JPH08247674A - Heat accumulating device - Google Patents

Heat accumulating device

Info

Publication number
JPH08247674A
JPH08247674A JP7054333A JP5433395A JPH08247674A JP H08247674 A JPH08247674 A JP H08247674A JP 7054333 A JP7054333 A JP 7054333A JP 5433395 A JP5433395 A JP 5433395A JP H08247674 A JPH08247674 A JP H08247674A
Authority
JP
Japan
Prior art keywords
heat
heat storage
exchange surface
fluid
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7054333A
Other languages
Japanese (ja)
Inventor
Masaaki Tanaka
正昭 田中
Takeshi Shimizu
武 清水
Akira Hyodo
明 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP7054333A priority Critical patent/JPH08247674A/en
Publication of JPH08247674A publication Critical patent/JPH08247674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE: To improve the efficiency of fusion by reducing deviation of fusion of a heat accumulator. CONSTITUTION: A heat accumulator 15 is filled with a heat accumulating material and comprises a heat-exchange surface 20 for freezing being one surface and plane, and a heat-exchange surface 21 for fusion being a back surface and having an uneven surface along which fluid flows. The heat accumulator 15 has a bent part 24 wherein thickness is decreased at one end of the discharge side 23 of fluid and a protrusion part 22 of the uneven surface of the heat- exchange surface 21 for fusion on the discharge side 23 of fluid from the bent part 24 forms a bellows 25. Heat accumulation units 16 each having a cooling device 17 making abutment against the protrusion part 22 of the heat-exchange surface 21 for fusion of the heat accumulator 15 to make plane contact with the heat-exchange surface 20 for freezing to form a laminated structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷熱を蓄える蓄熱材を使
用して冷蔵または冷房を行う蓄熱装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device for refrigerating or cooling using a heat storage material that stores cold heat.

【0002】[0002]

【従来の技術】近年、冷蔵または冷房に用いられる蓄熱
装置が特開平1−219466号公報に示されるごとく
考えられている。
2. Description of the Related Art In recent years, a heat storage device used for refrigeration or cooling has been considered as disclosed in Japanese Patent Application Laid-Open No. 1-219466.

【0003】以下、図面を参照しながら上述した従来の
蓄熱装置の一例について説明する。図4及び図5におい
て、U字状断面をもつ熱交換器チューブ1の各偏平チュ
ーブ間に蓄熱容器2、3及びこれらの蓄熱容器2と3を
仕切る2枚の波形プレート4、5が挿入され、波形プレ
ート4、5が熱交換器チューブ1にろう付または図示し
ない固定用金具等の固定手段により固定されている。こ
のように構成される複数の蓄熱容器2、3が積層された
蓄熱装置6は、ハウジング7内に収納されている。ハウ
ジング7にはフィルタ8が取り付けられる空気取入口9
が形成され、蓄熱装置6の下流側には送風ファン10が
設けられ、さらに下流側には空気排出口11が形成され
ている。
An example of the conventional heat storage device described above will be described below with reference to the drawings. 4 and 5, between the flat tubes of the heat exchanger tube 1 having a U-shaped cross section, the heat storage containers 2 and 3 and the two corrugated plates 4 and 5 that partition the heat storage containers 2 and 3 are inserted. The corrugated plates 4 and 5 are fixed to the heat exchanger tube 1 by brazing or fixing means such as fixing metal fittings (not shown). A heat storage device 6 in which a plurality of heat storage containers 2 and 3 configured in this way are stacked is housed in a housing 7. An air intake 9 in which a filter 8 is attached to the housing 7.
The blower fan 10 is provided on the downstream side of the heat storage device 6, and the air discharge port 11 is further formed on the downstream side.

【0004】本構成において、熱交換器チューブ1に冷
媒を流して蓄熱材を凍結させ、フィルタ8からハウジン
グ7内に取り入れられた空気は、蓄熱装置6の周囲両端
に形成される空気通路12と13を通って送風ファン1
0を経て空気排出口11から外部に排出される。このと
き空気取入口9からハウジング7内に入った空気は、蓄
熱材2、3により熱を奪われて、冷却された空気となっ
て送風ファン10により空気排出口11から排出され、
その排出された低温空気を利用する。
In this structure, the refrigerant is flown through the heat exchanger tube 1 to freeze the heat storage material, and the air taken into the housing 7 from the filter 8 becomes the air passages 12 formed at both ends around the heat storage device 6. Blower fan 1 through 13
After passing 0, the air is discharged from the air discharge port 11 to the outside. At this time, the air that has entered the housing 7 through the air intake port 9 is deprived of heat by the heat storage materials 2 and 3 and becomes cooled air that is discharged from the air discharge port 11 by the blower fan 10.
The discharged low temperature air is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、蓄熱材融解時は送風ファン10が上部に
設置されていることとハウジング7に取り入れられた空
気は空気通路12と13を経て排出されることから通風
抵抗に差が生じ、蓄熱材2、3を積層した場合に位置に
より融解に偏りができため効率が悪い。
However, in the above structure, when the heat storage material is melted, the blower fan 10 is installed at the upper part and the air taken into the housing 7 is discharged through the air passages 12 and 13. As a result, there is a difference in ventilation resistance, and when the heat storage materials 2 and 3 are stacked, the melting may be biased depending on the position, resulting in poor efficiency.

【0006】本発明は上記課題に鑑み、蓄熱装置内の蓄
熱材を封入した蓄熱器を積層した場合に各層の融解を均
一化させて融解を効率良く行うことを目的とする。
In view of the above-mentioned problems, it is an object of the present invention to make the melting of each layer uniform when the heat accumulators containing the heat storage material in the heat accumulating device are laminated to efficiently perform the melting.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明は、内部に蓄熱材を充填し、片面が平面である凍
結用熱交換面と裏面は流体が流れる凹凸面を有する融解
用熱交換面とからなる蓄熱器を有し、この蓄熱器は流体
の排出側の一端で肉厚を薄くした屈曲部をもち、前記屈
曲部から流体の排出側の融解用熱交換面の凹凸面の凸部
は蛇腹となっており、前記蓄熱器の融解用熱交換面の凸
部を突き合わせて凍結用熱交換面と平面で接触する冷却
装置を備えた蓄熱ユニットを積層させた。
In order to achieve this object, the present invention provides a melting heat having a heat exchange surface for freezing, one side of which is a flat surface and an uneven surface through which a fluid flows, on one side. There is a heat accumulator consisting of an exchange surface, this heat accumulator has a bent portion with thin wall thickness at one end on the fluid discharge side, and the uneven surface of the melting heat exchange surface on the fluid discharge side from the bent portion. The convex portion is a bellows, and the thermal storage unit provided with a cooling device that abuts the convex portion of the heat exchange surface for melting of the heat accumulator and is in flat contact with the heat exchange surface for freezing is laminated.

【0008】[0008]

【作用】本発明の蓄熱装置は、蓄熱器の融解用熱交換面
の凸部は流体の排出側が蛇腹となっているために、蓄熱
材の凍結時は蓄熱材の膨張により凸部の蛇腹は伸びて蓄
熱器の流体の排出側にある屈曲部を支点として流体の排
出側を開口する。このとき、流体の通過方向に対する断
面積は大きいことから通風抵抗が小さく、融解するに従
い蛇腹が戻るので流体の通過方向に対する断面積は徐々
に小さくなることから通風抵抗は大きくなる。そのた
め、蓄熱器を積層した場合の各層で、融解時に早期に融
解している蓄熱器ほど通風抵抗が大であるので熱交換さ
れる流体は流れにくく、その分は通風抵抗が小である融
解の遅延部に流れる。
In the heat storage device of the present invention, the convex portion of the heat exchange surface for melting of the heat accumulator has a bellows on the discharge side of the fluid. Therefore, when the heat storage material is frozen, the bellows of the convex portion are not expanded due to the expansion of the heat storage material. The bent portion on the fluid discharge side of the heat accumulator that is extended is used as a fulcrum to open the fluid discharge side. At this time, since the cross-sectional area in the passage direction of the fluid is large, the ventilation resistance is small, and since the bellows return as the melted, the cross-sectional area in the passage direction of the fluid is gradually decreased and the ventilation resistance becomes large. Therefore, in each layer when the heat accumulators are stacked, the air exchange resistance is higher for the heat accumulators that melt earlier at the time of melting, so the fluid to be heat-exchanged is less likely to flow, and the ventilation resistance is small for that amount. It flows to the delay section.

【0009】以上のことから、蓄熱器を積層した場合に
各層での融解の偏りを低減でき効率が良い。
From the above, when the heat accumulators are laminated, the deviation of melting in each layer can be reduced, and the efficiency is good.

【0010】[0010]

【実施例】以下、本発明による蓄熱装置の1実施例につ
いて、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat storage device according to the present invention will be described below with reference to the drawings.

【0011】図1は本発明の1実施例における蓄熱装置
の縦断面図、図2は同実施例の融解開始時の縦断面図、
図3は同実施例の主要部の縦断面拡大図である。
FIG. 1 is a longitudinal sectional view of a heat storage device according to one embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of the same embodiment at the start of melting,
FIG. 3 is an enlarged vertical sectional view of a main part of the embodiment.

【0012】図1及び図2にて、14は蓄熱装置、15
は蓄熱器、16は蓄熱器ユニット、17は冷却装置、1
8は熱交換器冷媒管、19は断熱箱である。
In FIGS. 1 and 2, 14 is a heat storage device, and 15 is a heat storage device.
Is a regenerator, 16 is a regenerator unit, 17 is a cooling device, 1
Reference numeral 8 is a heat exchanger refrigerant pipe, and 19 is a heat insulating box.

【0013】蓄熱装置14は、蓄熱器15と冷却装置1
7とからなる蓄熱ユニット16を積層しており、積層さ
れた蓄熱ユニット16の周囲を断熱材で包囲した断熱箱
19で構成されている。
The heat storage device 14 includes a heat storage device 15 and a cooling device 1.
The heat storage unit 16 composed of 7 and 7 is stacked, and the heat storage unit 16 is composed of a heat insulating box 19 that surrounds the stacked heat storage units 16 with a heat insulating material.

【0014】積層された蓄熱ユニット16は上から上段
蓄熱ユニット16a、中段蓄熱ユニット16b、下段蓄
熱ユニット16cと3層で構成されている。
The laminated heat storage unit 16 is composed of an upper heat storage unit 16a, a middle heat storage unit 16b, and a lower heat storage unit 16c from the top in three layers.

【0015】蓄熱器15は内部に潜熱型蓄熱材が充填さ
れており、片面が平面である凍結用熱交換面20と凍結
用熱交換面20の裏面の凹凸面である融解用熱交換面2
1からなっており、蓄熱器15の凸部22は千鳥配列で
ある。特に、蓄熱器15の流体の排出側23は図3に示
すように、一端が肉厚が薄い屈曲部24をもち、屈曲部
24からの流体の排出側23にある凸部22は蛇腹25
となっている。
The heat accumulator 15 is filled with a latent heat type heat storage material inside, and has a freezing heat exchange surface 20 having a flat surface on one side and a melting heat exchange surface 2 which is an uneven surface on the back surface of the freezing heat exchange surface 20.
1 and the convex portions 22 of the heat storage device 15 are in a staggered arrangement. In particular, as shown in FIG. 3, the fluid discharge side 23 of the heat storage unit 15 has a bent portion 24 having a thin wall at one end, and the convex portion 22 on the fluid discharge side 23 from the bent portion 24 has a bellows 25.
Has become.

【0016】蓄熱器ユニット16は蓄熱器15の融解用
熱交換面21の凸部22を突き合わせ、冷却装置17と
平面で接触している。
The regenerator unit 16 abuts the convex portion 22 of the heat exchange surface 21 for melting of the regenerator 15 and is in planar contact with the cooling device 17.

【0017】断熱箱19は熱交換流体の吸入口26と流
体の排出口27を有し、流体輸送用の送風ファン28が
流体排出口27に設けられている。
The heat insulating box 19 has a heat exchange fluid suction port 26 and a fluid discharge port 27, and a blast fan 28 for fluid transportation is provided at the fluid discharge port 27.

【0018】以上のように構成された蓄熱装置につい
て、以下その動作を説明する。通常は図1に示すよう
に、蓄熱器15の凸部22の排出側23の蛇腹25が収
縮した状態となっており、屈曲部24は肉厚が薄いため
に蛇腹25内の蓄熱材の重みで屈曲している。
The operation of the heat storage device configured as described above will be described below. Normally, as shown in FIG. 1, the bellows 25 on the discharge side 23 of the convex portion 22 of the heat storage unit 15 is in a contracted state, and since the bent portion 24 has a small wall thickness, the weight of the heat storage material in the bellows 25 is small. Is bent at.

【0019】蓄熱器15は、冷媒を熱交換器冷媒管18
に流し、冷却装置17から蓄熱器15の凍結用熱交換面
20へ平面にて熱交換して凍結させる。その後、送風フ
ァン28を運転して吸入口26から流体を取り込み蓄熱
器15の融解用熱交換面21の凹凸面にて流体との熱交
換を行い排出口27より吐出し、熱交換された吐出空気
を利用する。
The heat storage unit 15 stores the refrigerant in the heat exchanger refrigerant pipe 18
And the heat is exchanged in a plane from the cooling device 17 to the freezing heat exchange surface 20 of the heat accumulator 15 to be frozen. After that, the blower fan 28 is operated to take in the fluid from the suction port 26, exchange heat with the fluid on the uneven surface of the heat exchange surface 21 for melting of the heat accumulator 15, and discharge from the discharge port 27. Use the air.

【0020】蓄熱器15の融解開始時は図2に示すよう
に、蓄熱器15の内部に充填された蓄熱材の凍結の膨張
により蛇腹25は伸びる。このとき、屈曲部24は肉厚
が薄いことから屈曲はなくなり、屈曲部24を支点とし
て流体の排出側23は広がって開口した状態となり、通
風抵抗が小さい。
At the start of melting the heat storage unit 15, as shown in FIG. 2, the bellows 25 expands due to the freezing expansion of the heat storage material filled inside the heat storage unit 15. At this time, since the bent portion 24 has a small wall thickness, the bent portion 24 does not bend, and the fluid discharge side 23 is spread and opened with the bent portion 24 as a fulcrum, and the ventilation resistance is small.

【0021】蓄熱器15の融解途中は、吸入口26から
排出口27までの流体の道のりで最も短い上段蓄熱ユニ
ット16aが通風抵抗が小さいことから早く融解し、次
に中段蓄熱ユニット16b、下段蓄熱ユニット16cと
下方になるほど吸入口26から排出口27までの流体の
道のりが遠くなるため通風抵抗が大となり融解が遅れ
る。このとき、融解の早い上段蓄熱ユニット16aの蛇
腹25が収縮し屈曲部24を支点として開口し通風抵抗
が大となるため流体が流れにくく、蓄熱ユニット16が
下方になるほど蛇腹25の収縮の程度が小さくなり通風
抵抗が小さくなることから流れ易くなる。このように、
積層した各層での蓄熱器15の融解の偏りを低減させ効
率が良く、安定した吐出流体を得ることができる。そし
て、完全融解時は、蛇腹25が最大に収縮し、屈曲部2
4が屈曲した通常の状態に戻る。
While the heat accumulator 15 is melting, the shortest upper heat storage unit 16a along the fluid path from the suction port 26 to the discharge port 27 melts quickly because the ventilation resistance is small, and then the middle heat storage unit 16b and the lower heat storage unit 16b. As the distance from the unit 16c becomes lower, the distance of the fluid from the suction port 26 to the discharge port 27 becomes longer, so that the ventilation resistance becomes large and the melting is delayed. At this time, the bellows 25 of the upper heat storage unit 16a, which melts quickly, contracts, opens with the bent portion 24 as a fulcrum, and the ventilation resistance becomes large, so that the fluid does not flow easily. Since it becomes smaller and the ventilation resistance becomes smaller, the flow becomes easier. in this way,
It is possible to reduce the bias of melting of the heat storage unit 15 in each of the stacked layers and to obtain a highly efficient and stable discharge fluid. Then, when completely melted, the bellows 25 contracts to the maximum, and the bent portion 2
Return to the normal state where 4 is bent.

【0022】以上のように本実施例の蓄熱装置は、内部
に蓄熱材を充填し、片面が平面である凍結用熱交換面2
0と裏面は流体が流れる凹凸面を有する融解用熱交換面
21とからなる蓄熱器15を有し、この蓄熱器15は流
体の排出側23の一端で肉厚を薄くした屈曲部24をも
ち、屈曲部24から流体の排出側23の融解用熱交換面
21の凹凸面の凸部22は蛇腹25となっており、蓄熱
器15の融解用熱交換面21の凸部22を突き合わせて
凍結用熱交換面20と平面で接触する冷却装置17を備
えた蓄熱ユニット16を積層させた構成となっているの
で、効率良く融解ができる。
As described above, the heat storage device of the present embodiment is filled with the heat storage material and has a freezing heat exchange surface 2 having a flat surface on one side.
0 and the back surface have a heat storage unit 15 composed of a heat exchange surface 21 for melting having an uneven surface through which the fluid flows. The heat storage unit 15 has a bent portion 24 having a thin wall thickness at one end of a discharge side 23 of the fluid. The convex portion 22 of the concavo-convex surface of the melting heat exchange surface 21 on the discharge side 23 of the fluid from the bent portion 24 is a bellows 25, and the convex portion 22 of the melting heat exchange surface 21 of the heat accumulator 15 is butted against and frozen. Since the heat storage unit 16 including the cooling device 17 that comes into flat contact with the heat exchange surface 20 is laminated, efficient melting can be achieved.

【0023】[0023]

【発明の効果】以上のように本発明によれば、内部に蓄
熱材を充填し、片面が平面である凍結用熱交換面と裏面
は流体が流れる凹凸面を有する融解用熱交換面とからな
る蓄熱器を有し、この蓄熱器は流体の排出側の一端で肉
厚を薄くした屈曲部をもち、前記屈曲部から流体の排出
側の融解用熱交換面の凹凸面の凸部は蛇腹となってお
り、前記蓄熱器の融解用熱交換面の凸部を突き合わせて
凍結用熱交換面と平面で接触する冷却装置を備えた蓄熱
ユニットを積層させたことで、蓄熱材の凍結時は蓄熱材
の膨張により凸部の蛇腹は伸びて屈曲部はなくなり流体
の通過方向に対する断面積は大きいことから通風抵抗が
小さく、融解するに従い蛇腹が戻るので屈曲部が屈曲し
て流体の通過方向に対する断面積は徐々に小さくなるこ
とから通風抵抗は大きくなる。そのため、蓄熱器を積層
した場合の各層で、融解時に早期に融解している蓄熱器
ほど通風抵抗が大であるので熱交換される流体は流れ難
く、その分は通風抵抗が小である融解の遅延部に流れ
る。以上のことから、蓄熱器を積層した場合に各層での
融解の偏りを低減でき効率が良い。
As described above, according to the present invention, a heat exchange surface for freezing, which is filled with a heat storage material and has a flat surface on one side, and a heat exchange surface for melting, which has an uneven surface through which a fluid flows The heat accumulator has a bent portion with a thin wall thickness at one end on the fluid discharge side, and the convex portion on the uneven surface of the melting heat exchange surface on the fluid discharge side from the bent portion is bellows. Therefore, by stacking a heat storage unit having a cooling device that abuts the convex portion of the heat exchange surface for melting of the heat accumulator and makes a flat contact with the heat exchange surface for freezing, when the heat storage material is frozen, Due to the expansion of the heat storage material, the bellows of the convex portion expands and the bent portion disappears, and the cross-sectional area with respect to the fluid passage direction is large, so the ventilation resistance is small and the bellows returns as it melts, so the bent portion bends and the Ventilation resistance is large because the cross-sectional area gradually decreases Kunar. Therefore, in each layer when the heat accumulators are laminated, the air exchange resistance is larger as the heat accumulator that melts earlier at the time of melting, so the fluid to be heat exchanged is hard to flow, and the ventilation resistance is small for that part. It flows to the delay section. From the above, when the heat accumulators are laminated, the bias of melting in each layer can be reduced, and the efficiency is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による蓄熱装置の第1の実施例の縦断面
FIG. 1 is a longitudinal sectional view of a first embodiment of a heat storage device according to the present invention.

【図2】同実施例の蓄熱器融解開始時の縦断面図FIG. 2 is a vertical cross-sectional view of the same embodiment at the start of melting the heat storage device.

【図3】同実施例の主要部の縦断面拡大図FIG. 3 is an enlarged vertical sectional view of a main part of the embodiment.

【図4】従来の蓄熱装置の縦断面図FIG. 4 is a vertical sectional view of a conventional heat storage device.

【図5】同従来例の図4中のA−A’線に沿う蓄熱装置
の縦断面図
5 is a longitudinal sectional view of the heat storage device taken along the line AA ′ in FIG. 4 of the conventional example.

【符号の説明】[Explanation of symbols]

14 蓄熱装置 15 蓄熱器 16 蓄熱器ユニット 17 冷却装置 20 凍結用熱交換面 21 融解用熱交換面 22 凸部 23 排出側 24 屈曲部 25 蛇腹 14 heat storage device 15 heat storage device 16 heat storage unit 17 cooling device 20 freezing heat exchange surface 21 melting heat exchange surface 22 convex portion 23 discharge side 24 bent portion 25 bellows

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に蓄熱材を充填し、片面が平面であ
る凍結用熱交換面と裏面は流体が流れる凹凸面を有する
融解用熱交換面とからなる蓄熱器を有し、この蓄熱器は
流体の排出側の一端で肉厚を薄くした屈曲部をもち、前
記屈曲部から流体の排出側の融解用熱交換面の凹凸面の
凸部は蛇腹となっており、前記蓄熱器の融解用熱交換面
の凸部を突き合わせて凍結用熱交換面と平面で接触する
冷却装置を備えた蓄熱ユニットを積層させた蓄熱装置。
1. A regenerator having a heat exchange surface for freezing, the inside of which is filled with a heat storage material, and one side of which is a flat surface, and a back side of which is a heat exchange surface for melting having an uneven surface through which a fluid flows. Has a thinned bent portion at one end on the fluid discharge side, and the convex portion of the uneven surface of the heat exchange surface for melting on the fluid discharge side from the bent portion is a bellows, and the melting of the heat storage unit Accumulating unit having a cooling unit that has a cooling device that abuts the convex portions of the heat exchange surface for use and makes a flat contact with the heat exchange surface for freezing.
JP7054333A 1995-03-14 1995-03-14 Heat accumulating device Pending JPH08247674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7054333A JPH08247674A (en) 1995-03-14 1995-03-14 Heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7054333A JPH08247674A (en) 1995-03-14 1995-03-14 Heat accumulating device

Publications (1)

Publication Number Publication Date
JPH08247674A true JPH08247674A (en) 1996-09-27

Family

ID=12967682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7054333A Pending JPH08247674A (en) 1995-03-14 1995-03-14 Heat accumulating device

Country Status (1)

Country Link
JP (1) JPH08247674A (en)

Similar Documents

Publication Publication Date Title
CN101287953B (en) Ice making machine, evaporator assembly for an ice making machine, and method of manufacturing same
US6308527B1 (en) Refrigerant evaporator with condensed water drain structure
US20070056719A1 (en) Heat exchanger for cooling
JP6590948B2 (en) Heat exchanger and refrigeration cycle equipment
US10557652B2 (en) Heat exchanger and air conditioner
JP3353692B2 (en) Ice storage type air conditioner and ice storage tank
JP5920087B2 (en) Cold storage heat exchanger
JP2900898B2 (en) Plate heat exchanger
US5562157A (en) Heat exchanger
JP2004069228A (en) Heat exchanger
WO2019111849A1 (en) Heat exchanger
WO2021234964A1 (en) Heat exchanger and air conditioner
US4485643A (en) Evaporator for refrigerators and the like
JPH08247674A (en) Heat accumulating device
JPH08247672A (en) Heat accumulating device
JP3179281B2 (en) Heat storage device
JPH02106697A (en) Lamination type heat exchanger
JPH08247673A (en) Heat accumulating device
JPH09152229A (en) Refrigerator
KR101992415B1 (en) Roll bond evaporator
JPH08152288A (en) Heat exchanger
WO2023210200A1 (en) Cooler
JP2726941B2 (en) Ventilation heat exchanger
JP2000180082A (en) Cold storage heat exchanger
JPH0631325Y2 (en) Wind tube heat exchanger for heat storage