JPH08246180A - Electrolytic method - Google Patents

Electrolytic method

Info

Publication number
JPH08246180A
JPH08246180A JP7079428A JP7942895A JPH08246180A JP H08246180 A JPH08246180 A JP H08246180A JP 7079428 A JP7079428 A JP 7079428A JP 7942895 A JP7942895 A JP 7942895A JP H08246180 A JPH08246180 A JP H08246180A
Authority
JP
Japan
Prior art keywords
anode
cathode
water
chamber
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7079428A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Masashi Tanaka
正志 田中
Isao Sawamoto
勲 澤本
Yoshinori Nishiki
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP7079428A priority Critical patent/JPH08246180A/en
Publication of JPH08246180A publication Critical patent/JPH08246180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To obtain an improved water small in the quantity of metallic impurities and having a specific oxidation-reduction potential and pH with excellent electrolytic efficiency by electrolyzing while supplying an electrolyte containing an acid and a non-metallic salt to an anode chamber side of a two chamber type high molecular solid electrolyte type electrolytic cell. CONSTITUTION: A porous anode 7 composed of a noble metal or noble metal oxide powder and a porous cathode 8 composed of Ni or the like are provided respectively with an anode and cathode surface of a cation exchange membrane 2 in close contact state and current is supplied through an anode and cathode collecting body 9, 10. Passages 11, 15 are formed inside of an anode and cathode chamber wall plate 5, 6. An anolyte, which is fed from an inlet 12 and in which NH4 Cl or the like is dissolved, enters to the anode chamber from an opening part 13, is brought into contact with the anode 7, oxidized by a compound having high oxidation force and high oxidation-reduction potential of >=1000mV such as hypochlorous acid and taken out from an outlet 14 as the improved water having pH<=3. And if necessary, a deionized water supplied from the inlet 16 enters to the cathode chamber from the opening part 17, is brought into contact with the cathode 8 with an ion-containing water transferred from the anode, reduced to form an alkaline water, which is taken out from the outlet 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化力が高くかつpH
が低い改質水を製造するための電解方法に関し、より詳
細には半導体洗浄プロセスに使用できる洗浄力の優れた
洗浄水、更に還元性の優れたアルカリ水を提供するため
の電解方法に関する。
BACKGROUND OF THE INVENTION The present invention has a high oxidizing power and a high pH.
TECHNICAL FIELD The present invention relates to an electrolysis method for producing reformed water having a low water content, and more particularly to an electrolysis method for providing cleaning water with excellent detergency that can be used in a semiconductor cleaning process, and alkaline water with excellent reducibility.

【0002】[0002]

【従来技術とその問題点】電解により水を改質して酸性
水やアルカリ水を製造することは従来から広く行なわれ
ているが、最近は特にそれらの用途が拡大し、上水処
理、医療用殺菌、食品工業等の各分野において改質水が
汎用されている。従来の電解により製造される改質水の
うち陽極室で生成する酸性水は酸化還元電位(ORP)
として1000mV以上の酸化力を有し、金属析出物を溶解
し除去する効果を有している。一方陰極室側で生成する
アルカリ水は酸化還元電位として−600 mV程度の還元
力を有し、析出した酸化物を溶解除去する機能を有して
いる。
2. Description of the Related Art Conventionally, it has been widely practiced to modify water by electrolysis to produce acidic water or alkaline water, but recently, their applications have been particularly widespread, and water treatment, medical treatment, etc. Modified water is widely used in various fields such as sterilization for food and food industry. Of the reforming water produced by conventional electrolysis, the acidic water generated in the anode chamber is the redox potential (ORP).
Has an oxidizing power of 1000 mV or more, and has an effect of dissolving and removing metal precipitates. On the other hand, the alkaline water generated on the cathode chamber side has a reducing power of about −600 mV as an oxidation-reduction potential, and has a function of dissolving and removing the precipitated oxide.

【0003】通常の電解を行なうためには電解液中にイ
オン伝導性を与えるために適切な支持電解質を添加す
る。多くの場合この支持電解質は金属塩でありこの金属
塩を含む電解液を電解しても金属イオンが生成する改質
水中に残存し、該改質水を例えば半導体洗浄に使用する
と該改質水中の金属イオンが不純物として半導体表面に
付着して絶縁不良を招くといった不都合が生ずる。陽極
室と陰極室を区画する隔膜として中性隔膜を使用する場
合には、電解電圧低減のために隔膜を挟んだ両極を接近
させて配置する。しかしこのような配置でも隔膜の気液
透過性が高いため各極室で発生した種々の生成物が対極
室に移行して再酸化又は還元を起こすため効率が低下す
る。一般に電解液の濃度が低いので電気抵抗が大きく、
1A/dm2 という極めて小さい電流密度でも極間1m
m程度で10V以上の電圧となることがある。極間距離を
大きくするとある程度はこの欠点を解消できるが完全で
はなく、更に極間距離の増加に伴う抵抗増大の結果生ず
る消費電力量の増加が著しくなり、しばしばこの抵抗損
による発熱が大きいので、液の冷却が必要となり、更に
余分の電力消費が発生するといった問題点があった。
In order to carry out ordinary electrolysis, an appropriate supporting electrolyte is added to the electrolyte to provide ionic conductivity. In many cases, this supporting electrolyte is a metal salt and remains in the reforming water in which metal ions are generated even when the electrolytic solution containing the metal salt is electrolyzed. Inconvenience arises in that the metal ions of (3) adhere to the surface of the semiconductor as impurities to cause insulation failure. When a neutral diaphragm is used as a diaphragm that separates the anode chamber and the cathode chamber, both electrodes sandwiching the diaphragm are placed close to each other in order to reduce the electrolytic voltage. However, even with such an arrangement, since the gas-liquid permeability of the diaphragm is high, various products generated in each electrode chamber are transferred to the counter electrode chamber and reoxidized or reduced to cause a reduction in efficiency. Generally, the electrolyte concentration is low, so the electrical resistance is high,
Even with a very low current density of 1 A / dm 2, the gap between the electrodes is 1 m
The voltage may be 10 V or more at about m. This defect can be solved to some extent by increasing the distance between the poles, but it is not perfect.In addition, the increase in the power consumption resulting from the increase in the resistance with the increase in the pole distance becomes remarkable, and the heat generated by this resistance loss is often large. There has been a problem that the liquid needs to be cooled and extra power consumption occurs.

【0004】[0004]

【発明の目的】本発明は、前述の従来技術の問題点、つ
まり電解により生ずる改質水中に金属等の不純物が混入
しやすくかつ電解効率が低く消費電力量が大きくなりや
すいという欠点を解消した電解方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, that is, impurities such as metals are easily mixed in the reforming water generated by electrolysis, and the electrolysis efficiency is low and the power consumption is apt to increase. It is intended to provide an electrolysis method.

【0005】[0005]

【問題点を解決するための手段】本発明は、陽イオン交
換膜を隔膜とし、その両側に貴金属又は貴金属酸化物陽
極及び陰極を前記陽イオン交換膜に実質的に密着させた
状態で設置した2室型高分子固体電解質型電解槽の陽極
室側に酸及び/又は非金属性塩を含む電解液を供給しな
がら電解を行ない、前記陽極室で酸化還元電位が1000m
V以上でpHが3以下の改質水を得ることを特徴とする
電解方法である。
In the present invention, a cation exchange membrane is used as a diaphragm, and a noble metal or a noble metal oxide anode and a cathode are placed on both sides of the cation exchange membrane in a state of being substantially adhered to the cation exchange membrane. Electrolysis is performed while supplying an electrolytic solution containing an acid and / or a non-metallic salt to the anode chamber side of a two-chamber solid polymer electrolyte type electrolytic cell, and the redox potential is 1000 m in the anode chamber.
The electrolyzing method is characterized in that reformed water having a pH of 3 or more and a pH of 3 or more is obtained.

【0006】以下本発明を詳細に説明する。本発明で
は、隔膜として陽イオン交換膜を使用する高分子固体
電解質型電解槽を、陽極として貴金属又は貴金属酸化
物陽極を、更に支持電解質として酸及び/又は非金属
性塩をそれぞれ使用する。
Hereinafter, the present invention will be described in detail. In the present invention, a polymer solid electrolyte type electrolytic cell using a cation exchange membrane as a diaphragm, a noble metal or noble metal oxide anode as an anode, and an acid and / or a non-metal salt as a supporting electrolyte are used.

【0007】の陽イオン交換膜を装着した高分子固体
電解質型電解槽を使用するため、本発明では、陽極液と
陰極液との混合による効率低下を回避できると共に、低
電圧運転による省エネルギー化を達成できる。更に高電
流密度下での運転が可能になり、小型の装置で同一量の
改質水を製造できるようになる。又理由は明らかではな
いが電極物質の消耗が少なくなり、換言すると電極物質
の混入による改質水の汚染が回避される。これは電解質
の導電性が良いため電流偏在がなくなり部分的にせよ電
気抵抗が低下しこれにより温度上昇が抑止されること、
及び膜に接触している部分が三次元的に機能することに
より電極への負担が実質的に低減されることに起因する
と推測できる。
Since the solid polymer electrolyte type electrolytic cell equipped with the cation exchange membrane of (1) is used, the present invention can avoid the efficiency decrease due to the mixing of the anolyte and the catholyte and save energy by the low voltage operation. Can be achieved. Further, it becomes possible to operate under a high current density, and it becomes possible to produce the same amount of reforming water with a small device. Although the reason is not clear, the consumption of the electrode material is reduced, in other words, the contamination of the reforming water due to the mixing of the electrode material is avoided. This is because the conductivity of the electrolyte is good so that the uneven distribution of current is eliminated and the electrical resistance is reduced even if partially, and the temperature rise is suppressed.
It can be inferred that this is because the portion in contact with the membrane functions three-dimensionally and the load on the electrode is substantially reduced.

【0008】経験的には電極物質が白金の場合、非固体
電解質型の場合、塩化ナトリウム濃度が1000ppm程度
の塩水電解での消耗度が10〜30mg/KAHであるのに
対し、固体電解質型の場合には0.5 〜3mg/KAHと
1/10〜1/20の消耗に抑えることができる。電極物質が酸
化イリジウムの場合には消耗は更に小さく、0.05〜0.3
mg/KAHとなる。この電極物質の消耗量の低減に起
因する改質水中への不純物混入の抑制は、導電性固形物
の混入を最小限にすることを要求される半導体の場合に
特に重要である。
Empirically, when the electrode material is platinum, in the case of non-solid electrolyte type, the degree of consumption in salt water electrolysis with sodium chloride concentration of about 1000 ppm is 10 to 30 mg / KAH, whereas in the case of solid electrolyte type. In case of 0.5 to 3 mg / KAH
It can be reduced to 1/10 to 1/20 of wear. When the electrode material is iridium oxide, the consumption is even smaller, 0.05-0.3
It becomes mg / KAH. The suppression of the mixing of impurities into the modified water due to the reduction of the consumption amount of the electrode material is particularly important in the case of a semiconductor in which the mixing of conductive solids is required to be minimized.

【0009】陽イオン交換膜としてパーフルオロカーボ
ンスルホン酸型イオン交換膜を使用すると、陽極側で酸
化性の高い次亜塩素酸イオン(ClO- )や過硫酸イオ
ン(S2 8 --)が生成してもそれに対する耐性が極め
て強く安定した運転ができる。更に陽イオン交換膜は導
電性が高く、希釈電解液や純水中でも電解に対して安定
である。更に前述の酸化性の高い生成物に加えて多くの
薬品に対して極めて高い耐性を示す。
[0009] The use of perfluorocarbon sulfonic acid type ion exchange membrane as a cation exchange membrane, the anode side in a highly oxidizing hypochlorous acid ions (ClO -) and persulfate ion (S 2 O 8 -) is generated Even so, stable operation can be performed with extremely strong resistance to it. Further, the cation exchange membrane has high conductivity and is stable against electrolysis even in a diluted electrolytic solution or pure water. Furthermore, it exhibits extremely high resistance to many chemicals in addition to the above-mentioned highly oxidizable products.

【0010】次に本発明では上述した通り陽極として
貴金属又は貴金属酸化物陽極を使用する。この貴金属や
貴金属酸化物自体電解による消耗が極めて小さく、前述
の高分子固体電解質型電解槽の使用に加えて、これらの
電極物質の使用により、得られる改質水の汚染を更に小
さくすることができる。例えば該電極物質以外の従来の
電極物質である炭素を陽極物質として使用すると、陽極
反応により該炭素が酸化されて二酸化炭素が生成し、電
極が脆弱化するという問題点が生ずる。
Next, in the present invention, a noble metal or noble metal oxide anode is used as the anode as described above. This noble metal or noble metal oxide itself consumes very little electricity, and in addition to the use of the polymer solid electrolyte type electrolytic cell described above, the use of these electrode substances can further reduce the pollution of the obtained reformed water. it can. For example, when carbon, which is a conventional electrode material other than the electrode material, is used as the anode material, the carbon is oxidized by the anodic reaction to generate carbon dioxide, which causes a problem of weakening the electrode.

【0011】そして該貴金属又は貴金属酸化物陽極で
は、使用する貴金属陽極の種類により得られる酸化性を
コントロールできる。つまり電解時に硫酸イオンが存在
する場合に白金を含む物質を電極として使用すると、該
硫酸イオンを過硫酸まで酸化し、酸化還元電位をより以
上に高めることができる。又電解時に塩素イオンが存在
する場合に白金族貴金属酸化物を電極物質として使用す
ると、該塩素イオンを次亜塩素酸イオンまで酸化し、酸
化還元電位をより高めることができる。更にこのとき、
水素イオンが生成するため、いずれの場合にもpHを十
分に低くすることができる。いずれの反応でも主反応が
酸素発生反応であり、前述の炭素電極の場合のように自
身を消耗させることがない。
In the noble metal or noble metal oxide anode, the oxidizability obtained can be controlled depending on the kind of the noble metal anode used. That is, when a substance containing platinum is used as an electrode when sulfate ions are present during electrolysis, the sulfate ions can be oxidized to persulfuric acid to further increase the redox potential. When a platinum group noble metal oxide is used as an electrode material when chlorine ions are present during electrolysis, the chlorine ions can be oxidized to hypochlorite ions and the redox potential can be further increased. Furthermore, at this time,
Since hydrogen ions are generated, the pH can be lowered sufficiently in any case. In either reaction, the main reaction is the oxygen generation reaction, and does not consume itself as in the case of the carbon electrode described above.

【0012】そして本発明では上述の通り支持電解質
として酸及び/又は非金属性塩を使用する。具体的には
酸として塩酸及び硫酸を、非金属性塩として塩化アンモ
ニウム及び硫酸アンモニウムが使用可能である。電解液
中に含有されるアンモニウム塩は陽イオンであるアンモ
ニウムイオンが電解により陰極室に移行し、洗浄液の成
分として使用可能である。又塩酸や硫酸の場合にも陽イ
オンが水素イオンであるため、残存しても不都合は生じ
ない。
In the present invention, as described above, an acid and / or a nonmetallic salt is used as the supporting electrolyte. Specifically, hydrochloric acid and sulfuric acid can be used as the acid, and ammonium chloride and ammonium sulfate can be used as the non-metallic salt. The ammonium salt contained in the electrolytic solution can be used as a component of the cleaning solution because ammonium ions, which are cations, are transferred to the cathode chamber by electrolysis. Also, in the case of hydrochloric acid or sulfuric acid, the cation is a hydrogen ion, and therefore no inconvenience occurs even if it remains.

【0013】これらの支持電解質の濃度は100 〜10000
ppmとすることが望ましく、100ppm未満では得ら
れる改質水の酸性又はアルカリ性が不十分となりやす
く、酸化還元電位が1000mV以上でpHが3以下の酸性
水は得られず、更に反応の電流効率も低下する。一方支
持電解質の濃度が10000 ppmを越えると酸化還元電位
及びpHとも満足できるレベルに達するが、望ましくな
い副反応が生ずる恐れがある。つまり塩素イオンを含む
場合には塩素ガスの発生が活発になり塩素ガスによる腐
食等の問題が起こりやすくなる。又硫酸イオンの場合に
は生成する過硫酸イオン濃度が高くなり過ぎて電解槽自
体や付属機器及び配管等が腐食する恐れがある。
The concentration of these supporting electrolytes is 100 to 10,000.
It is desirable to adjust the content to be ppm, and if it is less than 100 ppm, the acidity or alkalinity of the resulting reformed water tends to be insufficient, acid water with an oxidation-reduction potential of 1000 mV or more and a pH of 3 or less cannot be obtained, and the current efficiency of the reaction is also descend. On the other hand, when the concentration of the supporting electrolyte exceeds 10,000 ppm, both the oxidation-reduction potential and the pH reach a satisfactory level, but an undesirable side reaction may occur. That is, when chlorine ions are contained, the generation of chlorine gas becomes active and problems such as corrosion due to chlorine gas easily occur. Further, in the case of sulfate ions, the concentration of persulfate ions produced becomes too high, which may corrode the electrolytic cell itself, auxiliary equipment, piping and the like.

【0014】このように構成された電解槽を使用して酸
及び/又は非金属性塩を含む電解液の電解を行なうと、
高分子固体電解質型電解において特徴的である低電力消
費量の下、高電流効率で改質水を得ることができる。こ
の際、供給される電解液中に金属イオンが含有されてい
ないため、得られる改質水中にも金属の存在はなく、該
改質水は特に金属イオンの存在が絶縁不良等の問題を生
じさせる半導体の洗浄水として有効に使用できる。しか
も陽極として消耗が殆どない貴金属又は貴金属酸化物電
極を使用しているため、電極物質の混入による不純物の
増加も防止できる。
When an electrolytic solution containing an acid and / or a non-metallic salt is electrolyzed using the electrolytic cell thus constructed,
The reformed water can be obtained with high current efficiency under the low power consumption which is characteristic of the polymer solid electrolyte type electrolysis. At this time, since the supplied electrolytic solution does not contain metal ions, there is no metal in the obtained reformed water, and in the reformed water, the presence of metal ions causes a problem such as poor insulation. It can be effectively used as washing water for semiconductors. In addition, since the noble metal or noble metal oxide electrode that hardly consumes is used as the anode, it is possible to prevent the increase of impurities due to the mixing of the electrode material.

【0015】次に添付図面に基づいて本発明に係わる電
解方法に使用可能な電解槽の一例を説明する。図1は、
本発明方法に使用できる電解槽の一例を示す概略断面図
である。改質水製造用電解槽1は、陽イオン交換膜2の
周囲を挟持する額縁状の陽極室ガスケット3及び陰極室
ガスケット4、及び各ガスケット3及び4の前記陽イオ
ン交換膜2とは反対面に密着して設置された電解液流通
機能を有する陽極室壁板5及び陰極室壁板6により構成
されている。
Next, an example of an electrolytic cell which can be used in the electrolysis method according to the present invention will be described with reference to the accompanying drawings. Figure 1
It is a schematic sectional drawing which shows an example of the electrolytic cell which can be used for the method of this invention. The electrolyzer 1 for producing reformed water has a frame-shaped anode chamber gasket 3 and cathode chamber gasket 4 that sandwich the periphery of the cation exchange membrane 2, and the surface of each gasket 3 and 4 opposite to the cation exchange membrane 2. It is constituted by an anode chamber wall plate 5 and a cathode chamber wall plate 6 which are installed in close contact with each other and have an electrolytic solution circulation function.

【0016】前記陽イオン交換膜2の陽極面には白金、
ルテニウム、イリジウム、ロジウム等の白金族金属又は
酸化ルテニウム、酸化イリジウム等の白金族金属酸化物
粉末から成る多孔性陽極7が密着状態で設置され、一方
前記陽イオン交換膜2の陰極面にはニッケル等から成る
多孔性陰極8が密着状態で設置されている。該陽極7及
び陰極8には、それぞれ陽極集電体9及び陰極集電体10
が接続され、該集電体を通して通電が行なわれる。前記
陽極室壁板5の内部には陽極液流通路11が形成され、陽
極液入口12から供給される塩化アンモニウム等を溶解し
た陽極液が陽極室開口部13から陽極室内に進入して陽極
7と接触して次亜塩素酸等の酸化力の強い高酸化還元電
位の化合物に酸化されかつ高pH値の改質水として陽極
液出口14から取り出される。
On the anode surface of the cation exchange membrane 2, platinum,
A porous anode 7 made of a platinum group metal such as ruthenium, iridium or rhodium or a platinum group metal oxide powder such as ruthenium oxide or iridium oxide is placed in close contact, while nickel is provided on the cathode surface of the cation exchange membrane 2. A porous cathode 8 made of, for example, is installed in a close contact state. The anode 7 and the cathode 8 have an anode current collector 9 and a cathode current collector 10, respectively.
Are connected, and electricity is supplied through the current collector. An anolyte flow passage 11 is formed inside the anodic chamber wall plate 5, and the anolyte, which is supplied from the anolyte inlet 12 and dissolves ammonium chloride or the like, enters into the anodic chamber through an anodic chamber opening 13 to form the anodic liquid 7 Is contacted with, and is oxidized into a compound having a high oxidation-reduction potential such as hypochlorous acid and having a strong oxidizing power, and is taken out from the anolyte outlet 14 as reforming water having a high pH value.

【0017】又前記陰極室壁板6の内部には陰極液流通
路15が形成され、陰極液入口16から必要に応じて供給さ
れる脱イオン水が陰極室開口部17から陰極室内に進入し
イオンを含む陽極からの移行水と共に陰極7と接触して
還元されアルカリ水を生成して陰極液出口18から取り出
される。
Further, a catholyte flow passage 15 is formed inside the cathode chamber wall plate 6, and deionized water supplied as needed from a catholyte inlet 16 enters the cathode chamber through an opening 17 of the cathode chamber. It is brought into contact with the cathode 7 together with the transition water from the anode containing ions to be reduced to generate alkaline water, which is taken out from the catholyte outlet 18.

【0018】[0018]

【実施例】次に本発明に係わる電解方法の実施例を記載
するが、該実施例は本発明を限定するものではない。
EXAMPLES Next, examples of the electrolysis method according to the present invention will be described, but the examples do not limit the present invention.

【実施例1】陽極として電極面積が0.053 dm2 である
多孔性白金板を、陰極として電極面積が0.053 dm2
ある多孔性白金板を、陽イオン交換膜としてナフィオン
(商品名)117 をそれぞれ使用して図1に示す電解槽を
構成した。陽極液として濃度がそれぞれ1000ppm、30
00ppm及び10000 ppmの3種類の塩化アンモニウム
水溶液を準備した。
EXAMPLE 1 Porous platinum plate electrode area is 0.053 dm 2 as the anode, a porous platinum plate electrode area is 0.053 dm 2 as the cathode, as a cation exchange membrane Nafion (trade name) 117, respectively It was used to construct the electrolytic cell shown in FIG. Concentrations of 1000 ppm and 30 as anolyte respectively
Three kinds of ammonium chloride aqueous solutions of 00 ppm and 10000 ppm were prepared.

【0019】他の条件を一定に維持しながら、陽極液濃
度を1000ppm、3000ppm及び10000 ppmと変化さ
せ、該変化の改質陽極液(酸性水)のpH、改質陽極液
の酸化還元電位、改質陰極液(アルカリ水)のpH及び
改質陰極液の酸化還元電位への影響を測定した。その結
果を図2(a) 、図3(a) 、図4(a) 及び図5(a) にそれ
ぞれ示した。次いで他の条件を一定に維持しながら、電
流密度を10A/dm2 、20A/dm2 及び30A/dm2
と変化させ、該変化の改質陽極液(酸性水)のpH、改
質陽極液の酸化還元電位、改質陰極液(アルカリ水)の
pH及び改質陰極液の酸化還元電位への影響を測定し
た。その結果を図2(b) 、図3(b) 、図4(b) 及び図5
(b) にそれぞれ示した。
While maintaining other conditions constant, the concentration of the anolyte was changed to 1000 ppm, 3000 ppm and 10000 ppm, and the pH of the reformed anolyte (acidic water), the redox potential of the reformed anolyte, of the changes, The influence of the pH of the modified catholyte (alkaline water) and the redox potential of the modified catholyte was measured. The results are shown in FIGS. 2 (a), 3 (a), 4 (a) and 5 (a), respectively. Then, while maintaining other conditions constant, the current density was 10 A / dm 2 , 20 A / dm 2 and 30 A / dm 2.
And the effect of the change on the pH of the reforming anolyte (acidic water), the redox potential of the reforming anolyte, the pH of the reforming catholyte (alkaline water) and the redox potential of the reforming catholyte. It was measured. The results are shown in FIG. 2 (b), FIG. 3 (b), FIG. 4 (b) and FIG.
Each is shown in (b).

【0020】更に他の条件を一定に維持しながら、陽極
液の流量を4cc/分、8cc/分及び12cc/分と変
化させ、該変化の改質陽極液(酸性水)のpH、改質陽
極液の酸化還元電位、改質陰極液(アルカリ水)のpH
及び改質陰極液の酸化還元電位への影響を測定した。そ
の結果を図2(c) 、図3(c) 、図4(c) 及び図5(c)に
それぞれ示した。最後に他の条件を一定に維持しなが
ら、陰極室液の循環流量を2cc/分、7cc/分及び
11cc/分と変化させ、該変化の改質陰極液(アルカリ
水)のpH及び改質陰極液の酸化還元電位への影響を測
定した。その結果を図4(d) 及び図5(d) にそれぞれ示
した。
While maintaining the other conditions constant, the flow rate of the anolyte was changed to 4 cc / min, 8 cc / min and 12 cc / min, and the pH and the reforming of the anolyte (acidic water) were modified by the changes. Redox potential of anolyte, pH of modified catholyte (alkaline water)
And the effect of the modified catholyte on the redox potential was measured. The results are shown in FIGS. 2 (c), 3 (c), 4 (c) and 5 (c), respectively. Finally, while maintaining other conditions constant, the circulation flow rate of the cathode chamber liquid was set to 2 cc / min, 7 cc / min and
The change was changed to 11 cc / min, and the effect of the change on the pH of the modified catholyte (alkali water) and the redox potential of the modified catholyte was measured. The results are shown in FIGS. 4 (d) and 5 (d), respectively.

【0021】図2から分かるように、塩化アンモニウム
濃度が1000〜10000 ppmの範囲では改質陽極液のpH
は常に3以下に維持され、又同様に10〜30A/dm2
範囲の電流密度及び4〜12cc/分の範囲の陽極液流量
で改質陽極液のpHは常に3以下に維持された。又図3
から分かるように、1000〜10000 ppmの範囲の塩化ア
ンモニウム濃度、10〜30A/dm2 の範囲の電流密度及
び4〜12cc/分の範囲の陽極液流量で改質陽極液の酸
化還元電位は1000mV以上に維持された。
As can be seen from FIG. 2, when the ammonium chloride concentration is in the range of 1000 to 10000 ppm, the pH of the modified anolyte is
Was maintained below 3 at all times, and similarly the pH of the modified anolyte was maintained below 3 at current densities in the range of 10-30 A / dm 2 and anolyte flow rates in the range of 4-12 cc / min. See also Figure 3
As can be seen, the redox potential of the reforming anolyte is 1000 mV when the ammonium chloride concentration is in the range of 10,000 to 10,000 ppm, the current density is in the range of 10 to 30 A / dm 2 and the anolyte flow rate is in the range of 4 to 12 cc / min. Maintained above.

【0022】又図4から分かるように、1000〜10000 p
pmの範囲の塩化アンモニウム濃度、10〜30A/dm2
の範囲の電流密度、4〜12cc/分の範囲の陽極液流量
及び2〜11cc/分の陰極液流量で改質陰極液のpHは
8以上に維持された。更に図5から分かるように、1000
〜10000 ppmの範囲の塩化アンモニウム濃度、10〜30
A/dm2 の範囲の電流密度、4〜12cc/分の範囲の
陽極液流量及び2〜11cc/分の陰極液流量で改質陰極
液の酸化還元電位は−680 mV以下に維持された。
As can be seen from FIG. 4, 1000 to 10000 p
Ammonium chloride concentration in the range of pm, 10-30 A / dm 2
The pH of the modified catholyte was maintained at 8 or higher at a current density in the range of 4 to 12 cc / min, and a catholyte flow rate of 2 to 11 cc / min. As can be seen from FIG. 5, 1000
Ammonium chloride concentration in the range of ~ 10000 ppm, 10 ~ 30
Current density in the range of A / dm 2, the redox potential of the reforming catholyte anolyte flow rate and 2~11Cc / min catholyte flow rate range 4~12Cc / min was maintained below -680 mV.

【0023】[0023]

【比較例1】塩化アンモニウム濃度を10ppm、電流密
度を30A/dm2 として実施例1と同様にして電解を行
なったところ、得られた改質陽極液のpHは6.5 、その
酸化還元電位は400 mV、陰極液のpHは8.0 、その酸
化還元電位は−680 mVであり、実施例で得られた陽極
液のpH及び酸化還元電位の値にはいずれも遙かに及ば
なかった。
Comparative Example 1 Electrolysis was carried out in the same manner as in Example 1 with an ammonium chloride concentration of 10 ppm and a current density of 30 A / dm 2. The pH of the obtained modified anolyte was 6.5 and its redox potential was 400. mV, the pH of the catholyte was 8.0, and its redox potential was −680 mV, which were far inferior to the pH and redox potential of the anolyte obtained in the examples.

【0024】[0024]

【比較例2】隔膜としてナフィオンの代わりに中性隔膜
を使用し、塩化アンモニウム濃度を1000pH、電流密度
を1A/dm2 、槽電圧を20Vとし、他は実施例1と同
様にして電解を行なったところ、陽極液のpHは4.2 、
酸化還元電位は700 mVであり、いずれも満足できるも
のではなかった。
[Comparative Example 2] Electrolysis was carried out in the same manner as in Example 1 except that a neutral diaphragm was used as the diaphragm instead of Nafion, the ammonium chloride concentration was 1000 pH, the current density was 1 A / dm 2 , and the cell voltage was 20 V. Now, the pH of the anolyte is 4.2,
The redox potential was 700 mV, and neither was satisfactory.

【0025】[0025]

【発明の効果】本発明方法は、陽イオン交換膜を隔膜と
し、その両側に貴金属又は貴金属酸化物陽極及び陰極を
前記陽イオン交換膜に実質的に密着させた状態で設置し
た2室型高分子固体電解質型電解槽の陽極室側に酸及び
/又は非金属性塩を含む電解液を供給しながら電解を行
ない、前記陽極室で酸化還元電位が1000mV以上でpH
が3以下の改質水を得ることを特徴とする電解方法であ
る。
According to the method of the present invention, a cation exchange membrane is used as a diaphragm, and a noble metal or a noble metal oxide anode and a cathode are placed on both sides of the membrane in a state of being substantially adhered to the cation exchange membrane. Electrolysis is carried out while supplying an electrolytic solution containing an acid and / or a non-metallic salt to the anode chamber side of the molecular solid electrolyte type electrolytic cell, and the pH is set at a redox potential of 1000 mV or more in the anode chamber.
Is a reforming water of 3 or less.

【0026】本発明方法では、陽イオン交換膜、及び陽
極として消耗が殆どない貴金属又は貴金属酸化物電極を
装着した高分子固体電解質型電解槽を使用し、更に電解
液として金属を含有しない塩又は酸を使用しているた
め、低電力消費量の下、高電流効率で改質水を得ること
ができ、更に該改質水中には金属は存在せず、該改質水
は特に金属イオンが絶縁不良等の問題を生じさせる半導
体の洗浄水として有効に使用できる。
In the method of the present invention, a polymer solid electrolyte type electrolytic cell equipped with a cation exchange membrane and a noble metal or noble metal oxide electrode with almost no wear as an anode is used, and a salt containing no metal or an electrolyte is used. Since an acid is used, it is possible to obtain reformed water with high current efficiency under low power consumption, and further, there is no metal in the reformed water, and the reformed water has particularly no metal ion. It can be effectively used as cleaning water for semiconductors that causes problems such as poor insulation.

【0027】前記酸としては塩酸や硫酸を、又非金属性
塩としては塩化アンモニウムや硫酸アンモニウムを使用
でき、電解中のこれらの物質の濃度は100 〜10000 pp
mとすることが望ましい。前記酸や非金属性塩は電解さ
れることにより塩素イオン、過塩素酸イオン、過硫酸イ
オン等を生成し、これらのイオンは得られる酸性水の酸
化還元電位を上昇させ、所望の特性の改質水を提供でき
る。
Hydrochloric acid or sulfuric acid can be used as the acid, and ammonium chloride or ammonium sulfate can be used as the non-metallic salt. The concentration of these substances during electrolysis is 100 to 10000 pp.
It is desirable to set m. The above-mentioned acid or non-metallic salt is electrolyzed to generate chlorine ions, perchlorate ions, persulfate ions, etc., and these ions increase the redox potential of the resulting acidic water to improve the desired characteristics. Can provide quality water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる電解方法で使用できる電解槽の
一例を示す概略断面図。
FIG. 1 is a schematic cross-sectional view showing an example of an electrolytic cell that can be used in an electrolysis method according to the present invention.

【図2】実施例1において得られた酸性水のpHに対す
る各因子の影響を示すグラフ。
FIG. 2 is a graph showing the influence of each factor on the pH of the acidic water obtained in Example 1.

【図3】実施例1において得られた酸性水の酸化還元電
位に対する各因子の影響を示すグラフ。
FIG. 3 is a graph showing the influence of each factor on the redox potential of the acidic water obtained in Example 1.

【図4】実施例1において得られたアルカリ水のpHに
対する各因子の影響を示すグラフ。
FIG. 4 is a graph showing the influence of each factor on the pH of alkaline water obtained in Example 1.

【図5】実施例1において得られたアルカリ水の酸化還
元電位に対する各因子の影響を示すグラフ。
FIG. 5 is a graph showing the influence of each factor on the redox potential of the alkaline water obtained in Example 1.

【符号の説明】[Explanation of symbols]

1・・・改質水製造用電解槽 2・・・陽イオン交換膜
3、4・・・ガスケット 5・・・陽極室壁板 6・
・・陰極室壁板 7・・・陽極 8・・・陰極9、10・
・・集電体 11・・・陽極液流通路 15・・・陰極液流
通路
1 ... Electrolyzer for producing reforming water 2 ... Cation exchange membrane 3, 4 ... Gasket 5 ... Anode chamber wall plate 6 ...
..Cathode chamber wall plate 7 ... Anode 8 ... Cathodes 9 and 10
..Current collector 11 ... Anode liquid flow passage 15 ... Cathode liquid flow passage

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換膜を隔膜とし、その両側に
貴金属又は貴金属酸化物陽極及び陰極を前記陽イオン交
換膜に実質的に密着させた状態で設置した2室型高分子
固体電解質型電解槽の陽極室側に酸及び/又は非金属性
塩を含む電解液を供給しながら電解を行ない、前記陽極
室で酸化還元電位が1000mV以上でpHが3以下の改質
水を得ることを特徴とする電解方法。
1. A two-chamber solid polymer electrolyte type electrolysis in which a cation-exchange membrane is used as a diaphragm, and a noble metal or a noble metal oxide anode and a cathode are placed on both sides of the cation-exchange membrane in a state of being substantially adhered to the cation-exchange membrane. Electrolysis is performed while supplying an electrolytic solution containing an acid and / or a non-metallic salt to the side of the anode chamber of the tank to obtain reformed water having a redox potential of 1000 mV or more and a pH of 3 or less in the anode chamber. Electrolysis method.
【請求項2】 酸が塩酸及び/又は硫酸である請求項1
に記載の電解方法。
2. The acid is hydrochloric acid and / or sulfuric acid.
The electrolysis method described in.
【請求項3】 非金属性塩が塩化アンモニウム及び/又
は硫酸アンモニウムである請求項1に記載の電解方法。
3. The electrolysis method according to claim 1, wherein the non-metallic salt is ammonium chloride and / or ammonium sulfate.
【請求項4】 酸及び/又は非金属性塩の濃度が100 〜
10000 ppmである請求項1に記載の電解方法。
4. The concentration of acid and / or non-metallic salt is 100-.
The electrolysis method according to claim 1, wherein the electrolysis is 10000 ppm.
JP7079428A 1995-03-10 1995-03-10 Electrolytic method Pending JPH08246180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7079428A JPH08246180A (en) 1995-03-10 1995-03-10 Electrolytic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7079428A JPH08246180A (en) 1995-03-10 1995-03-10 Electrolytic method

Publications (1)

Publication Number Publication Date
JPH08246180A true JPH08246180A (en) 1996-09-24

Family

ID=13689611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7079428A Pending JPH08246180A (en) 1995-03-10 1995-03-10 Electrolytic method

Country Status (1)

Country Link
JP (1) JPH08246180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283714A (en) * 1995-04-14 1996-10-29 Permelec Electrode Ltd Method for treating soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283714A (en) * 1995-04-14 1996-10-29 Permelec Electrode Ltd Method for treating soil

Similar Documents

Publication Publication Date Title
US6143163A (en) Method of water electrolysis
US6126796A (en) Electrolytic cell and method for the production of acid water
US5965009A (en) Method of producing acid water and electrolytic cell therefor
US5460705A (en) Method and apparatus for electrochemical production of ozone
CN105821436B (en) A kind of double electrolytic cell two-step method chloric alkali electrolysis method and devices based on three-electrode system
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JPH09262583A (en) Preparation of acidic water and alkaline water
KR20160093650A (en) Electrolytic cell equipped with concentric electrode pairs
JP3420820B2 (en) Method and apparatus for producing electrolytic acidic water
JP2012107331A (en) Water electrolysis system
US6761815B2 (en) Process for the production of hydrogen peroxide solution
JPH1099861A (en) Water electrolyzing method
WO2006112065A1 (en) Electrolytic bath for producing alkaline reduced water
JPH11269690A (en) Method for stopping membrane electrolytic cell having oxygen reduction cathode
JPH08246180A (en) Electrolytic method
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JP2015196871A (en) Apparatus and method for production of radical oxygen water
JP2019039033A (en) Electrolytic cell and electrode plate for electrolytic cell
JP3645636B2 (en) 3-chamber electrolytic cell
JPH08246181A (en) Electrolytic method
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JPH09220573A (en) Electrolytic method using two-chamber type electrolytic cell
JPH09217187A (en) Electrolysis method using two-chamber type electrolytic cell
JPH09195079A (en) Electrolytic cell for producing electrolyzed water