JP2011517100A - LED with reduced electrode area - Google Patents

LED with reduced electrode area Download PDF

Info

Publication number
JP2011517100A
JP2011517100A JP2011503258A JP2011503258A JP2011517100A JP 2011517100 A JP2011517100 A JP 2011517100A JP 2011503258 A JP2011503258 A JP 2011503258A JP 2011503258 A JP2011503258 A JP 2011503258A JP 2011517100 A JP2011517100 A JP 2011517100A
Authority
JP
Japan
Prior art keywords
layer
trench
insulating
overlaying
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011503258A
Other languages
Japanese (ja)
Inventor
ハスナイン、グーラム
Original Assignee
ブリッジラックス・インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/147,212 external-priority patent/US7671053B2/en
Application filed by ブリッジラックス・インク filed Critical ブリッジラックス・インク
Priority claimed from PCT/US2009/046425 external-priority patent/WO2009158175A2/en
Publication of JP2011517100A publication Critical patent/JP2011517100A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

光源(40)とその製造方法を開示する。光源は、基板(21)と活性層(23)を取り囲む半導体の第1および第2層(22、24)を含む。第1層は基板に隣接して第1導電型材料を含む。活性層は、第1層を覆い、そこで正孔と電子が再結合するときに光を生成する。第2層は活性層を覆い第2導電型材料を含み、第2層は活性層を覆う第1表面と第1表面に対向する第2表面を有する。トレンチ(48)は第2層と活性層を通り第1層に延在する。トレンチは、電気絶縁壁(45)を有する。第1電極(47)は、第1電極が第1層と電気接触するように、トレンチ内に配され、第2電極(26)は第2層と電気接触する。
【選択図】図3
A light source (40) and a method for manufacturing the same are disclosed. The light source includes semiconductor first and second layers (22, 24) surrounding a substrate (21) and an active layer (23). The first layer includes a first conductivity type material adjacent to the substrate. The active layer covers the first layer where it generates light when holes and electrons recombine. The second layer covers the active layer and includes a second conductivity type material, and the second layer has a first surface covering the active layer and a second surface facing the first surface. A trench (48) extends through the second layer and the active layer to the first layer. The trench has an electrically insulating wall (45). The first electrode (47) is disposed in the trench such that the first electrode is in electrical contact with the first layer, and the second electrode (26) is in electrical contact with the second layer.
[Selection] Figure 3

Description

発光素子(LED)は、電気エネルギを変換する半導体素子の一重要分類である。これらの素子の改良は、白熱灯や蛍光灯の光源に取って代わるようになされる照明器具分野における利用という結果に結びつく。LEDは、顕著に長い寿命と、ある場合は電気エネルギの光への変換の顕著に高い効率とを有する。   Light emitting elements (LEDs) are one important class of semiconductor elements that convert electrical energy. Improvements to these elements result in use in the field of luminaires intended to replace incandescent and fluorescent light sources. LEDs have a significantly longer lifetime and in some cases a significantly higher efficiency of converting electrical energy to light.

生成される光のルーメン当たりのコストは、この新技術が従来の光源に取って代わる速さを決める上で重要なファクターである。与えられた材料系について、LED表面の単位面積当たりで生成される光には、LEDが動作する温度と放熱のような熱的要素により決まる最大値がある。LED温度が上昇すると、光変換効率は低下する。LEDのコストは、その上にLEDが製造されるダイの面積に比例する。LED表面の単位面積当たり最大の光出力があるので、光を生成しないダイの領域は、LEDのルーメン当たりのコストを増加させる。   The cost per lumen of light produced is an important factor in determining the speed with which this new technology can replace conventional light sources. For a given material system, the light generated per unit area of the LED surface has a maximum value determined by the temperature at which the LED operates and thermal factors such as heat dissipation. As the LED temperature increases, the light conversion efficiency decreases. The cost of an LED is proportional to the area of the die on which the LED is manufactured. Since there is a maximum light output per unit area of the LED surface, the area of the die that does not generate light increases the cost per lumen of the LED.

LEDは基板上に形成された3層構造とみなされ、光を生成する活性層は、p層とn層の間にサンドウィッチされる。電力は、問題となっている層全体に電流を拡散するp層とn層の接点を通じて印加される。典型的には、n層が基板に隣接し、p層が最上層となる。p層全体に拡散する電流は、p層の表面を覆う電極構造により、容易に得られる。LEDがp層を通して発光する場合には、電極構造はITOなどの透明な層を含む。   An LED is considered a three-layer structure formed on a substrate, and an active layer that generates light is sandwiched between a p-layer and an n-layer. Power is applied through the p-layer and n-layer contacts that spread the current throughout the layer in question. Typically, the n layer is adjacent to the substrate and the p layer is the top layer. The current diffused throughout the p layer is easily obtained by the electrode structure covering the surface of the p layer. When the LED emits light through the p layer, the electrode structure includes a transparent layer such as ITO.

n層への接点は、p層と活性層を通じてエッチングされたトレンチに形成される。十分な電流拡散エリアを提供するためには、このトレンチに使用される表面積はLEDの表面積のかなりの割合となる。このトレンチのサイズは、製造工程での位置合せ寸法公差を受け入れるためにさらに大きくなる。トレンチのエリアは光を生成しない。それゆえ、このトレンチは、LEDのルーメン当たりのコストにおいて重要なファクターとなる。   A contact to the n layer is formed in a trench etched through the p layer and the active layer. In order to provide a sufficient current spreading area, the surface area used for this trench is a significant percentage of the LED's surface area. The size of this trench is further increased to accommodate alignment dimensional tolerances in the manufacturing process. The area of the trench does not generate light. This trench is therefore an important factor in the cost per lumen of the LED.

本発明は、光源とそれを製造する方法を含む。光源は、基板と、活性層を囲む半導体の第1層と第2層とを含む。第1層は基板に隣接して第1導電型の材料を含む。活性層は、第1層を覆い、そこで正孔と電子が再結合するときに光を生成する。第2層は、活性層を覆い第2導電型の材料を含み、第2層は活性層を覆う第1表面と、第1表面と対向する第2表面とを有する。トレンチが第2層および活性層を通って第1層に延在する。トレンチは、電気絶縁壁を有する。第1電極が、第1層と電気接触するように、トレンチに配され、第2電極は第2層と電気接触する。本発明の一態様では、電気絶縁壁は、SiNの層を備える。本発明の別の態様では、第1電極は、トレンチに充満する金属層を含み、絶縁壁に接する。本発明のさらに別の態様では、透明な導電性材料の層が、第2電極と第2表面との間に配される。本発明の更なる態様では、電気絶縁体が第2電気電極の下に敷かれ、透明な導電性材料の第2層と第2表面との間に配される。絶縁材料は、トレンチの壁にある絶縁層と同じである。   The present invention includes a light source and a method of manufacturing the same. The light source includes a substrate and a first layer and a second layer of semiconductor surrounding the active layer. The first layer includes a first conductivity type material adjacent to the substrate. The active layer covers the first layer where it generates light when holes and electrons recombine. The second layer covers the active layer and includes a material of the second conductivity type, and the second layer has a first surface that covers the active layer and a second surface that faces the first surface. A trench extends through the second layer and the active layer to the first layer. The trench has an electrically insulating wall. The first electrode is disposed in the trench so as to be in electrical contact with the first layer, and the second electrode is in electrical contact with the second layer. In one aspect of the invention, the electrically insulating wall comprises a layer of SiN. In another aspect of the present invention, the first electrode includes a metal layer filling the trench and is in contact with the insulating wall. In yet another aspect of the invention, a layer of transparent conductive material is disposed between the second electrode and the second surface. In a further aspect of the invention, an electrical insulator is laid under the second electrical electrode and disposed between the second layer of transparent conductive material and the second surface. The insulating material is the same as the insulating layer on the trench walls.

図1は、従来技術のLED20の上面図である。FIG. 1 is a top view of a prior art LED 20. 図2は、図1に示す線2−2に沿ったLED20の断面図である。FIG. 2 is a cross-sectional view of the LED 20 along the line 2-2 shown in FIG. 図3は、本発明の一態様によるLEDの断面図である。FIG. 3 is a cross-sectional view of an LED according to an aspect of the present invention. 図4は、本発明の一態様によるLED50の製造の断面図である。FIG. 4 is a cross-sectional view of manufacturing an LED 50 according to one aspect of the present invention. 図5は、本発明の一態様によるLED50の製造の断面図である。FIG. 5 is a cross-sectional view of manufacturing an LED 50 according to one aspect of the present invention. 図6は、本発明の一態様によるLED50の製造の断面図である。FIG. 6 is a cross-sectional view of manufacturing an LED 50 according to one aspect of the present invention.

本発明がその利点を提供する方法は、先行技術のLEDを示す図1および2を参照することで簡単に理解できる。図1はLED20の上面図であり、図2は図1に示す線2−2に沿ったLED20の断面図である。LED20は、基板21上にいくつもの層を重ねることにより、基板21上に作られる。LED20は、n型層22、活性層23およびp型層24からなる3層を有するとみなされる。これらの層のそれぞれは、いくつかの副層を含むが、副層は本発明には関係しないので、図面簡略化のために、図面では副層を省略している。   The manner in which the present invention provides its advantages can be easily understood with reference to FIGS. 1 and 2, which show prior art LEDs. FIG. 1 is a top view of the LED 20, and FIG. 2 is a cross-sectional view of the LED 20 along the line 2-2 shown in FIG. The LED 20 is made on the substrate 21 by stacking several layers on the substrate 21. The LED 20 is considered to have three layers consisting of an n-type layer 22, an active layer 23 and a p-type layer 24. Each of these layers includes several sublayers, but the sublayers are not relevant to the present invention, so the sublayers are omitted from the drawings for the sake of simplicity.

活性層23は、層22と層24の間に生じる電位差に反応してそこで正孔と電子が結合するときに、光を生成する。電位差は、接点26、27を電源に接続することにより生ずる。p層の抵抗率は、p層全体に拡散した十分な電流を提供するには大きすぎるのが普通で、それゆえ、接点26と層24の間に透明な電極25を重ねて電流の拡散を容易にする。   The active layer 23 generates light when it reacts with a potential difference generated between the layer 22 and the layer 24 and holes and electrons are combined there. The potential difference is generated by connecting the contacts 26 and 27 to a power source. The resistivity of the p-layer is usually too large to provide sufficient current diffused throughout the p-layer, so a transparent electrode 25 is placed between the contact 26 and the layer 24 to spread the current. make it easier.

層22へのアクセスを提供するために、トレンチ28が層23、24を通って層22へエッチングされる。それから、トレンチ28に接点27を置く。十分な電流の拡散を提供するために、トレンチはLED20を横断して延在する。大きなLEDでは、複数のトレンチが存在する。それゆえ、トレンチのエリアは、LEDの発光エリアのかなりの割合となる。LEDのトレンチにされた部分は光を生成しないので、トレンチのエリアは、光生成の観点からは無駄であり、それゆえ、LEDのルーメン当たりのコストを増加させる。   To provide access to layer 22, trench 28 is etched through layer 23, 24 into layer 22. A contact 27 is then placed in the trench 28. In order to provide sufficient current spreading, the trench extends across the LED 20. In large LEDs, there are multiple trenches. Therefore, the area of the trench is a significant proportion of the light emitting area of the LED. Since the trenched portion of the LED does not generate light, the area of the trench is useless from a light generation standpoint, thus increasing the cost per lumen of the LED.

先行技術の設計では、トレンチのエリアは接点27で覆われるエリアよりかなり大きい。接点27が層23、層24の何れにも電気的に接触しないことは、接触の結果の短絡がLEDを動かなくしてしまうので、非常に重要である。先行技術のLED製造システムでは、接点27は直接トレンチ28中に置かれている。トレンチ中に金属層を置くときに接触が形成されないことを確実にするために、トレンチは、接点27よりかなり広く作られ、製造過程中の位置合せ誤差を受け入れられるようにする。それに続く製造工程では、湿気やその他の環境汚染物質がそれらの層を痛めることを防止するためにLEDを封入する工程の一部として、接点27とトレンチの壁の間のエリアが絶縁材料で満たされる。接点27はトレンチ28の壁と接触していないので、絶縁材料の品質は重要ではない。たとえば、絶縁材料のピンホールは短絡には繋がらない。   In the prior art design, the area of the trench is much larger than the area covered by the contact 27. It is very important that the contact 27 is not in electrical contact with either the layer 23 or the layer 24 because a short circuit as a result of the contact will cause the LED to move. In prior art LED manufacturing systems, the contacts 27 are placed directly in the trenches 28. To ensure that no contact is made when placing the metal layer in the trench, the trench is made much wider than the contact 27 to allow for alignment errors during the manufacturing process. In a subsequent manufacturing process, as part of the process of encapsulating the LEDs to prevent moisture and other environmental contaminants from damaging those layers, the area between the contacts 27 and the trench walls is filled with an insulating material. It is. Since contact 27 is not in contact with the walls of trench 28, the quality of the insulating material is not critical. For example, a pinhole of insulating material does not lead to a short circuit.

本発明は、ピンホールのない絶縁材料でトレンチにライニングをし、それからライニングされたトレンチに接点材料を置くことにより、短絡の問題を克服する。トレンチのライニングの厚さは、上記の製造方法で用いられる空隙よりも遥かに小さく、それゆえ、トレンチのために喪失するエリアはかなり縮小される。トレンチのライニングを提供するのに必要となるマスキング作業は、LEDの電流変換効率をさらに改良するのに用いられる別のマスキング作業と組み合わされ、それゆえ、追加の重ね工程のコストは僅かである。   The present invention overcomes the short circuit problem by lining the trench with insulating material without pinholes and then placing the contact material in the lined trench. The thickness of the trench lining is much smaller than the air gap used in the above manufacturing method, and therefore the area lost due to the trench is considerably reduced. The masking operation required to provide the trench lining is combined with another masking operation used to further improve the current conversion efficiency of the LED, and therefore the cost of the additional overlap process is negligible.

ここで、本発明の一態様によるLEDの断面図である図3を参照する。LED40もまた、n型層22、活性層23およびp型層24からなる3層を有しているものとして示される。透明電極44を重ねる前に、トレンチ48が層23および層24を通って層22へエッチングされる。次にSiNのパターン付き層を重ね、接点26の下に絶縁アイランド43を生成し、45として示されるようにトレンチ48の壁を絶縁する。絶縁層45は、接点47が層23および層24と短絡することを防止する。トレンチ48の幅は典型的には10μmであり、層45の厚さは典型的には100nmである。先行技術の素子では、トレンチは典型的には30μmである。それゆえ、本発明は、トレンチに必要なエリアのかなりの縮小を提供する。   Reference is now made to FIG. 3, which is a cross-sectional view of an LED according to one embodiment of the present invention. The LED 40 is also shown as having three layers consisting of an n-type layer 22, an active layer 23 and a p-type layer 24. Prior to overlaying transparent electrode 44, trench 48 is etched through layer 23 and layer 24 into layer 22. Next, a patterned layer of SiN is overlaid to create an insulating island 43 underneath the contact 26 and insulate the walls of the trench 48 as shown as 45. The insulating layer 45 prevents the contact 47 from being short-circuited with the layer 23 and the layer 24. The width of the trench 48 is typically 10 μm and the thickness of the layer 45 is typically 100 nm. In prior art devices, the trench is typically 30 μm. Therefore, the present invention provides a significant reduction in the area required for the trench.

絶縁アイランド43は基本的に、接点26の真下の活性層を通り抜ける電流をブロックする。一般的に、接点26は不透明で部分的吸収をし、それゆえ、接点26の真下の領域で生成した光のかなりの割合が失われる。それゆえ、アイランド43がない場合には、接点26の下の領域を通る電流のかなりの割合が無駄にされ、消費電力のワット当たりの光出力により測定される効率の減少となる。さらに、無駄な電流は、除去しなければならない熱を発生する。アイランド26はこの無駄を防止し、それゆえ、LED40の電力変換効率を上昇させ、LED40から出る光のルーメン当たりのLEDで生成される熱を低減する。アイランド43のようなアイランドを用いる従来技術の設計では、アイランドは、PECVD SiOx薄膜で製造された。しかし、SiOxは、SiOx誘電層薄膜でピンホールが普通にあることから、トレンチ48の壁を絶縁するのには適切な誘電材料ではない。   The insulating island 43 basically blocks the current passing through the active layer directly below the contact 26. In general, the contact 26 is opaque and partially absorbs, so a significant percentage of the light generated in the region directly below the contact 26 is lost. Thus, in the absence of islands 43, a significant percentage of the current through the area underneath contact 26 is wasted, resulting in a reduction in efficiency as measured by the light output per watt of power consumed. Furthermore, the wasted current generates heat that must be removed. The island 26 prevents this waste and therefore increases the power conversion efficiency of the LED 40 and reduces the heat generated by the LED per lumen of light exiting the LED 40. In prior art designs using islands such as island 43, the islands were fabricated with PECVD SiOx thin films. However, SiOx is not a suitable dielectric material to insulate the walls of the trench 48 because of the normal pinholes in the SiOx dielectric layer film.

LED40を製造する方法は、本発明の一態様によるLED50の製造の断面図である図4〜6を参照することにより容易に理解できるであろう。図4を参照すると、上述のように基板21上に層22〜24を重ねる。それから、トレンチ58を層23および層24を通って層22へエッチングする。図5を参照すると、次にパターン付SiN層を重ねてアイランド53とトレンチ58の壁に絶縁層55とを形成する。層55の底部52をエッチングして、層22への電気アクセスを提供する。次に、トレンチ58を保護しながら、電流拡散層44を重ね、アイランド53上にパターン付けする。最後に、パターン付金属層を重ね、図6に示すように接点56と接点57を形成する。   The method of manufacturing the LED 40 can be readily understood with reference to FIGS. 4-6, which are cross-sectional views of the manufacture of the LED 50 according to one aspect of the present invention. Referring to FIG. 4, layers 22-24 are overlaid on substrate 21 as described above. The trench 58 is then etched through the layer 23 and the layer 24 into the layer 22. Referring to FIG. 5, a patterned SiN layer is then stacked to form an insulating layer 55 on the island 53 and trench 58 walls. The bottom 52 of layer 55 is etched to provide electrical access to layer 22. Next, while protecting the trench 58, the current diffusion layer 44 is overlaid and patterned on the island 53. Finally, the patterned metal layer is overlaid to form contacts 56 and contacts 57 as shown in FIG.

本発明による上記のLEDは、上述のように、アイランド53のような電流ブロックアイランドを利用する。しかし、この特徴を有していない本発明によるLEDもまた、製造することができる。この特徴は、トレンチ壁を絶縁するのに用いられるのと同じ層によって僅かなコストで得られ、それゆえ、本発明のLEDでは特に魅力的である。   The LED according to the present invention utilizes a current block island such as island 53 as described above. However, LEDs according to the invention that do not have this feature can also be produced. This feature is obtained at a fraction of the cost by the same layer used to insulate the trench walls and is therefore particularly attractive in the LED of the present invention.

本発明による上述のLEDは、トレンチ壁の絶縁材料としてSiNを利用する。この材料は、接点27と層23または層24との間の短絡を生ずる可能性のあるピンホールなしで薄膜層に重ねられるので、特に魅力的である。しかし、他の絶縁材料を用いることもできる。たとえば、AlNx、TiOx、AlOxまたはSiOxNyを用いることができる。   The above-described LED according to the present invention utilizes SiN as the insulating material of the trench wall. This material is particularly attractive because it is superimposed on the thin film layer without pinholes that can cause a short circuit between contact 27 and layer 23 or layer 24. However, other insulating materials can be used. For example, AlNx, TiOx, AlOx, or SiOxNy can be used.

本発明による上述のLEDは、LEDの上面から発光し、それゆえ、透明な電流拡散層を用いる。しかし、基板の底面を通って発光する実施の形態を作ることもできる。この場合、上面の電流拡散層は、LEDの上面から基板へ向けて光の方向を変える反射面であってもよい。そのような実施の形態では、電気接点の下の絶縁アイランドの利益を受けないので、絶縁アイランドを欠くであろう。   The above-described LEDs according to the invention emit light from the top surface of the LEDs and therefore use a transparent current spreading layer. However, embodiments can be made that emit light through the bottom surface of the substrate. In this case, the current diffusion layer on the upper surface may be a reflective surface that changes the direction of light from the upper surface of the LED toward the substrate. Such an embodiment would lack the insulation islands as it would not benefit from the insulation islands under the electrical contacts.

上述のLEDは、n型層を基板の上に重ね、p型層を最後に重ねる構成を利用する。しかし、p型層を最初に重ねて本発明によるLEDを作ることもできる。   The LED described above utilizes a configuration in which an n-type layer is stacked on a substrate and a p-type layer is stacked last. However, it is also possible to make an LED according to the invention with the p-type layer first superimposed.

前述の説明および添付の図面より、当業者にとって本発明の種々の変更が明らかとなるであろう。したがって、本発明は特許請求の範囲によってのみ限定されるものである。   Various modifications of the present invention will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Accordingly, the invention is limited only by the following claims.

Claims (10)

基板と;
前記基板に隣接して第1導電型材料を備える第1層と;
前記第1層を覆う活性層であって、そこで正孔と電子が再結合するときに光を生成する活性層と;
前記活性層を覆い、第2導電型材料を備える第2層であって、前記活性層を覆う第1表面と前記第1表面と対向する第2表面とを有する第2層と;
前記第1層と前記活性層を通って前記第1層へと延在するトレンチであって、電気絶縁壁を有するトレンチと;
前記トレンチ内に配される第1電極であって、前記第1電極は前記第1層と電気接触するようになされる、第1電極と;
前記第2層に電気接触する第2電極とを備える;
光源。
A substrate;
A first layer comprising a first conductivity type material adjacent to the substrate;
An active layer covering the first layer, wherein the active layer generates light when holes and electrons recombine;
A second layer covering the active layer and comprising a second conductivity type material, the second layer having a first surface covering the active layer and a second surface facing the first surface;
A trench extending through the first layer and the active layer to the first layer, the trench having an electrically insulating wall;
A first electrode disposed in the trench, wherein the first electrode is in electrical contact with the first layer;
A second electrode in electrical contact with the second layer;
light source.
前記電気絶縁壁はSiNの層を備える;
請求項1の光源。
The electrically insulating wall comprises a layer of SiN;
The light source of claim 1.
前記第1電極は、前記トレンチを満たし、かつ、前記絶縁壁に接している金属層を備える;
請求項1の光源。
The first electrode comprises a metal layer filling the trench and in contact with the insulating wall;
The light source of claim 1.
前記第2電極と前記第2表面との間に透明な導電材料の層をさらに備える;
請求項1の光源。
Further comprising a layer of transparent conductive material between the second electrode and the second surface;
The light source of claim 1.
前記第2電気接点の下に敷かれ、前記透明な導電材料の第2層と前記第2表面との間に配される電気絶縁体をさらに備える;
請求項4の光源。
Further comprising an electrical insulator disposed under the second electrical contact and disposed between the second layer of the transparent conductive material and the second surface;
The light source of claim 4.
前記電気絶縁壁は絶縁材料の層を備え、前記電気絶縁体は同じ絶縁材料を備える;
請求項5の光源。
The electrically insulating wall comprises a layer of insulating material and the electrical insulator comprises the same insulating material;
The light source according to claim 5.
前記絶縁材料は、SiN、AlNx、TiOx、AlOxおよびSiOxNyからなるグループから選ばれる;
請求項6の光源。
The insulating material is selected from the group consisting of SiN, AlNx, TiOx, AlOx and SiOxNy;
The light source of claim 6.
発光素子を製造する方法であって、
基板に隣接して第1導電型材料を備える第1層を重ねる工程と;
前記第1層を覆って活性層を重ねる工程であって、前記活性層は、そこで正孔と電子が再結合するとき光を生成する、工程と;
前記活性層を覆い第2導電型材料を備える第2層を重ねる工程であって、前記第2層は、前記活性層を覆う第1表面と前記第1表面に対向する第2表面とを有する、工程と;
前記第2層と前記活性層を通り前記第1層へ延在するトレンチをエッチングする工程と;
前記トレンチに絶縁材料を重ねる工程と;
前記絶縁層の一部に前記絶縁層の孔をエッチングし、前記第1層の一部を前記トレンチに晒す工程と;
前記トレンチに導電材料の層を重ねて前記第1層に電気接続する第1接点を形成する工程とを備える;
方法。
A method of manufacturing a light emitting device,
Overlaying a first layer comprising a first conductivity type material adjacent to the substrate;
Overlaying the first layer over the first layer, wherein the active layer generates light when holes and electrons recombine there;
A step of covering the active layer with a second layer comprising a second conductivity type material, the second layer having a first surface covering the active layer and a second surface facing the first surface; And process;
Etching a trench extending through the second layer and the active layer to the first layer;
Overlaying the trench with an insulating material;
Etching the holes in the insulating layer into a portion of the insulating layer and exposing a portion of the first layer to the trench;
Forming a first contact electrically overlapping the first layer by overlaying a layer of conductive material on the trench;
Method.
前記トレンチ内で前記絶縁層を重ねるときに同時に、前記第2表面に前記絶縁材料を重ね、前記絶縁材料をパターン付けして前記第2表面に隣接する絶縁材料のアイランドを形成する工程をさらに備える;
請求項8の方法。
At the same time as overlaying the insulating layer in the trench, the method further comprises overlaying the insulating material on the second surface and patterning the insulating material to form an island of insulating material adjacent to the second surface. ;
The method of claim 8.
前記アイランドと前記第2表面の上に導電材料の透明な層を重ね、その後に前記導電材料の上に導電材料のパターン付けされた層を重ねて前記透明な層に電気接続する第2接点を形成する工程をさらに備える;
請求項9の方法。
Overlaying a transparent layer of conductive material on the island and the second surface, and then overlaying a patterned layer of conductive material on the conductive material to provide a second contact for electrical connection to the transparent layer; Further comprising forming;
The method of claim 9.
JP2011503258A 2008-06-26 2009-06-05 LED with reduced electrode area Pending JP2011517100A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/147,212 2008-06-26
US12/147,212 US7671053B2 (en) 2002-12-31 2008-06-26 Benzamide inhibitors of the P2X7 receptor
PCT/US2009/046425 WO2009158175A2 (en) 2008-06-26 2009-06-05 Led with reduced electrode area

Publications (1)

Publication Number Publication Date
JP2011517100A true JP2011517100A (en) 2011-05-26

Family

ID=43983652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011503258A Pending JP2011517100A (en) 2008-06-26 2009-06-05 LED with reduced electrode area

Country Status (2)

Country Link
JP (1) JP2011517100A (en)
KR (1) KR20110031895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208400A (en) * 2016-05-17 2017-11-24 ローム株式会社 Semiconductor light-emitting device
US9923120B2 (en) 2015-09-26 2018-03-20 Nichia Corporation Semiconductor light emitting element and method of producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960366B1 (en) * 2011-11-30 2019-03-21 엘지디스플레이 주식회사 Semiconductor light emitting device and method for fabricating thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250769A (en) * 1995-03-13 1996-09-27 Toyoda Gosei Co Ltd Optical semiconductor element
JPH10135519A (en) * 1996-09-09 1998-05-22 Toshiba Corp Semiconductor light emitting element and its manufacturing method
JP2003017748A (en) * 2001-06-27 2003-01-17 Seiwa Electric Mfg Co Ltd Gallium nitride-based compound semiconductor light emitting element and manufacturing method therefor
JP2004311677A (en) * 2003-04-07 2004-11-04 Matsushita Electric Works Ltd Semiconductor light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250769A (en) * 1995-03-13 1996-09-27 Toyoda Gosei Co Ltd Optical semiconductor element
JPH10135519A (en) * 1996-09-09 1998-05-22 Toshiba Corp Semiconductor light emitting element and its manufacturing method
JP2003017748A (en) * 2001-06-27 2003-01-17 Seiwa Electric Mfg Co Ltd Gallium nitride-based compound semiconductor light emitting element and manufacturing method therefor
JP2004311677A (en) * 2003-04-07 2004-11-04 Matsushita Electric Works Ltd Semiconductor light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923120B2 (en) 2015-09-26 2018-03-20 Nichia Corporation Semiconductor light emitting element and method of producing the same
US10424693B2 (en) 2015-09-26 2019-09-24 Nichia Corporation Semiconductor light emitting element having first semiconductor layer and holes through second semiconductor layer to expose the first semiconductor layer
JP2017208400A (en) * 2016-05-17 2017-11-24 ローム株式会社 Semiconductor light-emitting device

Also Published As

Publication number Publication date
KR20110031895A (en) 2011-03-29

Similar Documents

Publication Publication Date Title
US20090321775A1 (en) LED with Reduced Electrode Area
CN108140701B (en) Microelectronic diode with optimized active surface
TWI538265B (en) Light emitting device and method of fabricating the same
JP6914608B2 (en) How to make optoelectro devices, electronics and opt electro devices
TWI462282B (en) Semiconductor light source and method for fabricating the same
JP5841588B2 (en) Improved multi-junction LED
TWI459604B (en) Light-emitting diode chip
JP5750119B2 (en) Optoelectronic device array
JP2011513901A (en) Organic light emitting diode, contact device, and manufacturing method of organic light emitting diode
CN104620399A (en) Wafer level light-emitting diode array
TW201214771A (en) Light emitting device, light emitting device package, and lighting device
CN103985722B (en) Semiconductor device and its manufacturing method and the system for being equipped with semiconductor device
CN103155203A (en) Organic electronic device with encapsulation
TW200832773A (en) Organic light emitting diode device
US20140055981A1 (en) Light emitting device package
JP2010272871A (en) See-through thin film solar module
JP2011517100A (en) LED with reduced electrode area
TWI578582B (en) Light emitting diode load board and manufacturing process thereof
TW201003982A (en) Light emitting diode chip and fabricating method thereof
JP3556080B2 (en) Nitride semiconductor device
TW201401558A (en) Light emitting diode structure and manufacturing method thereof
TW201320402A (en) Solid state light emitting semiconductor device
TWI513067B (en) Light emitting diode structure
JP3906736B2 (en) Nitride semiconductor device
JP5721501B2 (en) Semiconductor device and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120323

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120404

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108