JP2000180082A - Cold storage heat exchanger - Google Patents

Cold storage heat exchanger

Info

Publication number
JP2000180082A
JP2000180082A JP10357946A JP35794698A JP2000180082A JP 2000180082 A JP2000180082 A JP 2000180082A JP 10357946 A JP10357946 A JP 10357946A JP 35794698 A JP35794698 A JP 35794698A JP 2000180082 A JP2000180082 A JP 2000180082A
Authority
JP
Japan
Prior art keywords
regenerative
heat exchanger
cold storage
exchange plate
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10357946A
Other languages
Japanese (ja)
Inventor
Katsunobu Hosoya
勝宣 細谷
Akira Kano
陽 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP10357946A priority Critical patent/JP2000180082A/en
Publication of JP2000180082A publication Critical patent/JP2000180082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To provide a cold storage heat exchanger excellent in cold radiation efficiency. SOLUTION: One or more tube member 1a-1d, a heat exchanging plate 2, and a cold storage member 6 containing a cold storage material in a bag member 5 are stacked sequentially while directing the longitudinal direction of the tube member in parallel with the plane direction of the heat exchanging plate thus constituting a cold storage heat exchanger 10. The heat exchanging plate is provided at at least one position in the heat exchanging plate, on the side facing the tube member or on the side facing the cold storage member with a channel 3 formed such that the air flows along the plane direction of the heat exchanging plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄冷材を備えた蓄
冷式熱交換器に関する。
The present invention relates to a regenerative heat exchanger provided with a regenerative material.

【0002】[0002]

【従来の技術】近年、電力需要ピークを抑制するため、
昼間と夜間の電力料金に格差を設けた電力料金制度が実
施されている。そのため、夜間の安価な電力を有効利用
して昼間の被冷却空間(例えば、冷凍庫内や冷蔵庫内)
を冷却する蓄冷冷却システムが一般に広く利用されてい
る。蓄冷冷却システムは、一般に冷凍機と、蓄冷式熱交
換器とで構成されている。冷凍機は、圧縮機、凝縮器
等、膨張弁及び蒸発器を順次冷媒配管によって接続して
構成されている。蓄冷式熱交換器は、一般に蓄冷材と冷
凍機に接続された管路とで構成されている。
2. Description of the Related Art In recent years, in order to suppress power demand peaks,
There is a power rate system in which daytime and nighttime power rates differ. Therefore, it is possible to effectively use inexpensive power at night to cool the space to be cooled in the daytime (for example, in a freezer or refrigerator).
A regenerative cooling system that cools air is generally widely used. The regenerative cooling system generally includes a refrigerator and a regenerative heat exchanger. The refrigerator is configured by connecting an expansion valve, an evaporator, and the like, such as a compressor and a condenser, in order by refrigerant piping. A regenerative heat exchanger generally includes a regenerative material and a pipeline connected to a refrigerator.

【0003】蓄冷冷却システムでは、冷凍機のみを使用
して行われる通常運転に加えて蓄冷運転および放冷運転
が行われる。蓄冷運転とは、電力料金の割安な夜間にお
いて、蓄冷式熱交換器を構成する管路に冷凍機から冷却
された冷媒を流し、蓄冷式熱交換器に備えられた蓄冷材
を冷却・凝固して、蓄冷材に冷熱を蓄えさせる運転をい
う。放冷運転とは、電力料金が割高な昼間において、送
風機などで蓄冷式熱交換器に空気を送り、この空気と蓄
冷材との間で熱交換を行わせて蓄えられた冷熱を取り出
し、この冷熱を利用して例えば冷凍庫などの被冷却空間
内を冷却する運転をいう。
In the regenerative cooling system, a regenerative operation and a cooling operation are performed in addition to a normal operation performed using only a refrigerator. Cold storage operation means that during the night when the electricity charge is cheaper, the refrigerant cooled from the refrigerator flows through the pipeline constituting the cold storage heat exchanger, and cools and solidifies the cold storage material provided in the cold storage heat exchanger. Means to store cold heat in the cold storage material. Cooling operation means that during the daytime when the electricity charge is expensive, air is sent to the regenerative heat exchanger with a blower or the like, and heat is exchanged between the air and the regenerator material to take out the stored cold heat. This refers to an operation of cooling the inside of a cooled space such as a freezer using cold heat.

【0004】ところで、蓄冷冷却システムの性能は蓄冷
式熱交換器に負うところが大きいため、従来より種々の
蓄冷式熱交換器が提案されている。図4は従来の蓄冷式
熱交換器の例を示す図であり、一部分のみを示してい
る。図4の例に示すように、蓄冷式熱交換器40は管路
41と蓄冷部材44とで構成されている。管路41は複
数の管部材42をU字形の連結管43で連結して構成さ
れている。複数の管部材42は水平方向及び鉛直方向に
列をなすように配置されている。蓄冷部材44は包袋部
材に蓄冷材を収容して構成されている。蓄冷部材44
は、水平方向の列を構成する管部材42の上に載置され
ており、管部材42に直接接触している。45は送風機
であり、蓄冷材に蓄えられた冷熱を被冷却空間(図示せ
ず)へと送っている。この蓄冷式熱交換器には、蓄冷部
材44が管路41と直接接触しているため、冷却効率に
優れているという特徴がある。
[0004] Since the performance of the regenerative cooling system is largely dependent on the regenerative heat exchanger, various regenerative heat exchangers have been proposed. FIG. 4 is a diagram showing an example of a conventional regenerative heat exchanger, showing only a part. As shown in the example of FIG. 4, the regenerative heat exchanger 40 includes a pipe 41 and a regenerative member 44. The pipe 41 is formed by connecting a plurality of pipe members 42 with a U-shaped connecting pipe 43. The plurality of pipe members 42 are arranged in rows in the horizontal direction and the vertical direction. The cold storage member 44 is configured by storing a cold storage material in a wrapping member. Cold storage member 44
Are placed on the pipe members 42 forming a horizontal row, and are in direct contact with the pipe members 42. Reference numeral 45 denotes a blower, which sends cold heat stored in the cold storage material to a space to be cooled (not shown). This regenerative heat exchanger is characterized in that the regenerative member 44 is in direct contact with the pipe 41, so that it has excellent cooling efficiency.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図4に
示した蓄冷式熱交換器においては、蓄冷部材44と蓄冷
部材44との間に管路41が配置されているため、送風
機から送風される空気の流路を確保するのが難しく、放
冷効率が低いという問題がある。また、放冷効率の向上
は蓄冷冷却システムの電力消費量の低減のためにも蓄冷
式熱交換器にとって重要な課題である。
However, in the regenerative heat exchanger shown in FIG. 4, since the pipeline 41 is disposed between the regenerative members 44, the air is blown from the blower. There is a problem that it is difficult to secure the air flow path and the cooling efficiency is low. Further, improvement of the cooling efficiency is an important issue for the regenerative heat exchanger in order to reduce the power consumption of the regenerative cooling system.

【0006】本発明の課題は、上記問題を解決し、放冷
効率に優れた蓄冷式熱交換器を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a regenerative heat exchanger excellent in cooling efficiency.

【0007】[0007]

【課題を解決するための手段】本発明の蓄冷式熱交換器
は、次の特徴を有するものである。 (1) 一以上の管部材と、熱交換板と、包袋部材に蓄
冷材を収容してなる蓄冷部材とを、前記管部材の長手方
向を前記熱交換板の面方向に平行にして重ねてなる構造
を少なくとも有し、熱交換板は、熱交換板の内部、管部
材に面する側、蓄冷部材に面する側のうち、少なくとも
一つの部位に、熱交換板の面方向に沿って空気が流れる
ように形成された流路を有するものであることを特徴と
する蓄冷式熱交換器。
The regenerative heat exchanger of the present invention has the following features. (1) One or more pipe members, a heat exchange plate, and a cold storage member formed by storing a cold storage material in a wrapper member with the longitudinal direction of the pipe member parallel to the surface direction of the heat exchange plate. At least one of the inside of the heat exchange plate, the side facing the pipe member, and the side facing the cold storage member, along the surface direction of the heat exchange plate A regenerative heat exchanger having a flow path formed so that air flows.

【0008】(2) 上記熱交換板が波状の形態を有す
る波形板であって、波状部分と波状部分との間が上記流
路となっている上記(1)記載の蓄冷式熱交換器。
(2) The regenerative heat exchanger according to (1), wherein the heat exchange plate is a corrugated plate having a wavy shape, and the flow path is provided between the wavy portions.

【0009】(3) 上記熱交換板が、その面方向に沿
って延びる複数の凸部を互いに平行に配列してなる形態
を有し、隣合う凸部と凸部との間が上記流路となってい
る上記(1)記載の蓄冷式熱交換器。
(3) The heat exchange plate has a configuration in which a plurality of protrusions extending along the surface direction are arranged in parallel with each other, and the flow path is provided between adjacent protrusions. The regenerative heat exchanger according to the above (1).

【0010】(4) 一以上の管部材、熱交換板および
蓄冷部材が順に重ねられている上記(1)記載の蓄冷式
熱交換器。
(4) The regenerative heat exchanger according to (1), wherein one or more pipe members, a heat exchange plate, and a regenerative member are sequentially stacked.

【0011】(5) 上記蓄冷部材の上記熱交換板と面
する側の反対側にさらに複数の管部材が配置されている
上記(4)記載の蓄冷式熱交換器。
(5) The regenerative heat exchanger according to (4), wherein a plurality of pipe members are further arranged on a side of the regenerative member opposite the side facing the heat exchange plate.

【0012】(6) 上記蓄冷部材の上記熱交換板と面
する側の反対側に、さらに上記熱交換板と上記蓄冷部材
とが順に重ね合わされている上記(4)記載の蓄冷式熱
交換器。
(6) The regenerative heat exchanger according to (4), wherein the heat exchange plate and the regenerative member are further superposed in order on the opposite side of the regenerative member facing the heat exchange plate. .

【0013】(7) 複数の管部材の内の一部が蓄冷部
材を冷却するための冷却用管路を形成し、該一部以外の
管部材が冷却された蓄冷部材と熱交換して冷熱を取り出
すための放冷用管路を形成している上記(1)記載の蓄
冷式熱交換器。
(7) A part of the plurality of tube members forms a cooling pipe for cooling the regenerative member, and the other tube member exchanges heat with the cooled regenerative member to cool and cool. (1) The regenerative heat exchanger according to the above (1), wherein the heat exchanger is provided with a cooling line for taking out the heat.

【0014】(8) 熱交換板の流路に空気を流し得る
送風手段を有している上記(1)記載の蓄冷式熱交換
器。
(8) The regenerative heat exchanger according to the above (1), further comprising a blowing means for allowing air to flow through the flow path of the heat exchange plate.

【0015】[0015]

【作用】上記に示すように本発明の蓄冷式熱交換器に
は、放冷用の空気を流すための流路が形成された熱交換
板が配置されている。そのため、放冷用の空気の量を十
分に確保でき、放冷用の空気と蓄冷材との間の熱交換率
を高めることができる。即ち、本発明によれば蓄冷式熱
交換器の放冷効率の向上を図ることができる。
As described above, the regenerative heat exchanger of the present invention is provided with a heat exchange plate provided with a flow path for flowing air for cooling. Therefore, a sufficient amount of cooling air can be secured, and the heat exchange rate between the cooling air and the cold storage material can be increased. That is, according to the present invention, it is possible to improve the cooling efficiency of the regenerative heat exchanger.

【0016】[0016]

【発明の実施の形態】以下、本発明を図を用いて詳細に
説明する。図1は本発明の蓄冷式熱交換器の一例を示す
図であり、同図(a)は平面図、同図(b)は側面図で
ある。図1の例に示すように本発明の蓄冷式熱交換器1
0は、一以上の管部材(1a〜1d)と、熱交換板2
と、包袋部材5に蓄冷材(図示ぜず)を収容してなる蓄
冷部材6とを重ねてなる構造を少なくとも有している。
管部材(1a〜1d)の長手方向は熱交換板2の面方向
に平行にされている。熱交換板2は、熱交換板2の内
部、管部材に面する側、蓄冷部材に面する側のうち、少
なくとも一つの部位に、熱交換板2の面方向に沿って空
気が流れるように形成された流路3を有している。な
お、本発明でいう熱交換板2の面方向とは、熱交換板2
の広がり方向をいう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing an example of the regenerative heat exchanger of the present invention, wherein FIG. 1 (a) is a plan view and FIG. 1 (b) is a side view. As shown in the example of FIG. 1, the regenerative heat exchanger 1 of the present invention
0 denotes one or more pipe members (1a to 1d) and the heat exchange plate 2
And a cold storage member 6 containing a cold storage material (not shown) in the wrapping member 5 at least.
The longitudinal direction of the pipe members (1a to 1d) is parallel to the surface direction of the heat exchange plate 2. The heat exchange plate 2 is configured to allow air to flow along the surface direction of the heat exchange plate 2 to at least one of the inside of the heat exchange plate 2, the side facing the pipe member, and the side facing the cold storage member. It has a formed flow path 3. In the present invention, the surface direction of the heat exchange plate 2 is defined as the heat exchange plate 2.
The direction of spread.

【0017】図1の例では、管部材(1a〜1d)、熱
交換板2、蓄冷部材6の順で重ねられており、これらは
互いに接触した態様となっている。なお、本発明でいう
管部材と熱交換器と蓄冷部材とを重ねてなる構造とは、
このような互いに接触した態様に限定されるものではな
い。また、重ねる順序も限定されるものではなく、管部
材、蓄冷部材、熱交換板の順で重ねられた構造や、後述
の図2に示すような管部材、蓄冷部材、熱交換板、蓄冷
部材及び管部材の順で重ねられた構造であっても良い。
In the example of FIG. 1, the tube members (1a to 1d), the heat exchange plate 2, and the cold storage member 6 are stacked in this order, and are in contact with each other. In addition, the structure in which the pipe member, the heat exchanger, and the cold storage member according to the present invention are stacked,
It is not limited to such an aspect in which they are in contact with each other. Also, the order of stacking is not limited, and a structure in which a tube member, a cold storage member, and a heat exchange plate are stacked in this order, or a tube member, a cold storage member, a heat exchange plate, and a cold storage member as shown in FIG. And a pipe member may be stacked in this order.

【0018】また、図1の例では、熱交換板2は波状の
形態を有する波形板であり、蓄冷部材6と接触する波状
部分4aと4aとの間、および管部材(1a〜1d)と
接触する波状部分4bと4bとの間が流路3となってい
る。送風手段(図示せず)によって送られる空気は矢印
に示すように流れ、蓄冷部材6に蓄えられた冷熱は効率
良く被冷却空間へと送られる。
In the example shown in FIG. 1, the heat exchange plate 2 is a corrugated plate having a corrugated form, and is provided between the corrugated portions 4a and 4a in contact with the cold storage member 6 and between the pipe members (1a to 1d). The flow path 3 is formed between the corrugated portions 4b and 4b in contact with each other. The air sent by the blowing means (not shown) flows as shown by the arrows, and the cold stored in the cold storage member 6 is efficiently sent to the space to be cooled.

【0019】波状部分(4a、4b)の断面は矩形を呈
しており、波状部分(4a、4b)は平面状に形成され
た頂部で蓄冷部材6及び管部材(1a〜1d)に接触し
ている。波状部分(4a、4b)の形状(即ち、波形)
は、本発明において特に限定されるものではなく、必要
な空気を送る流路3が形成され得る形状であれば良い。
例えばサインカーブやコサインカーブを描く形状、半円
形状などが挙げられる。波状部分のピッチの設定におい
ては、狭すぎると着霜により流路3が塞がれてしまう
点、および広すぎると熱交換率が低下する点を考慮する
必要がある。また、各波状部分は、それぞれ別の形状や
大きさ(高さを除く)であっても良い。
The cross section of the wavy portion (4a, 4b) has a rectangular shape, and the wavy portion (4a, 4b) comes into contact with the cold storage member 6 and the pipe members (1a to 1d) at the top formed flat. I have. The shape (ie, waveform) of the wavy portion (4a, 4b)
Is not particularly limited in the present invention, and may be any shape as long as the flow path 3 for sending necessary air can be formed.
For example, a shape that draws a sine curve or a cosine curve, a semicircular shape, and the like can be given. In setting the pitch of the wavy portion, it is necessary to consider that the flow path 3 is blocked by frost if it is too narrow, and that the heat exchange rate decreases if it is too wide. Further, each wavy portion may have a different shape and size (excluding height).

【0020】蓄冷式熱交換器10のように蓄冷部材6が
熱交換板2を介して冷却される態様においては、熱交換
板2の形状は(波状部分の形状やそのピッチなど)は、
熱交換板2の蓄冷部材6と接触している部分の面積(蓄
冷部材6と接触している波状部分4aの頂部の面積の
和)が、蓄冷部材6の熱交換板2に面する部分の面積の
50%〜100%、好ましくは80%〜100%となる
ように設定するのが良い。この場合、蓄冷時の蓄冷部材
の温度分布の均一化を図ることができ、蓄冷冷却システ
ムの出力変動を抑制することができる。
In a mode in which the cold storage member 6 is cooled via the heat exchange plate 2 as in the cold storage type heat exchanger 10, the shape of the heat exchange plate 2 (shape of the corrugated portion, pitch thereof, etc.)
The area of the portion of the heat exchange plate 2 that is in contact with the cold storage member 6 (the sum of the areas of the tops of the corrugated portions 4a that are in contact with the cold storage member 6) is equal to the area of the portion of the cold storage member 6 that faces the heat exchange plate 2. The area is set to be 50% to 100%, preferably 80% to 100%. In this case, the temperature distribution of the cold storage member during cold storage can be made uniform, and output fluctuations of the cold storage and cooling system can be suppressed.

【0021】波状部分(4a、4b)の高さは、管部材
間のピッチや蓄冷部材6の厚みなどを考慮して適宜決定
すれば良い。具体的には、管部材の内径が6mm〜15
mm、管部材間のピッチが20mm〜30mm、蓄冷部
材の厚みが5mm〜10mmの場合であれば、波状部分
の高さ(図1では波状部分4aの頂部と波状部分4bの
頂部との距離)は5mm〜15mmとするのが良い。
The height of the corrugated portions (4a, 4b) may be appropriately determined in consideration of the pitch between the pipe members, the thickness of the cold storage member 6, and the like. Specifically, the inner diameter of the pipe member is 6 mm to 15 mm.
mm, the pitch between the pipe members is 20 mm to 30 mm, and the thickness of the cold storage member is 5 mm to 10 mm, the height of the wavy portion (the distance between the top of the wavy portion 4a and the top of the wavy portion 4b in FIG. 1). Is preferably 5 mm to 15 mm.

【0022】図1の例では、各管部材(1a〜1d)
は、その長手方向が波状部分の進行方向に平行となるよ
うに設置されている。このように設置した場合において
は、管部材(1a〜1d)を支持するための部材に、送
風手段からの空気が干渉するという事態を回避すること
ができる。
In the example of FIG. 1, each pipe member (1a to 1d)
Is installed such that its longitudinal direction is parallel to the traveling direction of the wavy portion. In the case of such installation, it is possible to avoid a situation in which air from the blowing means interferes with a member for supporting the pipe members (1a to 1d).

【0023】複数の管部材(1a〜1d)のうち管部材
1a及び1cは、蓄冷部材6を冷却するための冷却用管
路を形成している。冷却用管路は、冷凍機を構成する凝
縮器と膨張弁とを結ぶ冷媒配管から分岐し、蒸発器と圧
縮機とを結ぶ冷媒配管に合流する。従って、管部材1a
及び1cには冷却された冷媒が流され、蓄冷部材を冷却
・凝固(蓄冷)する。なお、冷凍機、凝縮器、膨張弁、
蒸発器、圧縮機、冷媒配管については図示していない。
The pipe members 1 a and 1 c of the plurality of pipe members (1 a to 1 d) form a cooling pipe for cooling the cold storage member 6. The cooling pipeline branches from a refrigerant pipe that connects the condenser and the expansion valve that constitute the refrigerator, and joins the refrigerant pipe that connects the evaporator and the compressor. Therefore, the pipe member 1a
And 1c, a cooled refrigerant is flown to cool and solidify (cool storage) the cold storage member. In addition, a refrigerator, a condenser, an expansion valve,
The evaporator, compressor and refrigerant piping are not shown.

【0024】管部材1b及び1dは、冷却された蓄冷部
材と熱交換して冷熱を取り出すための放冷用管路を形成
している。放冷用管路は、冷凍機を構成する凝縮器と膨
張弁とを結ぶ冷媒配管から分岐し、膨張弁と蒸発器とを
結ぶ冷媒配管に合流する。従って、管部材1b、1dに
は、蓄冷された蓄冷部材よりも高い温度の冷媒が流さ
れ、冷媒過冷却方式により蓄えられた冷熱が取り出され
る。
The pipe members 1b and 1d form a cooling discharge pipe for taking out cold heat by exchanging heat with the cooled regenerative member. The cooling passage is branched from a refrigerant pipe connecting the condenser constituting the refrigerator and the expansion valve, and joins the refrigerant pipe connecting the expansion valve and the evaporator. Accordingly, the refrigerant having a higher temperature than the cold storage member that has stored cold flows through the pipe members 1b and 1d, and the cold heat stored by the refrigerant supercooling method is extracted.

【0025】さらに、図1の例では、蓄冷部材6の熱交
換板2と面する側の反対側にも、複数の管部材(7a〜
7d)が配置されている。複数の管部材(7a〜7d)
のうち、管部材7a及び7cは管部材1a及び1cと同
様に冷却用管路を形成している。管部材7b及び7dは
管部材1b及び1dと同様に放冷用管路を形成してい
る。
Further, in the example shown in FIG. 1, a plurality of pipe members (7a to 7a) are also provided on the side of the cold storage member 6 opposite to the side facing the heat exchange plate 2.
7d) is arranged. Multiple pipe members (7a to 7d)
Among them, the pipe members 7a and 7c form a cooling pipe like the pipe members 1a and 1c. The pipe members 7b and 7d form a cooling passage like the pipe members 1b and 1d.

【0026】このように図1に示す蓄冷式熱交換器10
では、蓄冷部材を冷却・凝固して蓄えられた冷熱は、送
風機から送られる空気によって被冷却空間へ送られる。
また、蓄えられた冷熱は、放冷用管路を流れる冷媒によ
って冷凍機の蒸発器に運ばれ、蒸発器からも被冷却空間
へ送られる。即ち、蓄冷式熱交換器10を用いた蓄冷冷
却システムにおいては、蒸発器の能力を向上させて被冷
却空間を冷却する冷媒過冷却方式による冷却も行うこと
ができる。冷媒過冷却方式による冷却は、急速冷却能力
に優れており、被冷却物の温度上昇を極力避けたい場合
に効果がある。
As described above, the regenerative heat exchanger 10 shown in FIG.
Then, the cold heat stored by cooling and solidifying the cold storage member is sent to the space to be cooled by the air sent from the blower.
Further, the stored cold heat is carried to the evaporator of the refrigerator by the refrigerant flowing through the cooling passage, and is also sent from the evaporator to the space to be cooled. That is, in the regenerative cooling system using the regenerative heat exchanger 10, it is also possible to perform cooling by a refrigerant supercooling method for cooling the space to be cooled by improving the capacity of the evaporator. Cooling by the refrigerant supercooling method is excellent in rapid cooling capacity, and is effective when it is desired to minimize the temperature rise of the object to be cooled.

【0027】図2は、本発明の蓄冷式熱交換器の他の例
を示す図であり、同図(a)は平面図、同図(b)は側
面図である。図2の例では、蓄冷式熱交換器20は管部
材(1a〜1d)、蓄冷部材6、熱交換板2、蓄冷部材
16、管部材(7a〜7d)を順に重ねてなる構造を有
している。熱交換板2は、その面方向に沿って延びる複
数の凸部8を互いに平行に配列してなる形態を有してい
る。隣合う凸部8と凸部8との間が、熱交換板2の面方
向に沿って空気が流れるように形成された流路3となっ
ている。さらに、凸部8の内部には、一方の端部から他
方の端部までを貫通する貫通孔13が設けられており、
この貫通孔13も流路3と同様の流路となっている。
FIGS. 2A and 2B show another example of the regenerative heat exchanger of the present invention. FIG. 2A is a plan view and FIG. 2B is a side view. In the example of FIG. 2, the regenerative heat exchanger 20 has a structure in which tube members (1a to 1d), a regenerative member 6, a heat exchange plate 2, a regenerative member 16, and a tube member (7a to 7d) are sequentially stacked. ing. The heat exchange plate 2 has a form in which a plurality of convex portions 8 extending along the surface direction are arranged in parallel with each other. The flow path 3 formed so that air flows along the surface direction of the heat exchange plate 2 between the adjacent protrusions 8. Further, a through-hole 13 is provided inside the projection 8 from one end to the other end,
This through-hole 13 is also a channel similar to the channel 3.

【0028】従って、送風機(図示せず)によって送ら
れる空気は矢印に示すように流れ、蓄冷部材6に蓄えら
れた冷熱を効率良く被冷却空間へと送ることができる。
なお図2では、凸部8は、熱交換板2の一端部から対向
する一端部までを結ぶ直線を描く形状を有しているが、
本発明ではこれに限定されるものではなく、曲線を描く
形状であっても良い。
Therefore, the air sent by the blower (not shown) flows as shown by the arrow, and the cold stored in the cold storage member 6 can be efficiently sent to the space to be cooled.
In FIG. 2, the convex portion 8 has a shape that draws a straight line connecting one end of the heat exchange plate 2 to the opposite end.
The present invention is not limited to this, and may have a shape that draws a curve.

【0029】また、図2の例では、凸部8の長手方向に
垂直な断面の形状は矩形を呈している。凸部は平面状に
形成された頂部で蓄冷部材16に接触している。凸部8
の長手方向に垂直な断面の形状は特に限定されるもので
はなく、必要な空気を送る流路3が形成され得る形状で
あれば良い。例えば半円形状、台形状、弓形を直線部分
で矩形に結合させてなる形状などが挙げられる。凸部8
のピッチの設定においては、図1の例と同様、狭すぎる
と着霜により流路3が塞がれてしまう点、および広すぎ
ると熱交換率が低下する点を考慮する必要がある。
Further, in the example of FIG. 2, the cross section perpendicular to the longitudinal direction of the projection 8 has a rectangular shape. The convex portion is in contact with the cold storage member 16 at the top formed in a planar shape. Convex part 8
The shape of the cross section perpendicular to the longitudinal direction is not particularly limited, and may be any shape as long as the flow path 3 for sending necessary air can be formed. For example, a shape formed by combining a semicircular shape, a trapezoidal shape, and a bow shape into a rectangle at a straight line portion, and the like. Convex part 8
As in the example of FIG. 1, it is necessary to take into consideration that the flow path 3 is blocked by frost if it is too narrow, and that the heat exchange rate decreases if it is too wide.

【0030】凸部8の高さは、管部材間のピッチや蓄冷
部材6の厚みなどを考慮して適宜決定すれば良い。具体
的には、管部材の内径が6mm〜15mm、管部材間の
ピッチが20mm〜30mm、蓄冷部材の厚みが5mm
〜10mmの場合であれば、凸部の高さ(図2では流路
3の深さに相当)は、5mm〜15mm、好ましくは7
mm〜12mmとするのが良い。
The height of the projection 8 may be determined as appropriate in consideration of the pitch between the pipe members, the thickness of the cold storage member 6, and the like. Specifically, the inner diameter of the tube member is 6 mm to 15 mm, the pitch between the tube members is 20 mm to 30 mm, and the thickness of the cold storage member is 5 mm.
In the case of 10 mm to 10 mm, the height of the convex portion (corresponding to the depth of the flow path 3 in FIG. 2) is 5 mm to 15 mm, preferably 7 mm.
mm to 12 mm.

【0031】このように、二つの蓄冷部材(6、16)
の間に、流路3及び貫通孔13が形成された熱交換板2
が配置されているため、蓄冷式熱交換器20を使用する
ことによっても従来に比べ放冷効率の向上を図ることが
できる。図2の例においては、全ての管部材(1a〜1
d及び7a〜7d)が、冷却用管路を形成している。
Thus, the two cold storage members (6, 16)
Between the heat exchange plate 2 in which the flow path 3 and the through hole 13 are formed
Is arranged, the use of the regenerative heat exchanger 20 can also improve the cooling efficiency as compared with the related art. In the example of FIG. 2, all the pipe members (1a to 1a)
d and 7a to 7d) form a cooling conduit.

【0032】本発明で用いられる熱交換板は、図1、2
に示すものに限定されるものではなく、面方向に沿って
空気が流れるように形成された流路を有するものであれ
ば特に限定されるものではない。熱交換板を構成する材
料としては、アルミニウム、銅、銅合金、鋼等が挙げら
れる。このうち熱伝導性に優れ、軽量である点からアル
ミニウムが好ましく用いられる。
The heat exchange plate used in the present invention is shown in FIGS.
However, the present invention is not particularly limited as long as it has a flow path formed so that air flows along the surface direction. Examples of the material constituting the heat exchange plate include aluminum, copper, copper alloy, and steel. Of these, aluminum is preferably used because of its excellent thermal conductivity and light weight.

【0033】図3は、本発明の蓄冷式熱交換器に用いら
れる熱交換板の他の例を示す図であり、斜視図で示して
いる。図3の例では、空気を流すための流路31は、熱
交換板30の内部にのみ設けられている。熱交換板30
の上面および下面は平面状に形成されている。このた
め、図1の例において熱交換板30を用いれば、熱交換
板30と蓄冷部材との接触面積を、蓄冷部材の熱交換板
30に面する部分の面積の100%に近づけることがで
きるため、蓄冷部材の温度分布を一層均一化することが
できる。
FIG. 3 is a perspective view showing another example of the heat exchange plate used in the regenerative heat exchanger of the present invention. In the example of FIG. 3, the flow path 31 for flowing the air is provided only inside the heat exchange plate 30. Heat exchange plate 30
Are formed in a planar shape. Therefore, if the heat exchange plate 30 is used in the example of FIG. 1, the contact area between the heat exchange plate 30 and the cold storage member can be made close to 100% of the area of the portion of the cold storage member facing the heat exchange plate 30. Therefore, the temperature distribution of the cold storage member can be made more uniform.

【0034】本発明の蓄冷式熱交換器に用いられる管部
材は、冷媒を送ることができるものであれば特に限定さ
れるものではない。本発明でいう複数の管部材とは、図
1の例に示すように独立した部材が複数ある場合に限ら
れず、例えば、一本の長尺の管を一箇所又は二箇所以上
で折り曲げて蛇行させた場合の、折り曲げ部以外の部分
をもいう。管部材の本数、内径、長さといった仕様は、
本発明の蓄冷式熱交換器に要求される能力、蓄冷時間や
放冷時間といった諸条件に応じて適宜決定すれば良い。
管部材を構成する材料としては、銅、銅合金、アルミニ
ウム、鋼といった金属材料やポリエチレンなどの高分子
材料等が挙げられる。このうち、加工性や熱伝導性が優
れている点から銅を用いるのが好ましい。
The tube member used in the regenerative heat exchanger of the present invention is not particularly limited as long as it can send a refrigerant. The plurality of pipe members referred to in the present invention is not limited to the case where there are a plurality of independent members as shown in the example of FIG. 1. For example, a single long tube is bent at one or two or more locations to meander. In this case, the portion other than the bent portion is also referred to. Specifications such as the number, inner diameter, and length of pipe members
What is necessary is just to determine suitably according to various conditions, such as the capacity | capacitance required for the regenerative heat exchanger of this invention, a cold storage time, and a cooling time.
Examples of the material constituting the pipe member include metal materials such as copper, copper alloy, aluminum and steel, and polymer materials such as polyethylene. Among them, it is preferable to use copper from the viewpoint of excellent workability and thermal conductivity.

【0035】本発明において管部材は、図1に示すよう
に、蓄冷部材を冷却するための冷却用管路としてだけで
なく、冷却された蓄冷部材と熱交換して冷熱を取り出す
ための放冷用管路としても使用できる。また、全ての管
部材を直列に連結して一つの管路を形成し、この管路の
入り口と出口に流路切替え用のバルブを設け、このバル
ブの開閉によりこの管路を蓄冷用又は放冷用として用い
ても良い。管部材は一つの管路から複数の管路を分岐し
た態様であっても良い。
In the present invention, as shown in FIG. 1, the pipe member is used not only as a cooling pipe for cooling the regenerative member, but also as a cooling pipe for exchanging heat with the cooled regenerative member and extracting cold heat. It can also be used as a pipeline. In addition, all the pipe members are connected in series to form one pipe, and a valve for switching the flow path is provided at the inlet and the outlet of the pipe, and the pipe is opened or closed to cool or discharge the pipe. It may be used for cooling. The pipe member may have a form in which a plurality of pipes are branched from one pipe.

【0036】本発明で用いられる蓄冷部材は、包袋部材
に蓄冷材を収容したものであれば良い。蓄冷部材の形状
は、蓄冷材の膨張等による形状変化が包袋部材や管部材
に物理的(機械的)な悪影響を及ぼさないという点か
ら、図1、2に示すプレート状等のような熱交換板の鉛
直方向上側に載せることが可能な形状であるのが好まし
い。蓄冷材は蓄冷可能なものであれば良く、従来より使
用されているものや、今後開発されるものも利用でき
る。具体的には、水、無機水和塩、塩水、エチレングリ
コール等の有機物等が挙げられる。
The cold storage member used in the present invention may be any one in which a cold storage material is contained in a wrapping member. The shape of the cold storage member is such that the shape change due to expansion or the like of the cold storage material does not have a physical (mechanical) adverse effect on the wrapping member or the tube member, and therefore, the heat storage member has a heat-like shape such as a plate shape shown in FIGS. It is preferable that the shape be such that it can be placed vertically above the exchange plate. The cold storage material may be any material that can store cold, and those that have been conventionally used and those that will be developed in the future can be used. Specific examples include water, inorganic hydrate salts, salt water, and organic substances such as ethylene glycol.

【0037】包袋部材は、蓄冷材を漏洩することなく収
容し得るものであれば、特に限定されるものではない
が、可撓性を有する材料で形成されているのが好まし
い。包袋部材を形成する材料としては、例えば、ポリエ
チレン、ナイロン、ポリプロピレン、ポリ塩化ビニル、
ポリスチレン、ポリビニルアルコール、これら高分子材
料とアルミニウムなどの金属との複合材料等が挙げられ
る。このうち耐寒性、耐水性及び熱伝導性に優れている
点からは複合材料が好ましい。複合材料の具体例として
は、ナイロン又はポリエチレンテレフタレートのフィル
ム、アルミ箔、ナイロンフィルム、ポリエチレンフィル
ムの順で積層して形成したものが挙げられる。包袋部材
の形状も特に限定されるものではないが、蓄冷部材を形
成したときにその形状が上記したようなプレート状とな
るような形状であるのが好ましい。
The wrapping member is not particularly limited as long as it can accommodate the cold storage material without leaking, but is preferably formed of a flexible material. As a material for forming the wrapping member, for example, polyethylene, nylon, polypropylene, polyvinyl chloride,
Examples thereof include polystyrene, polyvinyl alcohol, and composite materials of these polymer materials and metals such as aluminum. Among them, a composite material is preferable because of its excellent cold resistance, water resistance and thermal conductivity. Specific examples of the composite material include those formed by laminating a nylon or polyethylene terephthalate film, an aluminum foil, a nylon film, and a polyethylene film in this order. Although the shape of the wrapping member is not particularly limited, it is preferable that the shape of the regenerative member be a plate as described above when the regenerative member is formed.

【0038】本発明の蓄冷式熱交換器では、送風手段が
備えられているのが好ましい。送風手段は、熱交換板の
流路に空気を流し得るものであれば特に限定されるもの
ではなく、従来より使用されているものが利用できる。
具体的には、多翼送風機や管流送風機などの遠心送風
機、プロペラ形やチューブ形の軸流送風機、斜流送風
機、クロスフロー送風機等が挙げられる。送風手段に要
求される能力は特に限定されるものではなく、被冷却空
間の大きさ等に応じて適宜決定すれば良い。
[0038] The regenerative heat exchanger of the present invention is preferably provided with a blowing means. The blower is not particularly limited as long as it can flow air through the flow path of the heat exchange plate, and a conventionally used blower can be used.
Specific examples include a centrifugal blower such as a multiblade blower and a tube flow blower, a propeller-type or tube-type axial flow blower, a mixed flow blower, and a cross flow blower. The capacity required for the blowing means is not particularly limited, and may be appropriately determined according to the size of the space to be cooled.

【0039】本発明の蓄冷式熱交換器は、どのような用
途に使用しても良い。具体的には、冷蔵庫、冷凍庫、保
冷庫などに用いられる蓄冷冷却システムが主な用途とし
て挙げられる。
The regenerative heat exchanger of the present invention may be used for any purpose. Specifically, a regenerative cooling system used for refrigerators, freezers, cool storages, and the like can be mainly used.

【0040】[0040]

【実施例】以下、実施例を挙げて本発明を具体的に示
す。実際に、図1に示す蓄冷式熱交換器と同様のものに
ついて製造を行なった。
EXAMPLES The present invention will be specifically described below with reference to examples. Actually, a regenerative heat exchanger similar to that shown in FIG. 1 was manufactured.

【0041】実施例1 〔蓄冷式熱交換器の作製〕熱交換板は、厚み1mm、大
きさ375mm×400mm、材料アルミニウムの平板
を図1と同様の形状に折り曲げて形成した。なお、波状
部分は高さ5mm、幅25mm、ピッチ25mmに設定
した。
Example 1 [Preparation of a regenerative heat exchanger] A heat exchange plate was formed by bending a flat plate of aluminum having a thickness of 1 mm, a size of 375 mm × 400 mm and a material similar to that of FIG. The wavy portion was set to a height of 5 mm, a width of 25 mm, and a pitch of 25 mm.

【0042】冷却用管路として、外径15.9mm、内
径13.5mm、長さ1250mmの銅製の管部材を7
0本用意した。冷却用管路に並列して配置する放冷用管
路として、外径9.5mm、内径7.9mm、長さ12
50mmの銅製の管部材を70本用意した。なお、冷却
用管路となる管部材と、放冷用管路となる管部材とは、
互いに平行に、且つ、交互に配列する。
As a cooling pipe, a copper pipe member having an outer diameter of 15.9 mm, an inner diameter of 13.5 mm and a length of 1250 mm was used.
0 were prepared. As a cooling line arranged in parallel with the cooling line, an outer diameter of 9.5 mm, an inner diameter of 7.9 mm, and a length of 12 are provided.
Seventy 50 mm copper tube members were prepared. The pipe member to be a cooling pipe and the pipe member to be a cooling line are:
They are arranged parallel to each other and alternately.

【0043】蓄冷部材は、厚み0.9mmのアルミ箔複
合材料からなる矩形の包袋部材(大きさ405mm×2
30mm)に、蓄冷材を充填して形成した。なお、蓄冷
部材の大きさは、405mm×230mm、厚み7mm
であった。使用した蓄冷材の総重量は140kgであっ
た。
The cold storage member is a rectangular wrapping member (size: 405 mm × 2) made of an aluminum foil composite material having a thickness of 0.9 mm.
30 mm) with a cold storage material. The size of the cold storage member was 405 mm × 230 mm and the thickness was 7 mm.
Met. The total weight of the cold storage material used was 140 kg.

【0044】上記で得られた管部材、熱交換板および蓄
冷部材を図1に示すように重ね合わせ、本発明の蓄冷式
熱交換器を完成させた。なお、熱交換板と蓄冷部材と接
触している部分の面積(448cm2 )は、蓄冷部材が
熱交換板に面している部分の面積(840cm2 )の5
3.3%となっている。さらに、この蓄冷式熱交換器を
冷凍機(圧縮機の能力:押しのけ量15.8m3 /h、
一日の冷凍能力:6308Kcal/h(1.9法定ト
ン))に接続して蓄冷冷却システムを構成した。
The tube member, heat exchange plate and regenerative member obtained above were overlaid as shown in FIG. 1 to complete the regenerative heat exchanger of the present invention. The area (448 cm 2 ) of the portion where the heat exchange plate is in contact with the cold storage member is 5 times the area (840 cm 2 ) of the portion where the cold storage member faces the heat exchange plate.
It was 3.3%. Further, this regenerative heat exchanger was connected to a refrigerator (compressor capacity: displacement 15.8 m 3 / h,
(Refrigeration capacity per day: 6308 Kcal / h (1.9 legal tons)) to configure a regenerative cooling system.

【0045】〔評価〕得られた蓄冷式熱交換器を、庫内
体積35.4m3 、温度−20℃の冷凍庫内に設置し、
冷却用管路に−30℃の冷媒を流して蓄冷材を完全に凝
固させた。次に、放冷用管路に冷媒を流して過冷却さ
せ、それを蒸発器に流すことによって冷凍庫内を冷却し
た。結果、庫内の温度を−20℃まで下げるのに要した
時間は約1.5時間であった。それに対し、同重量、同
種類の蓄冷材を有する図4に示す蓄冷式熱交換器を用い
て、上記冷凍庫内を冷却した場合においては、庫内の温
度を−20℃まで下げるのに要した時間は約1.7時間
であった。
[Evaluation] The obtained regenerative heat exchanger was placed in a refrigerator having a volume of 35.4 m 3 and a temperature of −20 ° C.
A refrigerant at −30 ° C. was passed through the cooling pipe to completely solidify the cold storage material. Next, the refrigerant was supercooled by flowing the refrigerant through the cooling line, and the inside of the freezer was cooled by flowing the refrigerant into the evaporator. As a result, it took about 1.5 hours to reduce the temperature in the refrigerator to −20 ° C. On the other hand, when the inside of the freezer was cooled using the regenerative heat exchanger shown in FIG. 4 having the same weight and the same kind of cold storage material, it was necessary to lower the temperature in the freezer to −20 ° C. The time was about 1.7 hours.

【0046】実施例2 外径12.7mm、内径10.7mm、長さ1350m
mの銅製の管部材(96本)を冷却用管路として使用
し、放冷用管路を設けない以外は、実施例1と同様にし
て蓄冷式熱交換器を作製した。さらに、この蓄冷式熱交
換器を実施例1と同様に、冷凍機に接続して冷凍庫内に
設置し、冷却用管路に−30℃の冷媒を流して蓄冷材を
完全に凝固させた。次に、送風機(送風機出力0.1k
w、風量30m3 /minのプロペラ軸流送風機)を稼
働させたところ、庫内温度−20℃の上記冷凍庫内を設
定温度幅4℃に維持することのできる時間は約3.5時
間であった。
Example 2 Outer diameter 12.7 mm, inner diameter 10.7 mm, length 1350 m
A regenerative heat exchanger was produced in the same manner as in Example 1 except that a copper pipe member (96 pieces) of m was used as a cooling pipe and a cooling pipe was not provided. Further, this regenerative heat exchanger was connected to a refrigerator and installed in a freezer as in Example 1, and a refrigerant at −30 ° C. was passed through a cooling pipe to completely solidify the regenerator material. Next, a blower (blower output 0.1 k
When a propeller axial flow blower with an air flow rate of 30 m 3 / min) was operated, the time required for maintaining the inside of the freezer at a temperature of −20 ° C. at the set temperature range of 4 ° C. was about 3.5 hours. Was.

【0047】上記実施例1、2より、本発明の蓄冷式熱
交換器を用いれば、放冷効率を高めることができるのが
確認できる。
From Examples 1 and 2, it can be confirmed that the use of the regenerative heat exchanger of the present invention can increase the cooling efficiency.

【0048】[0048]

【発明の効果】以上説明したように、本発明を用いれば
蓄冷式熱交換器の放冷効率を向上することができる。従
って、本発明の蓄冷式熱交換器を用いた蓄冷冷却システ
ムであれば、放冷運転時における電力消費量の低減を図
ることができ、電力需要ピーク抑制にさらに貢献するこ
とができる。
As described above, according to the present invention, the cooling efficiency of the regenerative heat exchanger can be improved. Therefore, the regenerative cooling system using the regenerative heat exchanger of the present invention can reduce the power consumption during the cooling operation, and can further contribute to suppressing the peak power demand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蓄冷式熱交換器の一例を示す図であ
る。
FIG. 1 is a diagram showing an example of a regenerative heat exchanger of the present invention.

【図2】本発明の蓄冷式熱交換器の他の例を示す図であ
る。
FIG. 2 is a diagram showing another example of the regenerative heat exchanger of the present invention.

【図3】本発明の蓄冷式熱交換器に用いられる熱交換板
の他の例を示す図である。
FIG. 3 is a view showing another example of the heat exchange plate used in the regenerative heat exchanger of the present invention.

【図4】従来の蓄冷式熱交換器を示す図である。FIG. 4 is a view showing a conventional regenerative heat exchanger.

【符号の説明】[Explanation of symbols]

1a〜1d 管部材 2 熱交換板 3 流路 4a、4b 波状部分 5 包袋部材 6 蓄冷部材 10 蓄冷式熱交換器 1a to 1d tube member 2 heat exchange plate 3 flow path 4a, 4b wavy portion 5 wrapping member 6 cold storage member 10 cold storage type heat exchanger

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一以上の管部材と、熱交換板と、包袋部
材に蓄冷材を収容してなる蓄冷部材とを、前記管部材の
長手方向を前記熱交換板の面方向に平行にして重ねてな
る構造を少なくとも有し、 熱交換板は、熱交換板の内部、管部材に面する側、蓄冷
部材に面する側のうち、少なくとも一つの部位に、熱交
換板の面方向に沿って空気が流れるように形成された流
路を有するものであることを特徴とする蓄冷式熱交換
器。
1. A method according to claim 1, wherein one or more pipe members, a heat exchange plate, and a cold storage member having a wrapping member containing a cold storage material have a longitudinal direction of said pipe member parallel to a surface direction of said heat exchange plate. At least one of the inside of the heat exchange plate, the side facing the tube member, and the side facing the cold storage member, in the surface direction of the heat exchange plate. A regenerative heat exchanger having a flow path formed so that air flows along the heat exchanger.
【請求項2】 上記熱交換板が波状の形態を有する波形
板であって、波状部分と波状部分との間が上記流路とな
っている請求項1記載の蓄冷式熱交換器。
2. The regenerative heat exchanger according to claim 1, wherein the heat exchange plate is a corrugated plate having a wavy shape, and the flow path is provided between the wavy portions.
【請求項3】 上記熱交換板が、その面方向に沿って延
びる複数の凸部を互いに平行に配列してなる形態を有
し、隣合う凸部と凸部との間が上記流路となっている請
求項1記載の蓄冷式熱交換器。
3. The heat exchange plate has a configuration in which a plurality of protrusions extending along a surface direction thereof are arranged in parallel with each other, and a space between adjacent protrusions is defined by the flow path. The regenerative heat exchanger according to claim 1, wherein
【請求項4】 一以上の管部材、熱交換板および蓄冷部
材が順に重ねられている請求項1記載の蓄冷式熱交換
器。
4. The regenerative heat exchanger according to claim 1, wherein one or more pipe members, a heat exchange plate, and a regenerative member are sequentially stacked.
【請求項5】 上記蓄冷部材の上記熱交換板と面する側
の反対側にさらに複数の管部材が配置されている請求項
4記載の蓄冷式熱交換器。
5. The regenerative heat exchanger according to claim 4, further comprising a plurality of pipe members disposed on a side of the regenerative member opposite to a side facing the heat exchange plate.
【請求項6】 上記蓄冷部材の上記熱交換板と面する側
の反対側に、さらに上記熱交換板と上記蓄冷部材とが順
に重ね合わされている請求項4記載の蓄冷式熱交換器。
6. The regenerative heat exchanger according to claim 4, wherein the heat exchange plate and the regenerative member are sequentially superimposed on a side of the regenerative member opposite to a side facing the heat exchange plate.
【請求項7】 複数の管部材の内の一部が蓄冷部材を冷
却するための冷却用管路を形成し、該一部以外の管部材
が冷却された蓄冷部材と熱交換して冷熱を取り出すため
の放冷用管路を形成している請求項1記載の蓄冷式熱交
換器。
7. A part of the plurality of pipe members forms a cooling pipe for cooling the cold storage member, and the other pipe members exchange heat with the cooled cold storage member to generate cold heat. The regenerative heat exchanger according to claim 1, wherein a cooling passage is formed for taking out the heat.
【請求項8】 熱交換板の流路に空気を流し得る送風手
段を有している請求項1記載の蓄冷式熱交換器。
8. The regenerative heat exchanger according to claim 1, further comprising a blowing means for allowing air to flow through the flow path of the heat exchange plate.
JP10357946A 1998-12-16 1998-12-16 Cold storage heat exchanger Pending JP2000180082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10357946A JP2000180082A (en) 1998-12-16 1998-12-16 Cold storage heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10357946A JP2000180082A (en) 1998-12-16 1998-12-16 Cold storage heat exchanger

Publications (1)

Publication Number Publication Date
JP2000180082A true JP2000180082A (en) 2000-06-30

Family

ID=18456759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10357946A Pending JP2000180082A (en) 1998-12-16 1998-12-16 Cold storage heat exchanger

Country Status (1)

Country Link
JP (1) JP2000180082A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139201A (en) * 2008-12-15 2010-06-24 Showa Denko Kk Cold storage device and vehicle air conditioner using the same
JP2011099632A (en) * 2009-11-06 2011-05-19 Denso Corp Cold storage heat exchanger
CN103017449A (en) * 2012-12-10 2013-04-03 青海百能汇通新能源科技有限公司 Heat exchange system
CN114279143A (en) * 2021-12-31 2022-04-05 广东美的白色家电技术创新中心有限公司 Refrigerating system and refrigerating equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139201A (en) * 2008-12-15 2010-06-24 Showa Denko Kk Cold storage device and vehicle air conditioner using the same
JP2011099632A (en) * 2009-11-06 2011-05-19 Denso Corp Cold storage heat exchanger
CN103017449A (en) * 2012-12-10 2013-04-03 青海百能汇通新能源科技有限公司 Heat exchange system
CN103017449B (en) * 2012-12-10 2015-04-15 青海百能汇通新能源科技有限公司 Heat exchange system
CN114279143A (en) * 2021-12-31 2022-04-05 广东美的白色家电技术创新中心有限公司 Refrigerating system and refrigerating equipment
CN114279143B (en) * 2021-12-31 2023-10-31 广东美的白色家电技术创新中心有限公司 Refrigerating system and refrigerating equipment

Similar Documents

Publication Publication Date Title
JP5525726B2 (en) Evaporator with cool storage function
US4294078A (en) Method and system for the compact storage of heat and coolness by phase change materials
US4403645A (en) Compact storage of seat and coolness by phase change materials while preventing stratification
US6178770B1 (en) Ice-on-coil thermal storage apparatus and method
JP5868088B2 (en) Cooling unit for vehicle air conditioner
CN102967087A (en) Evaporator with cool storage function
JP2000220978A (en) Cooling storage heat exchanger
JP2011006058A (en) Evaporator with cold storage function
JP2011133126A (en) Evaporator with cold storage function
JP5194241B2 (en) Evaporator with cool storage function
JPH11257692A (en) Ice cold storage air conditioner and ice cold storage tank
JP2000180082A (en) Cold storage heat exchanger
GB2467812A (en) Fluid conditioning arrangement
JP2010243066A (en) Cold storage heat exchanger
JP2000171126A (en) Cold heat storage cooling system
CN210601993U (en) Mobile air conditioner
JP5501494B2 (en) Evaporator with cool storage function
JPH08152162A (en) Internally melting type ice heat storage tank
JP2000039281A (en) Cold storage heat exchnager
JP2000039280A (en) Cold storage heat exchanger and its operation method
JPS5821195B2 (en) Open type sprinkler type evaporator
CN217541175U (en) Refrigerator with a door
JP2793765B2 (en) Internal melting type ice thermal storage device
CN217275041U (en) Refrigerator with a door
JP4633967B2 (en) Ice thermal storage air conditioner