JPH09152229A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH09152229A
JPH09152229A JP7313013A JP31301395A JPH09152229A JP H09152229 A JPH09152229 A JP H09152229A JP 7313013 A JP7313013 A JP 7313013A JP 31301395 A JP31301395 A JP 31301395A JP H09152229 A JPH09152229 A JP H09152229A
Authority
JP
Japan
Prior art keywords
refrigerator
heat transfer
cooler
evaporator
flat plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7313013A
Other languages
Japanese (ja)
Inventor
Kazuhisa Myojin
一寿 明神
Takao Kojima
隆夫 小嶋
Tetsuo Sano
哲夫 佐野
Akihiro Noguchi
明裕 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP7313013A priority Critical patent/JPH09152229A/en
Priority to TW085110027A priority patent/TW301706B/en
Priority to CN96112817A priority patent/CN1094584C/en
Priority to KR1019960039202A priority patent/KR970028282A/en
Publication of JPH09152229A publication Critical patent/JPH09152229A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/141Removal by evaporation
    • F25D2321/1413Removal by evaporation using heat from electric elements or using an electric field for enhancing removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater

Abstract

PROBLEM TO BE SOLVED: To improve the cooling performance by improving the occurrence of clogging of a cooler with frost by a constitution of the cooler by mounting heat transfer fins so that the surface area of the downstream side of the flow of the indoor air is larger than that of the upstream side on a board and bringing the board into fixed contact with a roll bond evaporator. SOLUTION: The cooler 20 disposed in an indoor air channel is formed by installing a roll bond evaporator 21 for constituting an evaporator part at the wall face side in the body and mounting heat transfer fins 25 on the indoor inside surface so as to be brought into contact with the evaporator 21. The fins 25 are mainly constituted by a plurality of flat plates 24 arranged parallel to the flowing direction A of the indoor air, and shorter flat plates of the length in the flowing direction are sequentially disposed at the downstream side of the direction A. Thus, the fins 25 are formed so that the surface area of the downstream side of the flow of the indoor air is larger than that of the upstream side. Such a plurality of flat plates are mounted on a board 23, which is brought into fixed contact with the evaporator 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ファンクール式の
冷蔵庫に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fan-cool type refrigerator.

【0002】[0002]

【従来の技術】ファンクール式の従来の冷蔵庫として
は、例えば図9に示すようなものがある。図の冷蔵庫は
ミッドフリーザタイプで、冷蔵庫本体1内には上から冷
蔵室2、冷凍室3、野菜室4が構成されている。5は冷
蔵室2の扉、6は冷凍室3の扉、7は野菜室4の扉であ
る。8は冷蔵庫本体1内を冷蔵室2部と冷凍室3部に区
画する区画壁であり、この部分に冷蔵室2に吹き出され
た冷気の戻り通路9が形成されている。10は冷凍室3
に吹き出された冷気の戻り通路である。11,12は冷
凍サイクルにおけるコンプレッサ(圧縮機)とフィンド
チューブ式冷却器(蒸発器)、13は庫内ファン、14
はファンガード、15は除霜用のガラス管ヒータ、16
は除霜水を受けるための樋である。
2. Description of the Related Art An example of a conventional fan-cool type refrigerator is shown in FIG. The refrigerator shown in the figure is a mid-freezer type, and a refrigerator compartment 2, a freezer compartment 3 and a vegetable compartment 4 are formed in the refrigerator body 1 from the top. Reference numeral 5 is a door of the refrigerator compartment 2, 6 is a door of the freezer compartment 3, and 7 is a door of the vegetable compartment 4. Reference numeral 8 denotes a partition wall that divides the interior of the refrigerator body 1 into a refrigerating compartment 2 part and a freezing compartment 3 part, and a return passage 9 for the cold air blown into the refrigerating compartment 2 is formed in this part. 10 is a freezing room 3
It is the return passage for the cold air blown out to. Reference numerals 11 and 12 denote a compressor (compressor) and a finned tube cooler (evaporator) in the refrigeration cycle, 13 denotes a fan in the refrigerator, and 14
Is a fan guard, 15 is a glass tube heater for defrosting, 16
Is a gutter for receiving defrost water.

【0003】そしてフィンドチューブ式冷却器12で冷
却された冷気が庫内ファン13により冷凍室3及び冷蔵
室2に吹き出され、戻り通路9,10を経て再びフィン
ドチューブ式冷却器12に吸い込まれる冷気循環系が構
成されている。この運転中に冷蔵室2等から戻る湿度の
高い庫内空気がフィンドチューブ式冷却器12で低い温
度に冷やされるため、フィンドチューブ式冷却器12に
は霜が付着する。このため冷蔵庫は、定期的に除霜モー
ドに入ってガラス管ヒータ15への通電が行われ、その
熱、主に輻射熱でフィンドチューブ式冷却器12に付着
した霜を溶かすことが行われる。このときの除霜水が樋
16で受けられる。樋16には、図示してないが、除霜
水の氷結を防止するためのヒータが設置され、除霜水を
庫外に導出するための排水パイプが接続されている。
The cool air cooled by the finned tube cooler 12 is blown into the freezer compartment 3 and the refrigerating compartment 2 by the internal fan 13 and is sucked into the find tube cooler 12 again through the return passages 9 and 10. A circulatory system is constructed. During this operation, the inside air having a high humidity returning from the refrigerating compartment 2 and the like is cooled to a low temperature by the finned tube cooler 12, so that frost adheres to the finned tube cooler 12. Therefore, the refrigerator periodically enters the defrosting mode to energize the glass tube heater 15 to melt the frost adhering to the finned tube cooler 12 by its heat, mainly radiant heat. The defrost water at this time is received by the gutter 16. Although not shown, the gutter 16 is provided with a heater for preventing the defrosted water from being frozen, and is connected to a drain pipe for leading the defrosted water out of the refrigerator.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
冷蔵庫では、除霜時にフィンドチューブ式冷却器につい
た霜をガラス管ヒータからの熱、主に輻射熱で溶かすた
めにガラス管ヒータから最も遠い部分、即ち図9ではフ
ィンドチューブ式冷却器の最上部そしてフィンドチュー
ブ式冷却器への入り口パイプ、アキュムレータ等に付着
した霜を確実に取り除くために除霜時間が長くなり、こ
の部分の除霜を確実に行うために別途にヒータを設置す
る場合もある。またフィンドチューブのため、パイプに
霜がひっかかり、残氷等が生じて目詰まりが発生するお
それがあるので確実に霜を溶かす必要がある。このた
め、除霜中に庫内温度が上昇する、除霜時のヒータ入力
が大きくなる等の問題点があった。またガラス管ヒータ
の近傍では霜が溶けた後もヒータ加熱されるため蒸発器
(フィンドチューブ式冷却器)の温度が上昇し、冷凍サ
イクル内の圧力が上昇して除霜後のコンプレッサの起動
の条件が厳しくなるという問題点もあった。
However, in the conventional refrigerator, since the frost on the finned tube cooler is defrosted by heat from the glass tube heater, mainly radiant heat, the portion farthest from the glass tube heater, That is, in FIG. 9, the defrosting time is extended in order to reliably remove the frost adhering to the uppermost part of the finned tube cooler, the inlet pipe to the finned tube cooler, the accumulator, etc. In some cases, a heater may be installed separately for this purpose. Further, since it is a finned tube, frost may be caught on the pipe and residual ice or the like may be generated to cause clogging, so it is necessary to surely melt the frost. For this reason, there are problems that the temperature inside the refrigerator rises during defrosting, the heater input during defrosting becomes large, and the like. In addition, since the heater is heated near the glass tube heater even after the frost has melted, the temperature of the evaporator (find tube type cooler) rises and the pressure in the refrigeration cycle rises, causing the compressor to start after defrosting. There was also a problem that the conditions became strict.

【0005】本発明は、上記に鑑みてなされたもので、
着霜による冷却器の目詰まりの発生を改善して冷却性能
の劣化を抑え、また除霜時間を短縮して食品の保存性を
向上させることができるとともに除霜終了後のコンプレ
ッサの起動条件を改善することができ、除霜用のヒータ
温度を低く抑えることができて除霜時の省電力を図るこ
とができるとともに可燃性冷媒採用時等においても安全
性を確保することができ、さらに冷却器を小型化するこ
とができる冷蔵庫を提供することを目的とする。
[0005] The present invention has been made in view of the above,
It is possible to improve the clogging of the cooler due to frost formation to prevent deterioration of the cooling performance, shorten the defrosting time to improve the shelf life of food, and set the compressor start conditions after defrosting. It is possible to improve the temperature of the heater for defrosting, reduce power consumption during defrosting, and ensure safety even when a flammable refrigerant is used. An object is to provide a refrigerator that can be downsized.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、庫内ファンで庫内空気を強
制対流させるとともに該庫内空気の流路中に冷凍サイク
ルにおける蒸発器で構成される冷却器を配置して熱交換
する冷蔵庫において、前記蒸発器部分を構成するロール
ボンドエバを本体内壁面側に設置し、平行配列された複
数の方形状平板を主体に構成され前記庫内空気の流れの
下流側の表面積を上流側の表面積よりも大きくとった伝
熱フィンを基板上に取り付け、該基板を前記ロールボン
ドエバに接触固定することにより前記冷却器を構成して
なることを要旨とする。
In order to solve the above-mentioned problems, the invention according to claim 1 forcibly convects the air in the refrigerator with a fan in the refrigerator and vaporizes the air in the refrigerator in the flow path of the air in the refrigerator. In a refrigerator in which a cooler configured by a heat exchanger is arranged to exchange heat, the roll bond eva forming the evaporator portion is installed on the inner wall surface side of the main body, and is mainly configured by a plurality of rectangular flat plates arranged in parallel. A heat transfer fin having a surface area on the downstream side of the flow of the internal air larger than the surface area on the upstream side is mounted on a substrate, and the substrate is brought into contact with and fixed to the roll bond evaporator to form the cooler. The point is to become.

【0007】この構成により、ロールボンドエバ上に伝
熱フィンを設置することで伝熱面積が増加して必要な庫
内冷却性能が確保される。伝熱フィンが方形状平板を主
体として構成され、かつ上流側で空気の流路面積が広
く、さらに伝熱部にはパイプ等の障害物が無いことか
ら、冷蔵室等からの湿度の高い空気が伝熱フィンの上流
側から流入して着霜傾向が生じても、着霜による冷却器
の目詰まりの発生が改善され、冷却性能の劣化が抑えら
れる。また適宜の加熱の実行による除霜モードに入って
も、除霜が容易かつ短時間に行われる。したがって庫内
の食品の保存性を向上させることが可能となり、また除
霜時のロールボンドエバの温度上昇が抑えられ、冷凍サ
イクル内の圧力の上昇が低く抑えられることで除霜終了
後のコンプレッサの起動条件が改善され、コンプレッサ
電動機の効率改善が可能となる。
With this structure, by installing the heat transfer fins on the roll bond eva, the heat transfer area is increased and the required internal cooling performance is secured. Since the heat transfer fins are mainly composed of rectangular flat plates, the flow path area of the air is large on the upstream side, and there are no obstacles such as pipes in the heat transfer section, air with high humidity from the refrigerating room etc. Even if the water flows from the upstream side of the heat transfer fins and a frosting tendency occurs, the clogging of the cooler due to the frosting is improved, and the deterioration of the cooling performance is suppressed. Further, even when the defrosting mode is entered by executing appropriate heating, the defrosting can be performed easily and in a short time. Therefore, it is possible to improve the preservability of the food in the refrigerator, suppress the temperature rise of the roll bond evaporator during defrosting, and suppress the rise of pressure in the refrigeration cycle to a low level, so that the compressor after defrosting is finished. The starting condition of is improved, and the efficiency of the compressor motor can be improved.

【0008】請求項2記載の発明は、庫内ファンで庫内
空気を強制対流させるとともに該庫内空気の流路中に冷
凍サイクルにおける蒸発器で構成される冷却器を配置し
て熱交換する冷蔵庫において、前記蒸発器部分を構成す
るロールボンドエバを本体内壁面側に設置し、平行配列
された複数の方形状平板を主体に構成され前記庫内空気
の流れの下流側の表面積を上流側の表面積よりも大きく
とった伝熱フィンを前記ロールボンドエバに接触固定す
ることにより前記冷却器を構成してなることを要旨とす
る。
According to a second aspect of the present invention, the internal fan is forced to convection the internal air, and a cooler constituted by an evaporator in the refrigeration cycle is arranged in the flow path of the internal air for heat exchange. In the refrigerator, the roll bond eva which constitutes the evaporator portion is installed on the inner wall surface side of the main body, and the surface area on the downstream side of the flow of the inside air is set on the upstream side, which is mainly composed of a plurality of rectangular flat plates arranged in parallel. The gist is that the cooling device is configured by fixing a heat transfer fin having a surface area larger than the surface area of the roller bond contact to the roll bond eva.

【0009】この構成により、ロールボンドエバに伝熱
フィンを直接接触固定することでロールボンドエバと伝
熱フィン間の熱抵抗が減少し、庫内冷却性能がさらに向
上するとともに除霜時の加熱が効率よく行われて除霜を
一層短時間で行うことが可能となる。また冷却器の小型
化が可能となる。
With this structure, the heat transfer fins are directly contacted and fixed to the roll bond eva, thereby reducing the thermal resistance between the roll bond eva and the heat transfer fins, further improving the cooling performance in the refrigerator and heating during defrosting. Is efficiently performed, and defrosting can be performed in a shorter time. In addition, the cooler can be downsized.

【0010】請求項3記載の発明は、庫内ファンで庫内
空気を強制対流させるとともに該庫内空気の流路中に冷
凍サイクルにおける蒸発器で構成される冷却器を配置し
て熱交換する冷蔵庫において、前記蒸発器部分を構成す
る蛇行させた蒸発パイプを庫内壁面に設置し、平行配列
された複数の方形状平板を主体に構成され前記庫内空気
の流れの下流側の表面積を上流側の表面積よりも大きく
とった伝熱フィンを基板上に取り付け、該基板を前記蒸
発パイプに接触固定することにより前記冷却器を構成し
てなることを要旨とする。
According to the third aspect of the invention, the in-compartment fan is forced to convection the in-compartment air, and a cooler composed of an evaporator in the refrigeration cycle is arranged in the flow path of the in-compartment air for heat exchange. In the refrigerator, a meandering evaporation pipe that constitutes the evaporator portion is installed on the inner wall surface of the refrigerator, and a plurality of rectangular flat plates arranged in parallel are mainly configured to upstream the surface area on the downstream side of the air flow in the refrigerator. The gist is that the cooling device is configured by mounting a heat transfer fin having a surface area larger than that of the side on the substrate and fixing the substrate in contact with the evaporation pipe.

【0011】この構成により、上記請求項1記載の発明
の作用に加えてさらに、蒸発器部分の構成容易性が得ら
れる。
With this construction, in addition to the operation of the invention described in claim 1, the ease of construction of the evaporator portion can be obtained.

【0012】請求項4記載の発明は、上記請求項1,2
又は3記載の冷蔵庫において、前記平行配列された複数
の方形状平板を主体に構成され前記庫内空気の流れの下
流側の表面積を上流側の表面積よりも大きくとった伝熱
フィンに代えて、平行配列されかつ前記庫内空気の流れ
の下流側部分にのみそれぞれスリットを入れて切り起こ
しを付けた複数の方形状平板で構成された伝熱フィンと
してなることを要旨とする。
The invention according to claim 4 is the same as claims 1 and 2 above.
Or, in the refrigerator according to 3, in place of the heat transfer fins which are mainly composed of the plurality of rectangular flat plates arranged in parallel and whose surface area on the downstream side of the flow of the air in the refrigerator is larger than the surface area on the upstream side, It is a gist of the present invention to be a heat transfer fin that is formed of a plurality of rectangular flat plates that are arranged in parallel and have slits and cuts and raised only in the downstream side portion of the air flow in the refrigerator.

【0013】この構成により、切り起こしが庫内空気の
流れに対し抵抗となって熱交換性が増し、下流側の表面
積を上流側よりも大きくとった場合と等価的に作用し、
また伝熱フィンは庫内空気の流れの上流側で空気の流路
面積が広くなることから、上記請求項1,2又は3記載
の発明の作用と略同様の作用に加えてさらに、伝熱フィ
ン部分の構成容易性が得られる。
With this construction, the cut-and-raised parts act as a resistance against the flow of air in the refrigerator to increase the heat exchange performance, and operate equivalently to the case where the surface area on the downstream side is larger than that on the upstream side.
Further, since the heat transfer fin has a wide air flow passage area on the upstream side of the flow of the air in the refrigerator, in addition to the operation substantially similar to the operation of the invention according to claim 1, 2, or 3, the heat transfer fin is further increased. Ease of configuration of the fin portion can be obtained.

【0014】請求項5記載の発明は、上記請求項1,
2,3又は4記載の冷蔵庫において、前記伝熱フィンに
除霜用のコードヒータを接触するように配設してなるこ
とを要旨とする。
The invention according to claim 5 is the above-mentioned claim 1,
The gist of the refrigerator described in 2, 3, or 4 is that a cord heater for defrosting is arranged so as to be in contact with the heat transfer fins.

【0015】この構成により、除霜時に直接伝熱フィン
が加熱されて除霜効率を高めることが可能となる。また
除霜は伝熱フィンとの接触面を0℃以上にすればよいの
で、輻射加熱に比べてヒータ温度を低く抑えることがで
きる。したがって省電力が可能になるとともに可燃性冷
媒採用時等にも安全性が確保される。
With this configuration, the heat transfer fins are directly heated during defrosting, and the defrosting efficiency can be improved. Further, since defrosting may be performed by setting the contact surface with the heat transfer fins to 0 ° C. or higher, the heater temperature can be suppressed to be lower than that of radiant heating. Therefore, it is possible to save power and ensure safety even when a flammable refrigerant is used.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1、図2は本発明の第1の実施の形態を
示す図である。なお、図1において、前記図9における
機器及び部位等と同一ないし均等のものは、前記と同一
符号を以って示し重複した説明を省略する。
1 and 2 are diagrams showing a first embodiment of the present invention. In FIG. 1, components that are the same as or equivalent to the devices and parts in FIG. 9 are designated by the same reference numerals as those used above, and a duplicate description will be omitted.

【0018】まず、図1に示すように、本実施の形態の
冷蔵庫は、冷却器20が次のように構成されている。即
ち、蒸発器部分を構成するロールボンドエバ(ロールボ
ンドエバポレータ)21が本体内壁面側に設置されてい
る。ロールボンドエバ21は厚さ5mm程度以下の薄型
に形成され、その一方の面は断熱壁に接し、他方の面は
庫内に向いている。そしてこの庫内側の面に伝熱フィン
25がロールボンドエバ21に接するように取り付けら
れている。内箱36とこの伝熱フィン25の接触部は気
密構造をとっている(万が一冷媒が漏れても庫内にリー
クしない)。図2は、冷却器20の詳細な構成を示して
いる。伝熱フィン25は、庫内空気の流れ方向Aと平行
に配列された複数の方形状平板24を主体に構成され、
その流れ方向Aの下流側に順次流れ方向長さの短い平板
が間隔が密になるような態様で配置されている。このよ
うに流れ方向長さの異なる複数種の平板の配置態様によ
り、伝熱フィン25は、庫内空気の流れの下流側の表面
積が上流側の表面積よりも順次大きくなるように構成さ
れている。そして、このような複数の平板が基板23上
に取り付けられ、その基板23がロールボンドエバ21
に接触固定されている。
First, as shown in FIG. 1, in the refrigerator according to the present embodiment, the cooler 20 is constructed as follows. That is, the roll bond evaporator (roll bond evaporator) 21 forming the evaporator portion is installed on the inner wall surface side of the main body. The roll bond eva 21 is formed to be thin with a thickness of about 5 mm or less, one surface of which is in contact with the heat insulating wall, and the other surface of which is facing the inside of the refrigerator. The heat transfer fins 25 are attached to the inner surface of the refrigerator so as to contact the roll bond eva 21. The contact portion between the inner box 36 and the heat transfer fin 25 has an airtight structure (even if refrigerant leaks, it does not leak into the refrigerator). FIG. 2 shows a detailed configuration of the cooler 20. The heat transfer fins 25 are mainly composed of a plurality of rectangular flat plates 24 arranged in parallel with the flow direction A of the internal air.
On the downstream side of the flow direction A, flat plates having shorter lengths in the flow direction are sequentially arranged in such a manner that the intervals are close. Due to the arrangement mode of a plurality of types of flat plates having different lengths in the flow direction in this manner, the heat transfer fins 25 are configured such that the surface area on the downstream side of the flow of air in the cold storage is sequentially larger than the surface area on the upstream side. . Then, a plurality of such flat plates are mounted on the substrate 23, and the substrate 23 is rolled by the roll bond eva 21.
Is fixed in contact with.

【0019】次に本実施の形態の作用を説明する。上述
のように、冷却器20は、ロールボンドエバ21上に伝
熱フィン25を設置することで伝熱面積が増加し、ファ
ンクール式冷蔵庫における必要な庫内冷却性能が確保さ
れる。伝熱フィン25が方形状平板24を主体として構
成され、かつ上流側で空気の流路面積が広く、さらに伝
熱部には従来例のようにパイプ等の障害物が無いことか
ら、冷蔵室2等からの湿度の高い空気が伝熱フィン25
の上流側から流入して着霜傾向が生じても、着霜による
冷却器20の目詰まりの発生が改善され、冷却性能の劣
化が抑えられる。また後述するコードヒータの稼動によ
る除霜モードに入っても、除霜が容易かつ短時間に行わ
れる。したがって庫内の食品の保存性を向上させること
が可能となり、また除霜時のロールボンドエバ21の温
度上昇が抑えられ、冷凍サイクル内の圧力の上昇が低く
抑えられることで除霜終了後のコンプレッサ11の起動
条件が改善され、コンプレッサ電動機の効率改善が可能
となる。
Next, the operation of the present embodiment will be described. As described above, in the cooler 20, the heat transfer area is increased by installing the heat transfer fins 25 on the roll bond eva 21, and the necessary cooling performance inside the fan-cool type refrigerator is ensured. Since the heat transfer fins 25 are mainly composed of the rectangular flat plate 24, the air passage area is wide on the upstream side, and the heat transfer section has no obstacles such as pipes unlike the conventional example, the refrigerating room Highly humid air from 2nd etc. heat transfer fin 25
Even if the frost tends to flow from the upstream side, the occurrence of clogging of the cooler 20 due to frost is improved and deterioration of the cooling performance is suppressed. Further, even if the defrosting mode is entered by the operation of the code heater, which will be described later, the defrosting can be performed easily and in a short time. Therefore, it becomes possible to improve the storability of the food in the refrigerator, the temperature rise of the roll bond eva 21 at the time of defrosting is suppressed, and the pressure rise in the refrigeration cycle is suppressed to be low, so that The starting condition of the compressor 11 is improved, and the efficiency of the compressor motor can be improved.

【0020】庫内空気の流れの下流側の表面積が上流側
よりも順次大きくなるように構成した伝熱フィンとして
は、図3の第2の実施の形態に示すように、庫内空気の
流れ方向の下流側になるほど順次高さが高くなるように
変化する複数種の平板26で構成した伝熱フィン27
や、図4の第3の実施の形態に示すように、庫内空気の
流れ方向の寸法一杯の矩形平板28のみを等間隔で配置
し、その下流側部分にのみコルゲート板29を矩形平板
28同士の間に組み込んだ構成の伝熱フィン31として
もよい。これらの伝熱フィン27,31を用いた冷却器
によっても、上記第1の実施の形態と略同様の作用、効
果が得られる。
As a heat transfer fin constructed so that the surface area on the downstream side of the flow of the air in the refrigerator becomes larger than that on the upstream side, as shown in the second embodiment of FIG. Heat transfer fin 27 composed of a plurality of types of flat plates 26 whose height gradually increases toward the downstream side in the direction
Alternatively, as shown in the third embodiment of FIG. 4, only the rectangular flat plates 28 having the full size in the flow direction of the internal air are arranged at equal intervals, and the corrugated plate 29 is provided only on the downstream side of the rectangular flat plates 28. The heat transfer fin 31 may be incorporated between the heat transfer fins 31. The cooler using these heat transfer fins 27 and 31 can also obtain substantially the same operation and effect as those of the first embodiment.

【0021】図5には、本発明の第4の実施の形態にお
ける冷却器の構成を示す。本実施の形態では、伝熱フィ
ン31をロールボンドエバ21に直接、接触固定するこ
とにより冷却器を構成している。このような構成によ
り、本実施の形態の冷却器は、ロールボンドエバ21と
伝熱フィン31間の熱抵抗が減少し、庫内冷却性能がさ
らに向上するとともに除霜時の加熱が効率よく行われて
除霜を一層短時間で行うことが可能となる。また冷却器
の小型化が可能となる。なお、図5では、上記第3の実
施の形態の構成の伝熱フィン31が適用されているが、
第1の実施の形態又は第2の実施の形態の構成の伝熱フ
ィンを適用してもよい。
FIG. 5 shows the structure of a cooler according to the fourth embodiment of the present invention. In the present embodiment, the heat transfer fin 31 is directly contacted and fixed to the roll bond eva 21 to form a cooler. With such a configuration, in the cooler of the present embodiment, the thermal resistance between the roll bond eva 21 and the heat transfer fins 31 is reduced, the internal cooling performance is further improved, and the heating during defrosting is performed efficiently. Therefore, defrosting can be performed in a shorter time. In addition, the cooler can be downsized. In addition, in FIG. 5, the heat transfer fin 31 having the configuration of the third embodiment is applied,
You may apply the heat transfer fin of the structure of 1st Embodiment or 2nd Embodiment.

【0022】図6には、本発明の第5の実施の形態にお
ける冷却器の構成を示す。本実施の形態では、ロールボ
ンドエバに代えて蛇行させた蒸発パイプ22を使用し、
伝熱フィン31側の基板23をその蒸発パイプ22に接
触固定することによりパイプオンシート型の冷却器30
を構成したものである。本実施の形態の冷却器30は、
前記第1の実施の形態と略同様の作用、効果に加えてさ
らに、構成容易性が得られる。なお、図6では、前記第
3の実施の形態の構成の伝熱フィン31が適用されてい
るが、第1の実施の形態又は第2の実施の形態の構成の
伝熱フィンを適用してもよい。
FIG. 6 shows the structure of a cooler according to the fifth embodiment of the present invention. In the present embodiment, a meandering evaporation pipe 22 is used instead of the roll bond eva,
By fixing the substrate 23 on the heat transfer fin 31 side to the evaporation pipe 22 by contact, the pipe-on-sheet type cooler 30
It is what constituted. The cooler 30 of the present embodiment is
In addition to the actions and effects substantially similar to those of the first embodiment, ease of configuration can be obtained. In FIG. 6, the heat transfer fin 31 having the configuration of the third embodiment is applied, but the heat transfer fin having the configuration of the first embodiment or the second embodiment is applied. Good.

【0023】図7には、本発明の第6の実施の形態にお
ける冷却器の構成を示す。本実施の形態では、伝熱フィ
ン34が次のように構成されている。即ち、庫内空気の
流れ方向の寸法一杯の矩形平板32を等間隔で配置し、
その各矩形平板32の下流側部分にのみスリットを入れ
て切り起こし33を付けたものである。本実施の形態で
は、このような構成の冷却器によっても、切り起こし3
3が庫内空気の流れに対し抵抗となって熱交換性が増
し、下流側の表面積を上流側よりも大きくとった場合と
等価的に作用し、また伝熱フィン34は庫内空気の流れ
の上流側で空気の流路面積が広くなることから、前記第
1の実施の形態と略同様の作用、効果に加えてさらに、
伝熱フィン34部分の構成容易性が得られる。なお、本
実施の形態の伝熱フィン34は、前記第4の実施の形態
又は第5の実施の形態の伝熱フィンとしても適用するこ
とができる。
FIG. 7 shows the structure of a cooler according to the sixth embodiment of the present invention. In the present embodiment, the heat transfer fins 34 are configured as follows. That is, the rectangular flat plates 32 having the full size in the flow direction of the internal air are arranged at equal intervals,
Only the downstream side portion of each rectangular flat plate 32 is provided with slits and cut-and-raised parts 33. In the present embodiment, even if the cooler having such a configuration is used, the cut-and-raised portion 3
3 acts as a resistance to the flow of air in the cold storage to increase heat exchange performance, and acts equivalently to the case where the surface area on the downstream side is larger than that on the upstream side. Since the flow passage area of air becomes wider on the upstream side of the above, in addition to the action and effect substantially similar to those of the first embodiment,
The heat transfer fins 34 can be easily configured. The heat transfer fin 34 of the present embodiment can also be applied as the heat transfer fin of the fourth embodiment or the fifth embodiment.

【0024】図8には、本発明の第7の実施の形態にお
ける冷却器の構成を示す。本実施の形態では、伝熱フィ
ン31に除霜用のコードヒータ35が接触するように配
設されている。コードヒータ35は伝熱フィン31とロ
ールボンドエバ21との間(同図(a))、又は伝熱フ
ィン31の表面側(同図(b))、又はロールボンドエ
バ21の裏面(図示せず)に配設する。本実施の形態で
は、このようなコードヒータ35の配設態様により、除
霜時に直接伝熱フィン31が加熱されて除霜効率を高め
ることが可能となる。また除霜は伝熱フィン31との接
触面を0℃以上にすればよいので、従来の輻射加熱に比
べてヒータ温度を低く抑えることができる。したがって
省電力が可能になるとともに可燃性冷媒採用時等にも安
全性が確保される。なお、図8では、前記第3の実施の
形態の構成の伝熱フィン31が適用されているが、第
1、第2又は第6の実施の形態の構成の伝熱フィンを適
用してもよい。
FIG. 8 shows the structure of a cooler according to the seventh embodiment of the present invention. In the present embodiment, the heat transfer fin 31 is arranged so that the defrosting code heater 35 is in contact therewith. The code heater 35 is provided between the heat transfer fins 31 and the roll bond eva 21 (FIG. 11A), the front side of the heat transfer fins 31 (FIG. 8B), or the back surface of the roll bond eva 21 (not shown). No)). In the present embodiment, such an arrangement mode of the code heater 35 enables the heat transfer fins 31 to be directly heated at the time of defrosting to enhance the defrosting efficiency. Further, since defrosting may be performed by setting the contact surface with the heat transfer fins 31 to 0 ° C. or higher, the heater temperature can be suppressed lower than that in the conventional radiant heating. Therefore, it is possible to save power and ensure safety even when a flammable refrigerant is used. In FIG. 8, the heat transfer fin 31 having the configuration of the third embodiment is applied, but the heat transfer fin having the configuration of the first, second, or sixth embodiment is also applied. Good.

【0025】[0025]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、ファンクール式の冷蔵庫において、蒸発器
部分を構成するロールボンドエバを本体内壁面側に設置
し、平行配列された複数の方形状平板を主体に構成され
庫内空気の流れの下流側の表面積を上流側の表面積より
も大きくとった伝熱フィンを基板上に取り付け、該基板
を前記ロールボンドエバに接触固定することにより冷却
器を構成したため、伝熱フィンが方形状平板を主体とし
て構成され、かつ上流側で空気の流路面積が広く、さら
に伝熱部にはパイプ等の障害物が無いことから、冷蔵室
等からの湿度の高い空気が伝熱フィンの上流側から流入
して着霜傾向が生じても、着霜による冷却器の目詰まり
の発生が改善されて冷却性能の劣化を抑えることができ
る。また適宜の加熱の実行による除霜モードに入って
も、除霜を容易かつ短時間に行うことができる。したが
って庫内の食品の保存性を向上させることができ、また
除霜時のロールボンドエバの温度上昇が抑えられて冷凍
サイクル内の圧力の上昇が低く抑えられることから除霜
終了後のコンプレッサの起動条件が改善され、コンプレ
ッサ電動機の効率を改善することができる。
As described above, according to the first aspect of the invention, in the fan-cool type refrigerator, the roll bond eva forming the evaporator portion is installed on the inner wall surface side of the main body and arranged in parallel. A heat transfer fin, which is composed mainly of a plurality of rectangular flat plates and has a downstream surface area larger than the upstream surface area of the air flow in the refrigerator, is mounted on the substrate, and the substrate is fixed in contact with the roll bond eva. Since the cooler is configured by this, the heat transfer fins are mainly composed of a rectangular flat plate, the air passage area is wide on the upstream side, and there are no obstacles such as pipes in the heat transfer part, so refrigeration Even if high-humidity air from a room or the like flows in from the upstream side of the heat transfer fins and a frosting tendency occurs, clogging of the cooler due to frosting is improved and deterioration of cooling performance can be suppressed. . Further, even when the defrosting mode is entered by executing appropriate heating, defrosting can be performed easily and in a short time. Therefore, it is possible to improve the storability of food in the refrigerator, and to suppress the rise in temperature of the roll bond evaporator during defrosting and to suppress the rise in pressure in the refrigeration cycle to a low level. The starting conditions are improved and the efficiency of the compressor motor can be improved.

【0026】請求項2記載の発明によれば、ファンクー
ル式の冷蔵庫において、蒸発器部分を構成するロールボ
ンドエバを本体内壁面側に設置し、平行配列された複数
の方形状平板を主体に構成され庫内空気の流れの下流側
の表面積を上流側の表面積よりも大きくとった伝熱フィ
ンを前記ロールボンドエバに接触固定することにより冷
却器を構成したため、ロールボンドエバに伝熱フィンを
直接接触固定することでロールボンドエバと伝熱フィン
間の熱抵抗が減少し、庫内冷却性能をさらに向上させる
ことができるとともに除霜時の加熱が効率よく行われて
除霜を一層短時間で行うことができる。また冷却器の小
型化が可能となる。
According to the second aspect of the present invention, in the fan-cool type refrigerator, the roll bond eva forming the evaporator portion is installed on the inner wall surface side of the main body, and the plurality of parallel rectangular flat plates are mainly used. Since the cooler is configured by contacting and fixing the heat transfer fin having the surface area on the downstream side of the internal air flow larger than the surface area on the upstream side to the roll bond eva, the heat transfer fin is provided on the roll bond eva. Direct contact fixing reduces the thermal resistance between the roll bond eva and the heat transfer fins, which can further improve the cooling performance inside the chamber, and the heating during defrosting is performed efficiently, resulting in a shorter defrosting time. Can be done at. In addition, the cooler can be downsized.

【0027】請求項3記載の発明によれば、ファンクー
ル式の冷蔵庫において、蒸発器部分を構成する蛇行させ
た蒸発パイプを庫内壁面に設置し、平行配列された複数
の方形状平板を主体に構成され庫内空気の流れの下流側
の表面積を上流側の表面積よりも大きくとった伝熱フィ
ンを基板上に取り付け、該基板を前記蒸発パイプに接触
固定することにより冷却器を構成したため、上記請求項
1記載の発明の効果に加えてさらに、蒸発器部分の構成
容易性が得られる。
According to the third aspect of the present invention, in the fan-cool type refrigerator, the meandering evaporation pipe forming the evaporator portion is installed on the inner wall surface of the refrigerator, and a plurality of rectangular flat plates arranged in parallel are mainly formed. A heat transfer fin having a surface area on the downstream side of the internal air flow larger than the surface area on the upstream side is mounted on the substrate, and the cooler is configured by contact-fixing the substrate to the evaporation pipe. In addition to the effect of the invention described in claim 1, ease of configuration of the evaporator portion can be obtained.

【0028】請求項4記載の発明によれば、前記平行配
列された複数の方形状平板を主体に構成され前記庫内空
気の流れの下流側の表面積を上流側の表面積よりも大き
くとった伝熱フィンに代えて、平行配列されかつ前記庫
内空気の流れの下流側部分にのみそれぞれスリットを入
れて切り起こしを付けた複数の方形状平板で構成された
伝熱フィンとしたため、切り起こしが庫内空気の流れに
対し抵抗となって熱交換性が増し、下流側の表面積を上
流側よりも大きくとった場合と等価的に機能し、また伝
熱フィンは庫内空気の流れの上流側で空気の流路面積が
広くなることから、上記請求項1,2又は3記載の発明
の効果と略同様の効果に加えてさらに、伝熱フィン部分
の構成容易性が得られる。
According to the fourth aspect of the present invention, the transmission is such that the plurality of rectangular flat plates arranged in parallel are mainly formed and the surface area on the downstream side of the air flow in the refrigerator is larger than the surface area on the upstream side. Instead of the heat fins, the heat transfer fins are arranged in parallel and are formed by a plurality of rectangular flat plates each having slits and cuts and raised only on the downstream side portion of the air flow in the refrigerator, so It becomes a resistance against the flow of air in the cold storage, increasing the heat exchange performance, and functions equivalently to the case where the surface area on the downstream side is larger than that on the upstream side.The heat transfer fins are located on the upstream side of the flow of air in the cold storage. Since the flow passage area of the air is widened, the heat transfer fin portion can be easily configured in addition to the effect substantially similar to the effect of the invention described in claim 1, 2, or 3.

【0029】請求項5記載の発明によれば、前記伝熱フ
ィンに除霜用のコードヒータを接触するように配設した
ため、除霜時に直接伝熱フィンが加熱されて除霜効率を
高めることができる。また除霜は伝熱フィンとの接触面
を0℃以上にすればよいので、輻射加熱に比べてヒータ
温度を低く抑えることができる。したがって省電力が可
能になるとともに可燃性冷媒採用時等にも安全性を確保
することができる。
According to the fifth aspect of the present invention, since the defrosting code heater is arranged so as to be in contact with the heat transfer fin, the heat transfer fin is directly heated during defrosting to enhance the defrosting efficiency. You can Further, since defrosting may be performed by setting the contact surface with the heat transfer fins to 0 ° C. or higher, the heater temperature can be suppressed to be lower than that of radiant heating. Therefore, power can be saved and safety can be ensured even when a flammable refrigerant is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷蔵庫の第1の実施の形態の内部
構成を示す断面図である。
FIG. 1 is a sectional view showing an internal configuration of a refrigerator according to a first embodiment of the present invention.

【図2】上記第1の実施の形態における冷却器の構成を
示す分解斜視図である。
FIG. 2 is an exploded perspective view showing a configuration of a cooler according to the first embodiment.

【図3】本発明の第2の実施の形態における冷却器の構
成を示す分解斜視図である。
FIG. 3 is an exploded perspective view showing a configuration of a cooler according to a second embodiment of the present invention.

【図4】本発明の第3の実施の形態における冷却器の構
成を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing a configuration of a cooler according to a third embodiment of the present invention.

【図5】本発明の第4の実施の形態における冷却器の構
成を示す分解斜視図である。
FIG. 5 is an exploded perspective view showing a configuration of a cooler according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施の形態における冷却器の構
成を示す分解斜視図である。
FIG. 6 is an exploded perspective view showing a configuration of a cooler according to a fifth embodiment of the present invention.

【図7】本発明の第6の実施の形態における冷却器の構
成を示す分解斜視図である。
FIG. 7 is an exploded perspective view showing a configuration of a cooler according to a sixth embodiment of the present invention.

【図8】本発明の第7の実施の形態における冷却器の構
成を示す分解斜視図である。
FIG. 8 is an exploded perspective view showing a configuration of a cooler according to a seventh embodiment of the present invention.

【図9】従来の冷蔵庫の内部構成を示す断面図である。FIG. 9 is a cross-sectional view showing an internal configuration of a conventional refrigerator.

【符号の説明】[Explanation of symbols]

13 庫内ファン 20,30 冷却器 21 ロールボンドエバ 22 蛇行させた蒸発パイプ 23 基板 24,28,32 方形状平板 25,27,31,34 伝熱フィン 33 切り起こし 35 コードヒータ 13 In-compartment fan 20,30 Cooler 21 Roll bond eva 22 Meandering evaporation pipe 23 Substrate 24,28,32 Rectangular flat plate 25,27,31,34 Heat transfer fin 33 Cut-and-raised 35 Code heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 哲夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 野口 明裕 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Sano 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa, Ltd. Inside the Toshiba Housing and Space Systems Research Institute (72) Inventor, Akihiro Noguchi 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Banchi Co., Ltd. Toshiba Living Space Systems Engineering Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 庫内ファンで庫内空気を強制対流させる
とともに該庫内空気の流路中に冷凍サイクルにおける蒸
発器で構成される冷却器を配置して熱交換する冷蔵庫に
おいて、前記蒸発器部分を構成するロールボンドエバを
本体内壁面側に設置し、平行配列された複数の方形状平
板を主体に構成され前記庫内空気の流れの下流側の表面
積を上流側の表面積よりも大きくとった伝熱フィンを基
板上に取り付け、該基板を前記ロールボンドエバに接触
固定することにより前記冷却器を構成してなることを特
徴とする冷蔵庫。
1. A refrigerator in which an internal fan is forced to convection the internal air and a cooler composed of an evaporator in a refrigeration cycle is arranged in a flow path of the internal air to exchange heat with the evaporator. The roll bond eva, which constitutes a part, is installed on the inner wall surface side of the main body, and is composed mainly of a plurality of rectangular flat plates arranged in parallel. A refrigerator comprising the heat transfer fin mounted on a substrate, and the substrate being brought into contact with and fixed to the roll bond eva to constitute the cooler.
【請求項2】 庫内ファンで庫内空気を強制対流させる
とともに該庫内空気の流路中に冷凍サイクルにおける蒸
発器で構成される冷却器を配置して熱交換する冷蔵庫に
おいて、前記蒸発器部分を構成するロールボンドエバを
本体内壁面側に設置し、平行配列された複数の方形状平
板を主体に構成され前記庫内空気の流れの下流側の表面
積を上流側の表面積よりも大きくとった伝熱フィンを前
記ロールボンドエバに接触固定することにより前記冷却
器を構成してなることを特徴とする冷蔵庫。
2. A refrigerator in which forced air convection is performed by an internal fan and a cooler configured by an evaporator in a refrigerating cycle is arranged in a flow path of the internal air to exchange heat with the evaporator. The roll bond eva, which constitutes a part, is installed on the inner wall surface side of the main body, and is composed mainly of a plurality of rectangular flat plates arranged in parallel. A refrigerator characterized in that the cooling device is constituted by fixing the heat transfer fin in contact with the roll bond eva.
【請求項3】 庫内ファンで庫内空気を強制対流させる
とともに該庫内空気の流路中に冷凍サイクルにおける蒸
発器で構成される冷却器を配置して熱交換する冷蔵庫に
おいて、前記蒸発器部分を構成する蛇行させた蒸発パイ
プを庫内壁面に設置し、平行配列された複数の方形状平
板を主体に構成され前記庫内空気の流れの下流側の表面
積を上流側の表面積よりも大きくとった伝熱フィンを基
板上に取り付け、該基板を前記蒸発パイプに接触固定す
ることにより前記冷却器を構成してなることを特徴とす
る冷蔵庫。
3. A refrigerator in which an internal fan is forced to convection the internal air and a cooler constituted by an evaporator in a refrigerating cycle is arranged in a flow path of the internal air to exchange heat with the evaporator. A meandering evaporation pipe that constitutes a part is installed on the inner wall surface of the refrigerator, and is composed mainly of a plurality of rectangular flat plates arranged in parallel. The downstream surface area of the internal air flow is larger than the upstream surface area. A refrigerator characterized in that the heat exchanger fins are mounted on a substrate, and the substrate is brought into contact with and fixed to the evaporation pipe to constitute the cooler.
【請求項4】 前記平行配列された複数の方形状平板を
主体に構成され前記庫内空気の流れの下流側の表面積を
上流側の表面積よりも大きくとった伝熱フィンに代え
て、平行配列され前記庫内空気の流れの下流側部分にの
みそれぞれスリットを入れて切り起こしを付けた複数の
方形状平板で構成された伝熱フィンとしてなることを特
徴とする請求項1,2又は3記載の冷蔵庫。
4. A parallel array instead of a heat transfer fin which is mainly composed of the plurality of parallel-arranged rectangular flat plates and has a downstream surface area of the internal air flow larger than an upstream surface area thereof. The heat transfer fin is constituted by a plurality of rectangular flat plates each having slits and cut and raised parts only on the downstream side of the flow of the air in the refrigerator. Refrigerator.
【請求項5】 前記伝熱フィンに除霜用のコードヒータ
を接触するように配設してなることを特徴とする請求項
1,2,3又は4記載の冷蔵庫。
5. The refrigerator according to claim 1, wherein a cord heater for defrosting is arranged in contact with the heat transfer fins.
JP7313013A 1995-11-30 1995-11-30 Refrigerator Pending JPH09152229A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7313013A JPH09152229A (en) 1995-11-30 1995-11-30 Refrigerator
TW085110027A TW301706B (en) 1995-11-30 1996-08-16 Fridge-freezer
CN96112817A CN1094584C (en) 1995-11-30 1996-09-04 Refrigerator
KR1019960039202A KR970028282A (en) 1995-11-30 1996-09-06 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7313013A JPH09152229A (en) 1995-11-30 1995-11-30 Refrigerator

Publications (1)

Publication Number Publication Date
JPH09152229A true JPH09152229A (en) 1997-06-10

Family

ID=18036184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7313013A Pending JPH09152229A (en) 1995-11-30 1995-11-30 Refrigerator

Country Status (4)

Country Link
JP (1) JPH09152229A (en)
KR (1) KR970028282A (en)
CN (1) CN1094584C (en)
TW (1) TW301706B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164231A (en) * 2003-12-01 2005-06-23 Dometic Sweden Ab Heat exchanger device
KR100590491B1 (en) * 2004-07-24 2006-06-19 엘지전자 주식회사 A pin-pipe type evaporator for refrigerator
EP2504639A2 (en) * 2009-11-23 2012-10-03 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration appliance having a roll bond unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201363967Y (en) * 2009-01-07 2009-12-16 倪军 Heat exchanger used for refrigeration equipment
CN102287998A (en) * 2011-05-25 2011-12-21 合肥美的荣事达电冰箱有限公司 Refrigerator
CN102538336B (en) * 2012-02-13 2014-12-17 合肥美的电冰箱有限公司 Refrigerator
CN105546883A (en) * 2015-12-21 2016-05-04 苏州市东华试验仪器有限公司 Evaporator flow passing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2055919U (en) * 1988-05-12 1990-04-11 三星电子株式会社 Refrigerating chamber evaporator assembly construction of direct cooling refrigerator
US5398752A (en) * 1993-08-19 1995-03-21 Abbott; Roy W. Strip fin and tube heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164231A (en) * 2003-12-01 2005-06-23 Dometic Sweden Ab Heat exchanger device
KR100590491B1 (en) * 2004-07-24 2006-06-19 엘지전자 주식회사 A pin-pipe type evaporator for refrigerator
EP2504639A2 (en) * 2009-11-23 2012-10-03 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration appliance having a roll bond unit

Also Published As

Publication number Publication date
CN1155646A (en) 1997-07-30
KR970028282A (en) 1997-06-24
TW301706B (en) 1997-04-01
CN1094584C (en) 2002-11-20

Similar Documents

Publication Publication Date Title
CN102187158B (en) Air conditioner
JP6089222B2 (en) refrigerator
US7065982B2 (en) Evaporator for refrigeration systems
CN112984918A (en) Refrigerator with refrigeration module beneficial to defrosting and draining structure
KR20030004899A (en) Refrigerator with condenser and backcover in one
JP2002267331A (en) Refrigerator
WO2015029409A1 (en) Refrigerator
JPH09152229A (en) Refrigerator
WO2020166308A1 (en) Defrosting device and refrigerator equipped with same
JP3003820B2 (en) Freezer refrigerator
JP2000337751A (en) Cooler, manufacture thereof, freezer/refrigerator and refrigerator
CN102345957B (en) Freezing and refrigerating chamber
JP2003075087A (en) Refrigerator
JP2003314946A (en) Refrigerator
JPH11264632A (en) Heat exchanger and manufacture thereof
CN112113381A (en) Refrigerator with special-shaped evaporator
CN215983451U (en) Evaporator assembly and refrigerator
KR19990001304A (en) Evaporator for Refrigerator
JPS5920617Y2 (en) refrigerator
JP2003121085A (en) Heat exchanger, heat exchange unit, and cooling storage
KR100298390B1 (en) Device for spacing evaporator of refrigerator
JP3152175B2 (en) Refrigeration container
JPS6153637B2 (en)
JP3266232B2 (en) refrigerator
KR0115209Y1 (en) Direct cooling type refrigerator