pattern of the p-side electrode 7 is formed on the substrate.
[0017]
Next, a dielectric film such as a SiO 2 film, SiNx, or SiON is formed on the p-side electrode 7 by about 200 nm by an electron beam vapor deposition method, a plasma CVD method, or the like. A portion other than the groove forming portion is covered with a resist by a photolithography process. When wet etching using buffered hydrofluoric acid or a dielectric containing nitride is used, dry etching is performed using a gas such as CF 4 to remove a portion of the dielectric film not covered with the resist. Next, the resist is removed with an ozone asher. As shown in FIG. 1B, the depth to the upper surface of the p-Al 0.4 Ga 0.6 As light-emitting layer 4 is obtained by wet etching using, for example, a citric acid-based etchant using the dielectric film as an etching mask. To form a groove 9 having a width of about 0.05 mm.
[0018]
Next, the back surface of the substrate 1 is polished to reduce the overall thickness to about 100 to 200 μm. Thereafter, the back surface of the substrate 1 is removed by about 3 to 30 μm with a sulfuric acid / hydrogen peroxide aqueous etching solution to remove the polishing damage layer remaining on the back surface. Thereafter, the dielectric film covering the p side is removed with a hydrofluoric acid aqueous solution.
[0019]
Next, in order to form an n-side electrode on the back surface of the substrate 1, an alloy of gold and germanium is formed with a thickness of about 30 to 100 nm by a vacuum deposition method, followed by nickel with a thickness of about 30 to 80 nm and further gold with a thickness of about 150 to 600 nm. Form. Thereafter, sintering is performed in an inert gas or hydrogen gas at about 370 to 550 ° C. for several minutes to form an n-side electrode 8. Thereafter, the light emitting diode 10 is completed by cleaving each element into a size of about 1.0 mm × 0.65 mm.
[0020]
Note that the shape of the groove differs depending on the manufacturing method, and in the case of dry etching, by controlling the anisotropy, the cross-sectional shape of the groove can be formed to be vertical or similar to a parabolic shape.
[0021]
The light emitting diode according to the present embodiment has an n-GaAs buffer layer 2, an n-Al 0.75 Ga 0.25 As layer 3, and a p-Al 0.4 Ga 0.6 As light emitting on an n-GaAs substrate 1. Layer 4, p-Al 0.75 Ga 0.25 As layer 5 and p-GaAs contact layer 6 are laminated, p-side electrode 7 is provided on contact layer 6, and n-side electrode 8 is provided on the back surface of substrate 1. Is provided. The main light extraction surface is a surface on the p-side electrode 7 side, and a groove 9 having a depth from the surface to a part of the n-side semiconductor layer is formed, and the main light extraction surface is divided into six parts. It is what has been. Since one side of a chip of a general square light emitting diode is 0.25 to 0.5 mm, the light emitting area is about 6 times.
[0022]
In this way, by separating the chip into a plurality of regions, light emission unevenness caused by non-uniform current flow caused by non-uniform current paths due to crystal defects, particularly on the p side, and non-uniform electrode contact can be divided. Therefore, the light emission efficiency can be increased and a large light emission amount can be obtained as compared with the case where the chip size is simply increased.
[0023]
In the present embodiment, the trench 9 is formed by removing it up to the surface of the p-Al 0.4 Ga 0.6 As light-emitting layer 4, that is, up to the middle of the p-type semiconductor, as shown in FIG. Further, the p-Al 0.4 Ga 0.6 As light emitting layer 4 may be removed to form a groove. Alternatively, as shown in FIG. 2B, the groove may be formed by etching halfway through the n-GaAs buffer layer 2, that is, halfway through the n-type semiconductor layer.
[0024]
FIG. 3 shows a diagram in which the light emitting diode according to the present embodiment is mounted on a lead frame. Fixed to the lead frame 21 with the p-side electrode 7 facing up. The wire 22 is connected to the electrode terminal 23. Thereafter, as shown in FIG.
[0025]
Next, a blue light emitting diode according to a second embodiment of the present invention will be described. A cross-sectional view of the light emitting diode is shown in FIG.
[0026]
As shown in FIG. 5 (a), the sapphire substrate 31 is pretreated, and an AlN buffer layer 32, a Si-doped n-type GaN layer 33, a Si-doped n-type AlGaN layer 34, by metal organic chemical vapor deposition (MOCVD), Multiple quantum well layer 35, Mg-doped p-type AlGaN layer 36, and Mg-doped p-type GaN layer formed by alternately laminating a plurality of GaN quantum well barrier layers doped with appropriate amounts of Si and Mg and InGaN layers as light emitting layers 37 are stacked in this order, and p-type carrier activation processing is performed.
[0027]
Next, as shown in FIG. 5B, the p-side transparent electrode 38 and the p-side electrode 39 are formed by a vapor deposition step and an etching step with photolithography. A region of about 0.35 mm from the cleaved position of the device is etched away partway through the Si-doped n-type GaN layer 33. At the same time, a groove 41 having a width of about 0.05 mm is formed. After forming the n-side electrode 40 on the exposed Si-doped n-type GaN layer 33, the light-emitting diode 51 is completed by cleaving each element at a size of about 1.05 mm × 1.05 mm.
[0028]
The light-emitting diode 51 according to this embodiment includes an AlN buffer layer 32, a Si-doped n-type GaN layer 33, a Si-doped n-type AlGaN layer 34, and a GaN quantum well barrier layer doped with appropriate amounts of Si and Mg on a sapphire substrate 31. And a multi-quantum well layer 35, an Mg-doped p-type AlGaN layer 36, an Mg-doped p-type GaN layer 37, a p-side transparent electrode 38, and a p-side electrode 39, which are formed by alternately laminating a plurality of layers and InGaN layers as light emitting layers. The n-side electrode 40 is formed in this order, and the n-side electrode 40 is formed in the same direction as the surface on which the p-side electrode 39 is formed, and the n-type conductive layer is connected. It is the structure separated by. The blue emitted light is reflected by the sapphire substrate 31, the cleavage plane and the n-side electrode 40 and taken out from the transparent electrode side.
[0029]
In the light emitting diode according to the present embodiment, the groove 41 is formed at the same time when the Si-doped n-type GaN layer 33 is partially removed to form the n-type electrode 40. There is an advantage that a process is not required.
[0030]
Also in the present embodiment, the light emission efficiency and the light emission amount can be improved as in the first embodiment.
[0031]
In the light emitting diode according to the second embodiment, instead of the p-side transparent electrode 38, a titanium layer 20 to 80 nm, an aluminum layer 20 to 80 nm, a titanium layer 20 to 100 nm, a platinum layer 50 to 200 nm, and a gold layer 100 to 500 nm. As a stacked electrode, a structure in which light from the light emitting region is reflected by the sapphire substrate 31 and a structure in which the difference in height between the p side and the n side is eliminated, that is, a gold plating layer 65 is further provided on the n side electrode 40. A laminate of about 5 to 4 μm is bonded (so-called flip chip mounting) on the substrate 61 provided with the lead-out wirings 63 and 64 made of gold through the insulating layer 62 with the end face on the electrode side facing down by the solder 66. A light emitting device using the sapphire substrate side as a light extraction surface will be described. A cross-sectional view of the light emitting device is shown in FIG. In the case of flip-chip mounting, luminance unevenness is reduced, but as shown in FIG. 6, a part of the emitted light is reflected by the substrate surface and emitted in a direction different from the light extraction surface direction. Moreover, since the light which returned to the light emitting layer among the lights reflected on the substrate surface is absorbed by the light emitting layer, the light cannot be taken out as a result. For this reason, there exists a problem that light extraction efficiency falls and a brightness | luminance falls.
[0032]
Thus, a light emitting diode according to a third embodiment of the present invention will be described.
A sectional view of the light emitting diode is shown in FIG. The light emitting diode according to the present embodiment has the same structure as the light emitting diode according to the second embodiment, and has a groove 71 and a cut-out surface 72 in the sapphire substrate 31. The same components as those of the light emitting diode according to the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0033]
As shown in FIG. 7, the element having the same structure as the light emitting diode according to the second embodiment, in which the groove 71 and the cutout surface 72 are formed in the sapphire substrate 31, is led out by gold through the insulating layer 62. It is formed by bonding with solder 66 on a substrate 61 on which wirings 63 and 64 are provided. The substrate 61 has a metal such as copper, aluminum, light iron alloy, Kovar or copper alloy (Ambiloy, Mitsubishi Materials (trade name)) having good thermal conductivity, copper at the center and metal molybdenum at the outside, tantalum, titanium or A clad material made of tungsten or the like, or a ceramic such as alumina, aluminum nitride, or c-BN is preferable. Cream solder may be used as the solder 66.
[0034]
The groove 71 and the cut-out surface 72 provided in the sapphire substrate 31 of the light emitting diode are formed by forming a dielectric or metal layer mask on the back surface of the sapphire substrate 31 in a desired shape by a photolithography process, or by dry etching, or In the case of further processing in a shorter time, a desired pattern can be formed using a film resist or the like, and can be formed by a sandblast method using boron or diamond. Furthermore, in order to reduce light scattering on the processed surface, a so-called apex polishing method in which film polishing is performed while blade cutting is more suitable as a method for reducing the surface roughness.
[0035]
In the light emitting diode according to the present embodiment, the cut surface is provided on the sapphire substrate 31 that is the light emitting surface, so that the light traveling as shown in FIG. 7 is refracted and reflected by the cut surface, in the light extraction direction. Therefore, the light extraction efficiency can be improved, and the amount of emitted light can be further improved as compared with the case where only the groove 41 is formed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a manufacturing process of a light emitting diode according to a first embodiment of the present invention. FIG. 2 is a perspective view showing a light emitting diode according to another embodiment of the present invention. FIG. 4 is a cross-sectional view in which a light-emitting diode according to the first embodiment is mounted on a lead frame. FIG. 4 is a cross-sectional view in which the light-emitting diode according to the first embodiment is mold-sealed. FIG. 6 is a cross-sectional view showing an optical path when a cut-out surface is not provided on a sapphire substrate of a light-emitting diode mounted on a flip chip. FIG. 7 shows a light-emitting diode according to a third embodiment of the present invention. Sectional view [Explanation of symbols]
1 n-GaAs substrate 2 n-GaAs buffer layer 3 n-Al 0.75 Ga 0.25 As layer 4 p-Al 0.4 Ga 0.6 As light emitting layer 5 p-Al 0.75 Ga 0.25 As Layer 6 p-GaAs contact layer 7 p-side electrode 8 n-side electrode 9 groove

Claims (3)

基板上に、p型およびn型の一方の半導体層、発光層および他方の半導体層をこの順に積層してなり、前記発光層に対して前記基板と反対側の面が主たる光取出し面である面発光型発光素子において、
前記反対側の面から少なくとも前記他方の半導体層の途中までの深さの、前記光取出し面を複数に分割する溝が設けられていることを特徴とする面発光型発光素子。
A p-type and n-type semiconductor layer, a light emitting layer, and the other semiconductor layer are laminated in this order on a substrate, and the surface opposite to the substrate with respect to the light emitting layer is a main light extraction surface. In the surface light emitting element,
A surface-emitting light emitting device characterized in that a groove is provided to divide the light extraction surface into a plurality of depths from the opposite surface to at least the middle of the other semiconductor layer.
基板上に、p型およびn型の一方の半導体層、発光層および他方の半導体層をこの順に積層してなり、前記基板の裏面が主たる光取出し面である面発光型発光素子において、
前記発光層に対して前記基板と反対側の面から少なくとも前記他方の半導体層の途中までの深さの、前記光取出し面を複数に分割する第1の溝が設けられていることを特徴とする面発光型発光素子。
In the surface-emitting light-emitting element, in which one of the p-type and n-type semiconductor layers, the light-emitting layer, and the other semiconductor layer are stacked in this order on the substrate, and the back surface of the substrate is the main light extraction surface.
A first groove that divides the light extraction surface into a plurality of depths from the surface opposite to the substrate to the light emitting layer to at least the middle of the other semiconductor layer is provided. A surface-emitting light emitting device.
前記基板に、発光光を前記主な光取出し面方向に光学的に案内する切出し面が設けられていることを特徴とする請求項2記載の面発光型発光素子。3. The surface-emitting light emitting device according to claim 2, wherein a cut surface for optically guiding emitted light in the direction of the main light extraction surface is provided on the substrate.
JP2002242103A 2002-08-22 2002-08-22 Surface-emitting type light emitting element Withdrawn JP2004079972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242103A JP2004079972A (en) 2002-08-22 2002-08-22 Surface-emitting type light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242103A JP2004079972A (en) 2002-08-22 2002-08-22 Surface-emitting type light emitting element

Publications (1)

Publication Number Publication Date
JP2004079972A true JP2004079972A (en) 2004-03-11

Family

ID=32024388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242103A Withdrawn JP2004079972A (en) 2002-08-22 2002-08-22 Surface-emitting type light emitting element

Country Status (1)

Country Link
JP (1) JP2004079972A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128041A (en) * 2002-09-30 2004-04-22 Toshiba Corp Semiconductor light emitting element
JP2005322847A (en) * 2004-05-11 2005-11-17 Stanley Electric Co Ltd Semiconductor light emitting device and manufacturing method thereof
WO2006001297A1 (en) * 2004-06-23 2006-01-05 Rohm Co., Ltd. White light-emitting device and method for producing same
JP2006121084A (en) * 2004-10-20 2006-05-11 Arima Optoelectronics Corp Luminous unit that uses multilayer compound metallic coating layer as flip chip electrode
JP2006190851A (en) * 2005-01-07 2006-07-20 Sony Corp Integrated light emitting diode, method for manufacturing integrated light emitting diode, micro light emitting diode, light emitting diode display, and light emitting diode lighting device
KR100628125B1 (en) 2004-09-02 2006-09-26 엘지전자 주식회사 lighting apparatus using LED and projection display system using it
JP2006324661A (en) * 2005-05-18 2006-11-30 Samsung Electro Mech Co Ltd Method of producing ohmic contact layer for light emitting element and method of producing light emitting element with the ohmic contact layer
JP2007019099A (en) * 2005-07-05 2007-01-25 Sumitomo Electric Ind Ltd Light-emitting device and its manufacturing method
KR100849826B1 (en) 2007-03-29 2008-07-31 삼성전기주식회사 Light emitting device and package including the same
CN100435368C (en) * 2005-05-03 2008-11-19 三星电机株式会社 Flip chip light emitting diode and method of manufactureing the same
JP2008543032A (en) * 2005-05-27 2008-11-27 ラティス パワー (チアンシ) コーポレイション InGaAlN light emitting device and manufacturing method thereof
JPWO2007010793A1 (en) * 2005-07-15 2009-01-29 パナソニック株式会社 Semiconductor light emitting device and substrate mounted with semiconductor light emitting device
JP2009111098A (en) * 2007-10-29 2009-05-21 Mitsubishi Chemicals Corp Integrated light-emitting source and manufacturing method therefor
JP2009111101A (en) * 2007-10-29 2009-05-21 Mitsubishi Chemicals Corp Integrated light-emitting source and manufacturing method therefor
JP2009111099A (en) * 2007-10-29 2009-05-21 Mitsubishi Chemicals Corp Integrated light-emitting source and manufacturing method therefor
JP2009111100A (en) * 2007-10-29 2009-05-21 Mitsubishi Chemicals Corp Integrated light-emitting source and manufacturing method therefor
US7732822B2 (en) 2006-02-24 2010-06-08 Lg Electronics Inc. Light emitting device and method of manufacturing the same
JP2011134829A (en) * 2009-12-24 2011-07-07 Nichia Corp Light emitting device
KR20110093037A (en) * 2010-02-11 2011-08-18 삼성엘이디 주식회사 Nitride semiconductor light emitting device
US20120161183A1 (en) * 2010-12-28 2012-06-28 Nichia Corporation Semiconductor light emitting element
WO2012091008A1 (en) * 2010-12-28 2012-07-05 日亜化学工業株式会社 Semiconductor light-emitting device
JP2012191208A (en) * 2011-03-08 2012-10-04 Opto Tech Corp Light-emitting diode having wide view angle and method for manufacturing the same
JP2018207114A (en) * 2011-12-22 2018-12-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Display device, manufacturing method of display device, and pixel headlight
JP2019068082A (en) * 2016-07-18 2019-04-25 ルーメンス カンパニー リミテッド Micro LED array display device
JP2019145618A (en) * 2018-02-19 2019-08-29 日亜化学工業株式会社 Light-emitting element
CN113544865A (en) * 2019-12-31 2021-10-22 重庆康佳光电技术研究院有限公司 Light emitting diode chip, display panel and electronic equipment
WO2022067530A1 (en) * 2020-09-29 2022-04-07 京东方科技集团股份有限公司 Light-emitting diode chip, display substrate and manufacturing method therefor

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128041A (en) * 2002-09-30 2004-04-22 Toshiba Corp Semiconductor light emitting element
JP2005322847A (en) * 2004-05-11 2005-11-17 Stanley Electric Co Ltd Semiconductor light emitting device and manufacturing method thereof
EP1596441A3 (en) * 2004-05-11 2011-03-30 Stanley Electric Co., Ltd. Semiconductor light emitting device on insulating substrate and its manufacture method
JP4632690B2 (en) * 2004-05-11 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
WO2006001297A1 (en) * 2004-06-23 2006-01-05 Rohm Co., Ltd. White light-emitting device and method for producing same
CN100459192C (en) * 2004-06-23 2009-02-04 罗姆股份有限公司 White light-emitting device and method for producing same
KR100628125B1 (en) 2004-09-02 2006-09-26 엘지전자 주식회사 lighting apparatus using LED and projection display system using it
JP2006121084A (en) * 2004-10-20 2006-05-11 Arima Optoelectronics Corp Luminous unit that uses multilayer compound metallic coating layer as flip chip electrode
JP2006190851A (en) * 2005-01-07 2006-07-20 Sony Corp Integrated light emitting diode, method for manufacturing integrated light emitting diode, micro light emitting diode, light emitting diode display, and light emitting diode lighting device
JP4687109B2 (en) * 2005-01-07 2011-05-25 ソニー株式会社 Manufacturing method of integrated light emitting diode
CN100435368C (en) * 2005-05-03 2008-11-19 三星电机株式会社 Flip chip light emitting diode and method of manufactureing the same
US8580668B2 (en) 2005-05-18 2013-11-12 Samsung Electronics Co., Ltd. Method of forming ohmic contact layer and method of fabricating light emitting device having ohmic contact layer
JP2006324661A (en) * 2005-05-18 2006-11-30 Samsung Electro Mech Co Ltd Method of producing ohmic contact layer for light emitting element and method of producing light emitting element with the ohmic contact layer
JP2008543032A (en) * 2005-05-27 2008-11-27 ラティス パワー (チアンシ) コーポレイション InGaAlN light emitting device and manufacturing method thereof
JP2007019099A (en) * 2005-07-05 2007-01-25 Sumitomo Electric Ind Ltd Light-emitting device and its manufacturing method
JPWO2007010793A1 (en) * 2005-07-15 2009-01-29 パナソニック株式会社 Semiconductor light emitting device and substrate mounted with semiconductor light emitting device
JP4680260B2 (en) * 2005-07-15 2011-05-11 パナソニック株式会社 Semiconductor light emitting device and substrate mounted with semiconductor light emitting device
US8129739B2 (en) 2005-07-15 2012-03-06 Panasonic Corporation Semiconductor light emitting device and semiconductor light emitting device mounted board
EP1826833A3 (en) * 2006-02-24 2010-11-10 LG Electronics Inc. Light emitting device and method of manufacturing the same
US7732822B2 (en) 2006-02-24 2010-06-08 Lg Electronics Inc. Light emitting device and method of manufacturing the same
US7786498B2 (en) 2007-03-29 2010-08-31 Samsung Led Co., Ltd. Light emitting device and package having the same
US8063407B2 (en) 2007-03-29 2011-11-22 Samsung Led Co., Ltd. Light emitting device and package having the same for maximizing light emitting area
KR100849826B1 (en) 2007-03-29 2008-07-31 삼성전기주식회사 Light emitting device and package including the same
JP2009111100A (en) * 2007-10-29 2009-05-21 Mitsubishi Chemicals Corp Integrated light-emitting source and manufacturing method therefor
JP2009111099A (en) * 2007-10-29 2009-05-21 Mitsubishi Chemicals Corp Integrated light-emitting source and manufacturing method therefor
JP2009111101A (en) * 2007-10-29 2009-05-21 Mitsubishi Chemicals Corp Integrated light-emitting source and manufacturing method therefor
JP2009111098A (en) * 2007-10-29 2009-05-21 Mitsubishi Chemicals Corp Integrated light-emitting source and manufacturing method therefor
JP2011134829A (en) * 2009-12-24 2011-07-07 Nichia Corp Light emitting device
KR20110093037A (en) * 2010-02-11 2011-08-18 삼성엘이디 주식회사 Nitride semiconductor light emitting device
KR101650722B1 (en) * 2010-02-11 2016-08-24 삼성전자주식회사 Nitride semiconductor light emitting device
WO2012091007A1 (en) * 2010-12-28 2012-07-05 日亜化学工業株式会社 Semiconductor light-emitting element
CN103354955A (en) * 2010-12-28 2013-10-16 日亚化学工业株式会社 Semiconductor light-emitting device
WO2012091008A1 (en) * 2010-12-28 2012-07-05 日亜化学工業株式会社 Semiconductor light-emitting device
JPWO2012091008A1 (en) * 2010-12-28 2014-06-05 日亜化学工業株式会社 Semiconductor light emitting device
US8878214B2 (en) 2010-12-28 2014-11-04 Nichia Corporation Semiconductor light emitting device
US9093356B2 (en) 2010-12-28 2015-07-28 Nichia Corporation Semiconductor light emitting element
JP5786868B2 (en) * 2010-12-28 2015-09-30 日亜化学工業株式会社 Semiconductor light emitting device
US20120161183A1 (en) * 2010-12-28 2012-06-28 Nichia Corporation Semiconductor light emitting element
JP2012191208A (en) * 2011-03-08 2012-10-04 Opto Tech Corp Light-emitting diode having wide view angle and method for manufacturing the same
JP2018207114A (en) * 2011-12-22 2018-12-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Display device, manufacturing method of display device, and pixel headlight
JP2019068082A (en) * 2016-07-18 2019-04-25 ルーメンス カンパニー リミテッド Micro LED array display device
JP2019145618A (en) * 2018-02-19 2019-08-29 日亜化学工業株式会社 Light-emitting element
US10903394B2 (en) 2018-02-19 2021-01-26 Nichia Corporation Light emitting element
US11715814B2 (en) 2018-02-19 2023-08-01 Nichia Corporation Light emitting element including first and second semiconductor layered bodies having defined relative lateral surface angles
CN113544865A (en) * 2019-12-31 2021-10-22 重庆康佳光电技术研究院有限公司 Light emitting diode chip, display panel and electronic equipment
CN113544865B (en) * 2019-12-31 2024-03-08 重庆康佳光电科技有限公司 Light emitting diode chip, display panel and electronic equipment
WO2022067530A1 (en) * 2020-09-29 2022-04-07 京东方科技集团股份有限公司 Light-emitting diode chip, display substrate and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2004079972A (en) Surface-emitting type light emitting element
US6818531B1 (en) Method for manufacturing vertical GaN light emitting diodes
US7112456B2 (en) Vertical GaN light emitting diode and method for manufacturing the same
KR100887139B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
US9209362B2 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
US20060186552A1 (en) High reflectivity p-contacts for group lll-nitride light emitting diodes
US8049235B2 (en) Nitride semiconductor light emitting element with bragg reflection layers and anti-reflection layers to improve light extraction efficiency
US7358539B2 (en) Flip-chip light emitting diode with indium-tin-oxide based reflecting contacts
JP2013102240A (en) Group iii nitride light emitting device having light emitting region with double hetero-structure
JP2007103690A (en) Semiconductor light emitting device and its fabrication process
JP2005347747A (en) Resonance cavity group iii nitride light emitting device manufactured by removing growth substrate
JP2007207981A (en) Method of manufacturing nitride semiconductor light-emitting device
JPH11330559A (en) Light emitting element
JP2001313422A (en) Light-emitting element and manufacturing method for the light-emitting element
JP5326957B2 (en) Light emitting device manufacturing method and light emitting device
JP4937599B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
KR20070008745A (en) Light emitting diode device having advanced light extraction efficiency and preparation method thereof
KR100890468B1 (en) Light emitting diode device using conductive interconnection part
US20050079642A1 (en) Manufacturing method of nitride semiconductor device
TWI583023B (en) Contact for a semiconductor light emitting device
JP2017055020A (en) Method for manufacturing semiconductor device
KR101032987B1 (en) Semiconductor light emitting device
JP2005142532A (en) Manufacturing method of nitride semiconductor device
KR101124470B1 (en) Semiconductor light emitting device
JP2009033205A (en) Method for fabricating nitride semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060823