JPH08246102A - Multilayered high tensile strength steel excellent in fatigue strength in weld zone - Google Patents

Multilayered high tensile strength steel excellent in fatigue strength in weld zone

Info

Publication number
JPH08246102A
JPH08246102A JP5072395A JP5072395A JPH08246102A JP H08246102 A JPH08246102 A JP H08246102A JP 5072395 A JP5072395 A JP 5072395A JP 5072395 A JP5072395 A JP 5072395A JP H08246102 A JPH08246102 A JP H08246102A
Authority
JP
Japan
Prior art keywords
strength
fatigue
steel
fatigue strength
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5072395A
Other languages
Japanese (ja)
Inventor
Katsumi Kurebayashi
勝己 榑林
Shuji Aihara
周二 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5072395A priority Critical patent/JPH08246102A/en
Publication of JPH08246102A publication Critical patent/JPH08246102A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a multilayered high tensile strength steel excellent in fatigue strength in a weld zone by constituting the steel of surface layers of the front and rear faces of a steel plate of a specific composition consisting of C, Si, Mn, P, S, Nb, V, Ti, W and Fe and also regulating the carbon equivalent of the inner layer to a specific value. CONSTITUTION: This multilayered steel is constituted of surface layers, each having a thickness of >=0.1mm from the surface and the rear surface of a steel plate and also <50% of plate thickness, and an inner layer sandwiched between the surface layers. At this time, the surface layer has a composition containing, as essential components, 0.015-0.20%, by weight, C, 0.1-2.0% Si, 0.3-2.0% Mn, <=0.05% P, and <=0.05% S, further containing one or >=2 kinds among 0.05-1.0% Nb, 0.05-2.0% V, 0.05-1.0% Ti, and 0.10-2.0% W, satisfying 0.5<=6Nb+3V+6Ti+2 W<=6.0, having a carbon equivalent Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+ V)/5+Nb/3 satisfying 0.20<=Ceq<=0.35, and also having the balance Fe with inevitable impurities. Further, the inner layer has a carbon equivalent, Ceq satisfying 0.35<=Ceq<=0.70.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、造船、海洋構造物、橋
梁、建設機械などの分野において、高い溶接部の疲労強
度が必要で、しかも、高い母材強度が要求される部材に
用いられる、母材強度が490〜780MPa級の溶接
部の疲労強度が優れた複層高張力鋼に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for members that require high fatigue strength of welded parts and high base metal strength in the fields of shipbuilding, offshore structures, bridges, construction machinery and the like. The present invention relates to a multi-layer high-strength steel having excellent fatigue strength of a welded part having a base material strength of 490 to 780 MPa.

【0002】[0002]

【従来の技術】構造物の大型化にともない、構造部材の
重量低減が近年の重要な課題となっており、これを実現
するために構造物に使用される鋼の高張力化が進んでい
る。しかしながら、船舶、海洋構造物、橋梁、建設機械
などの分野では使用期間中に繰り返し荷重を受けるため
に、このような構造物においては疲労破壊を防止するた
めの配慮が必要である。疲労破壊が最も発生し易い部位
は溶接部であることから、溶接部の疲労強度を向上させ
ることが強く求められている。
2. Description of the Related Art With the increase in size of structures, reduction of the weight of structural members has become an important issue in recent years, and in order to realize this, the tensile strength of steel used for structures has been increasing. . However, in the fields of ships, offshore structures, bridges, construction machinery, and the like, repeated loads are applied during the period of use. Therefore, consideration must be given to preventing fatigue failure in such structures. Since the site where fatigue failure is most likely to occur is the welded part, there is a strong demand for improving the fatigue strength of the welded part.

【0003】これまで、溶接部の疲労強度支配要因と疲
労特性改善に関する膨大な研究がなされており、溶接部
疲労特性の改善は、グラインダー研削、溶接ビード最終
層を加熱・再溶融により止端部形状を整形するなどの溶
接止端部形状改善による応力集中度の低減によるもの、
ショットピーニング処理などの溶接止端部圧縮応力生成
によるものなど、力学的要因による改善がほとんどであ
った(特開昭59−110490号公報、特開平1−3
01823号公報など)。また、溶接後熱処理による残
留応力低減効果も従来からよく知られている。
To date, a great deal of research has been conducted on the factors governing the fatigue strength of welds and the improvement of fatigue properties. The improvement of the fatigue properties of welds is achieved by grinding and grinding the weld bead final layer and remelting the toe. By reducing the stress concentration by improving the shape of the weld toe such as shaping the shape,
Most of the improvements were due to mechanical factors, such as those due to the generation of compressive stress at the weld toe such as shot peening treatment (JP-A-59-110490, JP-A-1-33).
No. 01823 publication). Further, the effect of reducing residual stress by post-welding heat treatment has been well known.

【0004】一方、上記のような特殊な施工や溶接後熱
処理を用いず鋼材の成分によって、溶接部の疲労強度を
改善する方法も提案されている。特開平3−26464
6号公報では、NbとTiの添加により特定の組織を得
ることにより、伸びフランジ性、疲労特性、抵抗溶接性
を向上させることを目的として、C:0.01〜0.2
%、Mn:0.6〜2.5%、Si:0.02〜1.5
%を含み、更に、Nb:0.01〜0.1%及びTi:
0.01〜0.1%よりなる群から選ばれる少なくとも
1種の元素を含むこと等からなる、伸びフランジ性等に
優れた高強度鋼板が開示されている。
On the other hand, there has been proposed a method of improving the fatigue strength of the welded portion by the composition of the steel material without using the above-mentioned special construction and post-weld heat treatment. JP-A-3-26464
No. 6, in order to improve stretch flangeability, fatigue characteristics, and resistance weldability by obtaining a specific structure by adding Nb and Ti, C: 0.01 to 0.2.
%, Mn: 0.6 to 2.5%, Si: 0.02 to 1.5
%, And Nb: 0.01 to 0.1% and Ti:
Disclosed is a high-strength steel sheet excellent in stretch flangeability and the like, which contains at least one element selected from the group consisting of 0.01 to 0.1%.

【0005】特開昭63−282240号公報では、T
iとNの割合を限定することにより特定の組織を得るこ
とにより、降伏比が0.7以下で疲労強度と引張強度の
比が0.5以上とすることを目的として、C:0.03
〜0.1%、Mn:0.5〜2.0%、Si≦1.5
%、P≦0.15%、Ti≦0.05%かつTi≦3.
42×N、および、B:0.0002〜0.001%等
からなる、疲労特性の優れた高張力熱延鋼板が開示され
ている。
In Japanese Patent Laid-Open No. 63-282240, T
By obtaining a specific structure by limiting the ratio of i and N, the yield ratio is 0.7 or less and the fatigue strength / tensile strength ratio is 0.5 or more for the purpose of C: 0.03.
~ 0.1%, Mn: 0.5-2.0%, Si≤1.5
%, P ≦ 0.15%, Ti ≦ 0.05% and Ti ≦ 3.
Disclosed is a high-strength hot-rolled steel sheet having excellent fatigue properties, which is composed of 42 × N and B: 0.0002 to 0.001%.

【0006】特開昭57−60052号公報では、Ce
q値と母材の引張強さの関係を限定することにより、溶
接熱影響部(Heat Affected Zone:
以下HAZと略記)の軟化が小さく、溶接後の加工に際
しても局部変形が生ぜず、疲労強度の低下をもたらさな
いことを目的として、C:0.02〜0.15%、S
i:2.0%以下、Mn:0.1〜2.0%、Nb:
0.005〜0.05%を含み、Ceq=C+Si/2
4+Mn/6で定義されるCeqと母材の引張強さTS
の関係がTS≦25+100Ceqとすることからな
る、自動車ホイール用高強度鋼が開示されている。
In Japanese Patent Laid-Open No. 57-60052, Ce is used.
By limiting the relationship between the q value and the tensile strength of the base material, the weld heat affected zone (Heat Affected Zone:
For the purpose of not softening (hereinafter abbreviated as HAZ) small, causing no local deformation even during processing after welding, and not lowering fatigue strength, C: 0.02 to 0.15%, S
i: 2.0% or less, Mn: 0.1 to 2.0%, Nb:
Including 0.005 to 0.05%, Ceq = C + Si / 2
Ceq defined by 4 + Mn / 6 and tensile strength TS of base material
Discloses a high-strength steel for automobile wheels, which has a relationship of TS ≦ 25 + 100 Ceq.

【0007】特開平6−207245号公報では、圧縮
の残留応力により疲労き裂発生を抑制し、疲労き裂先端
にマイクロクラックを多数発生させることにより疲労き
裂伝播を遅延させることを目的として、鋼板の表裏面か
ら0.2mm以上で板厚の25%以下の領域に3%以上
のNiを添加し、鋼板の表裏面から板厚の5%以上の範
囲にわたって、結晶方位の等しい粒から構成されるコロ
ニーのアスペクト比が4以上で、かつその単軸径が5μ
m以下の組織からなる、疲労特性の優れた複層鋼板が開
示されている。
In Japanese Patent Laid-Open No. 6-207245, for the purpose of suppressing fatigue crack initiation due to residual stress of compression and delaying fatigue crack propagation by producing a large number of microcracks at the tips of fatigue cracks. 3% or more of Ni is added to a region of 0.2 mm or more from the front and back surfaces of the steel plate and 25% or less of the plate thickness, and is composed of grains having the same crystal orientation from the front and back surfaces of the steel plate to 5% or more of the plate thickness. The colony aspect ratio is 4 or more and the uniaxial diameter is 5μ
A multi-layer steel sheet having a structure of m or less and having excellent fatigue properties is disclosed.

【0008】特開平3−147840号公報では、鋼板
の内部は軟い硬度分布を持つことによりプレス加工性を
損なわずに、表層硬化により疲労強度を向上させること
を目的として、表層がC:0.01〜0.15%、S
i:0.05〜2.0%、平均硬度:140〜200、
内層がC:0.1%以下、Si:0.05〜0.5%、
平均硬度:50〜130からなる、疲労強度の優れた複
合鋼板及びその製造方法が開示されている。
In Japanese Patent Laid-Open No. 147840/1993, the inside of the steel sheet has a soft hardness distribution, so that the surface layer is C: 0 for the purpose of improving fatigue strength by surface layer hardening without impairing press workability. 0.01-0.15%, S
i: 0.05 to 2.0%, average hardness: 140 to 200,
The inner layer is C: 0.1% or less, Si: 0.05 to 0.5%,
A composite steel sheet having an average hardness of 50 to 130 and excellent in fatigue strength and a method for manufacturing the same are disclosed.

【0009】[0009]

【発明が解決しようとする課題】これらのうち、特開昭
59−110490号公報、および特開平1−3018
23号公報では、溶接後に特殊な施工をする必要があ
り、溶接したままで疲労特性を改善することは出来な
い。溶接後熱処理による方法も工程が増加し溶接施工が
煩雑となるため好ましくない。また、その効果も限られ
たものである。特開平3−264646号公報、および
特開昭63−282240号公報に示されている鋼板
は、用途が主に自動車用ホイールリムやディスクに関す
るものであるが、対象が溶接部ではなく母材であって、
溶接部の疲労特性に関する記載はない。
Of these, JP-A-59-110490 and JP-A-1-3018 are among these.
According to Japanese Patent No. 23, it is necessary to carry out a special construction after welding, and it is impossible to improve the fatigue characteristics with welding. The post-welding heat treatment method is also not preferable because the number of steps is increased and the welding work becomes complicated. Also, the effect is limited. The steel sheets disclosed in JP-A-3-264646 and JP-A-63-282240 are mainly used for automobile wheel rims and discs, but the target is not the welded portion but the base metal. There
There is no description regarding the fatigue characteristics of welds.

【0010】特開昭57−60052号公報に示されて
いる鋼板は、溶接熱影響部の軟化を小さくすることによ
り疲労強度を低下させない高強度鋼に関するものであ
り、本発明鋼のようにHAZを強化して疲労強度を向上
させるためにNbを添加したものではなく、基本思想が
異なる。また、疲労強度に関する具体的な記載はない。
さらに、Nbの添加量は微量であり、本願で必要とする
Nbの添加量とは成分範囲が異なる。
The steel sheet disclosed in Japanese Unexamined Patent Publication No. 57-60052 relates to a high-strength steel in which the fatigue strength is not lowered by reducing the softening of the heat-affected zone of the welding, and like the steel of the present invention, HAZ. Nb is not added in order to strengthen and improve fatigue strength, but the basic idea is different. Moreover, there is no specific description regarding fatigue strength.
Further, the amount of Nb added is very small, and the component range is different from the amount of Nb added required in the present application.

【0011】特開平6−207245号公報に示されて
いる鋼板は、Niを3%以上添加して、圧縮の残留応力
により疲労き裂の発生を抑制するものであり、本発明の
ように、析出強化と固溶強化により疲労き裂の発生を抑
制するものではなく、基本思想が異なる。また、本発明
とは鋼板の表裏面から板厚の5%以上の範囲の結晶方位
と組織形態を規定する点でも異なる。また、HAZの疲
労強度が向上するかどうかは不明である。
The steel sheet disclosed in Japanese Unexamined Patent Publication No. 6-207245 suppresses the occurrence of fatigue cracks due to residual stress of compression by adding Ni in an amount of 3% or more. Fatigue crack initiation is not suppressed by precipitation strengthening and solid solution strengthening, but the basic idea is different. The present invention is also different from the present invention in that the crystal orientation and the microstructure in the range of 5% or more of the plate thickness from the front and back surfaces of the steel plate are defined. Further, it is unknown whether the fatigue strength of HAZ is improved.

【0012】特開平3−147840号公報に示されて
いる鋼板は、表層が疲労強度を向上させる点では同じで
あるが、これは表層硬化により疲労強度を向上させるも
のであり、本発明のように析出強化や固溶強化によるも
のではなく、基本思想が異なる。また、溶接部の疲労強
度が向上するかどうかは不明である。本発明は、応力集
中度の低減や溶接残留応力の低減を実現するための付加
的な溶接施工による疲労特性の改善ではなく、溶接した
ままで溶接熱影響部の組織を制御することにより、鋼板
の溶接部の疲労強度を向上させながら、高い母材強度を
得ることができる複層高張力鋼を提示することを目的と
する。
The steel sheet disclosed in Japanese Patent Laid-Open No. 3-147840 is the same in that the surface layer improves the fatigue strength, but this is to improve the fatigue strength by hardening the surface layer. The basic idea is different, not due to precipitation strengthening or solid solution strengthening. Further, it is not clear whether the fatigue strength of the welded portion is improved. The present invention does not improve the fatigue characteristics by additional welding work for realizing the reduction of stress concentration and the reduction of welding residual stress, but by controlling the structure of the weld heat affected zone as welded, the steel sheet It is an object of the present invention to provide a multi-layer high-strength steel capable of obtaining a high base metal strength while improving the fatigue strength of the welded part.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めの本発明の主要原理は以下のように総括できる。すな
わち、鋼板の表層部では、疲労き裂の発生することが多
いHAZ組織を炭化物や窒化物により析出強化するだけ
でなく、HAZ組織のマトリックスを固溶強化すること
により溶接部の疲労特性を向上させる一方、鋼板の内層
部では表層よりも高い炭素当量の成分とすることにより
高い母材強度を確保して、溶接部の疲労強度が優れた複
層高張力鋼を得るものである。
The main principle of the present invention for solving the above problems can be summarized as follows. That is, in the surface layer of the steel sheet, not only the HAZ structure in which fatigue cracks often occur is precipitation strengthened by carbides and nitrides, but also the matrix of the HAZ structure is solid-solution strengthened to improve the fatigue properties of the welded part. On the other hand, in the inner layer portion of the steel sheet, a high base metal strength is secured by using a component having a carbon equivalent higher than that of the surface layer, and a multi-layer high tensile steel having excellent fatigue strength of the welded portion is obtained.

【0014】即ち、本発明の要旨とするところは、 (1)鋼板の表裏面からそれぞれ1.0mm以上で、か
つ板厚の50%未満の領域である表層と、これら表層で
はさまれる内層からなる複層鋼において、当該表層は重
量%で、C :0.015〜0.20、Si:0.1〜
2.0、Mn:0.3〜2.0、P :0.05以下、
S :0.05以下、を基本成分とし、更にNb:0.
05〜1.0、V :0.05〜2.0、Ti:0.0
5〜1.0、W :0.10〜2.0を1種または2種
以上を含有し、0.5≦6Nb+3V+6Ti+2W≦
6.0を満たし、さらに炭素当量(Ceq)が、0.2
0≦Ceq(表層)≦0.35を満たし、残部はFeと
不可避的不純物からなり、当該内層は炭素当量が、 0.35≦Ceq(内層)≦0.70 であることを特徴とする溶接部の疲労強度が優れた複層
高張力鋼。ただし、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/5+Nb/3
That is, the gist of the present invention is as follows: (1) From the surface layer which is 1.0 mm or more from the front and back surfaces of the steel sheet and is less than 50% of the sheet thickness, and the inner layer sandwiched between these surface layers. In the multi-layer steel, the weight ratio of the surface layer is C: 0.015 to 0.20, Si: 0.1
2.0, Mn: 0.3 to 2.0, P: 0.05 or less,
S: 0.05 or less as a basic component, and Nb: 0.
05-1.0, V: 0.05-2.0, Ti: 0.0
5 to 1.0, W: 0.10 to 2.0, containing 1 type or 2 types or more, 0.5 ≦ 6Nb + 3V + 6Ti + 2W ≦
6.0, and the carbon equivalent (Ceq) is 0.2
Welding characterized by satisfying 0 ≦ Ceq (surface layer) ≦ 0.35, the balance consisting of Fe and inevitable impurities, and the inner layer having a carbon equivalent of 0.35 ≦ Ceq (inner layer) ≦ 0.70. Multi-ply high-strength steel with excellent fatigue strength in parts. However, Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 5 + Nb / 3

【0015】(2)前記表層が重量%で、B:0.00
03〜0.0030を含有することを特徴とする前記
(1)に記載の溶接部の疲労強度が優れた複層高張力
鋼。 (3)前記表層が重量%で、Ni:0.10〜3.0、
Cr:0.10〜2.0、Mo:0.10〜4.0、C
u:0.10〜1.5を1種または2種以上を含有する
ことを特徴とする前記(1)または2に記載の溶接部の
疲労強度が優れた複層高張力鋼。
(2) B: 0.00% by weight of the surface layer
03-0.0030 is contained, The multi-layer high-strength steel excellent in fatigue strength of the welded part as described in (1) above. (3) The surface layer is wt%, Ni: 0.10 to 3.0,
Cr: 0.10-2.0, Mo: 0.10-4.0, C
u: 0.10-1.5, 1 type (s) or 2 or more types are contained, The multilayer high-strength steel excellent in the fatigue strength of the welded part as described in said (1) or 2 characterized by the above-mentioned.

【0016】(4)前記表層が重量%で、Ca:0.0
005〜0.0050、REM:0.0005〜0.0
050の1種または2種を含有することを特徴とする前
記(1)〜(3)のいずれか1項に記載の溶接部の疲労
強度が優れた複層高張力鋼。ただし、REMは希土類元
素である、にある。
(4) The surface layer is weight% and Ca: 0.0
005-0.0050, REM: 0.0005-0.0
The high-strength multi-layer steel having excellent fatigue strength of the welded part according to any one of (1) to (3) above, which contains one or two kinds of 050. However, REM is a rare earth element.

【0017】[0017]

【作用】以下に述べる(1)〜(4)に、本発明におけ
る溶接部の疲労強度を向上させ、高い母材強度を得るた
めの主要原理について説明する。 (1)まず、溶接部の疲労強度を向上させる鋼板表層の
添加元素の関係と炭素当量を限定する主要原理について
述べる。溶接継手の疲労強度は止端部応力集中、初期欠
陥、溶接残留応力、板厚効果などの他にHAZ組織の影
響を受け、疲労き裂は鋼板表面のHAZから発生し、鋼
板中心部に向けて伝播して、最終的な破断に至るケース
が多い。そのため、溶接したままで溶接部の疲労強度を
向上するためには、HAZ組織を強化し、HAZ組織を
制御して、鋼板表面からの疲労き裂の発生を阻止または
抑制することが重要になる。
In the following (1) to (4), the main principle for improving the fatigue strength of the welded portion and obtaining a high base metal strength in the present invention will be explained. (1) First, the relationship between the additive elements in the steel sheet surface layer for improving the fatigue strength of the weld and the main principle of limiting the carbon equivalent will be described. The fatigue strength of welded joints is affected by the HAZ structure in addition to the stress concentration at the toe, initial defects, welding residual stress, plate thickness effect, etc., and fatigue cracks are generated from the HAZ on the steel plate surface and directed toward the center of the steel plate. In many cases, it propagates and finally breaks. Therefore, in order to improve the fatigue strength of the welded portion as it is welded, it is important to strengthen the HAZ structure and control the HAZ structure to prevent or suppress the occurrence of fatigue cracks from the steel sheet surface. .

【0018】HAZの強化法には、析出強化、固溶強
化、転位強化、細粒強化などが挙げられる。これらのう
ち、転位強化と細粒強化は溶接時における急速な再加熱
・冷却による転位の再配列と組織の粗大化により、HA
Z組織の強化に寄与しない。しかし、Nb、V、Tiお
よびWを適量添加すれば、炭化物や窒化物を生成して析
出強化すると同時に、マトリックスを固溶強化するた
め、HAZ組織を強化することが出来る。
Examples of the HAZ strengthening method include precipitation strengthening, solid solution strengthening, dislocation strengthening, and fine grain strengthening. Among these, dislocation strengthening and fine grain strengthening are caused by rearrangement of dislocations and coarsening of the structure due to rapid reheating and cooling during welding.
Does not contribute to strengthening the Z organization. However, when Nb, V, Ti and W are added in appropriate amounts, carbides and nitrides are generated and precipitation strengthened, and at the same time, the matrix is solid-solution strengthened, so that the HAZ structure can be strengthened.

【0019】これらの元素は析出強化し、固溶強化する
という点で同じ効果を持つが、添加量とその影響は異な
るため、疲労強度に対するこれらの元素添加量の影響は
単純に和の形で表すことはできない。今まで疲労強度に
対する各元素の寄与率について、多くの実験を行って検
討してきた結果、これらの効果が現れる添加量の関係
は、K=6Nb+3V+6Ti+2Wとして等価に評価
できることがわかってきた。以下、この関係をKという
値で示すこととする。
These elements have the same effect in terms of precipitation strengthening and solid solution strengthening, but the addition amount and its effect are different, so the effect of the addition amount of these elements on fatigue strength is simply in the form of a sum. It cannot be represented. As a result of conducting many experiments and studying the contribution rate of each element to the fatigue strength, it has been found that the relationship of the addition amount in which these effects appear can be equivalently evaluated as K = 6Nb + 3V + 6Ti + 2W. Hereinafter, this relationship will be represented by a value K.

【0020】これらの元素を一元素もしくは複数元素添
加することにより、Kの値が0.5以上となる場合、疲
労強度を向上させる効果が現れる。従って、その下限値
は0.5とした。また、Kの値が6.0を越えて多量に
添加すると、析出強化や固溶強化による効果が飽和する
だけでなく、後述するように焼き入れ性が高くなるため
に疲労強度は逆に低下する。従って、その上限値を6.
0とした。HAZがベイナイト組織の場合には、結晶粒
内から疲労き裂が発生するため、上記の手法によってH
AZ組織を強化することにより、疲労強度を向上させる
ことが可能である。しかし、HAZに占めるマルテンサ
イト組織の面積率が高くなると、マルテンサイト組織の
結晶粒界から疲労き裂が発生しやすくなるために、疲労
強度は向上しない。
By adding one or more of these elements, the effect of improving the fatigue strength appears when the value of K becomes 0.5 or more. Therefore, the lower limit value is set to 0.5. Further, when the K value exceeds 6.0 and is added in a large amount, not only the effects of precipitation strengthening and solid solution strengthening are saturated, but also the hardenability becomes high as will be described later, so that the fatigue strength decreases conversely. To do. Therefore, the upper limit is set to 6.
It was set to 0. When the HAZ has a bainite structure, fatigue cracks are generated from inside the crystal grains.
By strengthening the AZ structure, it is possible to improve fatigue strength. However, when the area ratio of the martensite structure in the HAZ increases, fatigue cracks easily occur from the grain boundaries of the martensite structure, and the fatigue strength does not improve.

【0021】そこで、溶接部の疲労強度を向上させるた
めには、マルテンサイト組織の面積率を1%以下に抑制
することが望ましいため、焼入れ性の指標である炭素当
量を用いて、鋼材の化学成分をさらに限定する必要があ
る。炭素当量の値はIIWの式にNbの効果を考慮した
場合、次の式により示すことができる。 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/5+Nb/3 炭素当量の値が0.35を越えると、HAZにおけるマ
ルテンサイト組織の面積率が増加することから、炭素当
量の上限値を0.35とした。また、炭素当量が0.2
0未満では、疲労強度向上の効果は飽和する一方、表層
部の強度が低下し、内層で母材強度を維持しても鋼板全
体での強度確保が困難になるため、その下限値を0.2
0とした。
Therefore, in order to improve the fatigue strength of the welded portion, it is desirable to suppress the area ratio of the martensitic structure to 1% or less. Therefore, the carbon equivalent, which is an index of hardenability, is used to chemically analyze the steel material. The ingredients need to be further limited. When the effect of Nb is taken into consideration in the formula of IIW, the value of carbon equivalent can be shown by the following formula. Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 5 + Nb / 3 When the value of the carbon equivalent exceeds 0.35, the area ratio of the martensite structure in the HAZ increases, so the upper limit of the carbon equivalent was set to 0.35. Also, the carbon equivalent is 0.2
When it is less than 0, the effect of improving the fatigue strength is saturated, but the strength of the surface layer portion decreases, and it becomes difficult to secure the strength of the entire steel sheet even if the strength of the base material is maintained in the inner layer. Two
It was set to 0.

【0022】(2)次に、高い母材強度を得るための複
層化と、鋼板表層と内層の割合および鋼板内層の炭素当
量を限定する主要原理を述べる。溶接部の疲労強度を向
上させるために鋼板の炭素当量を0.35以下にすると
鋼板を十分に強化することが出来ないために、490M
Pa以上の母材強度を確保するのは困難となる。そこ
で、鋼板を複層化することにより、この問題を解決する
ことが出来る。すなわち、HAZから発生する疲労き裂
を阻止または抑制して、溶接部の疲労強度を向上できる
鋼板の表層と、母材強度や母材靱性を十分に確保できる
鋼板の内層を有する複層鋼板により、高い溶接部の疲労
強度と高い母材強度を両立させることが出来る。また、
490MPa級の鋼板でも、表層の炭素当量を低くした
ままで、内層の炭素当量を上げることにより、制御圧延
・制御冷却条件を緩和しても、高い溶接部の疲労強度と
高い母材強度を両立できる。
(2) Next, a description will be given of the multi-layered structure for obtaining a high base metal strength, and the main principle of limiting the ratio of the steel sheet surface layer to the inner layer and the carbon equivalent of the steel sheet inner layer. If the carbon equivalent of the steel sheet is set to 0.35 or less in order to improve the fatigue strength of the welded portion, the steel sheet cannot be sufficiently strengthened.
It becomes difficult to secure a base material strength of Pa or more. Therefore, this problem can be solved by forming the steel sheet into multiple layers. That is, a multilayer steel sheet having a surface layer of a steel sheet capable of preventing or suppressing the fatigue cracks generated from the HAZ and improving the fatigue strength of the welded portion and an inner layer of the steel sheet capable of sufficiently securing the base material strength and the base material toughness is provided. It is possible to achieve both high fatigue strength of the welded part and high base metal strength. Also,
Even for 490 MPa class steel sheets, by increasing the carbon equivalent of the inner layer while keeping the carbon equivalent of the surface layer low, even if the controlled rolling / controlled cooling conditions are relaxed, both high fatigue strength of the weld and high base metal strength are achieved. it can.

【0023】疲労き裂は応力集中がある溶接部の鋼板表
面から発生するため、この発生を抑制するためには、表
層の厚さが1.0mm以上は必要であるため、その下限
値を1.0mmとした。また、表層厚さが板厚の50%
以上になると、高い母材強度を得ることが困難になるこ
とから、その上限値を板厚の50%未満とした。さら
に、好ましくは母材強度の確保の観点から板厚の30%
未満である。また、母材強度を確保するためには炭素当
量を0.35以上にする必要があることから、その下限
値を0.35とした。一方、炭素当量は高いほど母材強
度が向上するが母材靱性や溶接性は低下し、これらを確
保するためには炭素当量を0.7以下に抑制する必要が
あることから、その下限値を0.70とした。
Fatigue cracks are generated from the steel sheet surface of the welded portion where stress is concentrated. Therefore, the thickness of the surface layer is required to be 1.0 mm or more in order to suppress this generation. It was set to 0.0 mm. Also, the surface layer thickness is 50% of the plate thickness.
When it becomes the above, it becomes difficult to obtain high base metal strength, so the upper limit was made less than 50% of the plate thickness. Further, preferably from the viewpoint of securing the strength of the base material, 30% of the plate thickness
Is less than. Further, since the carbon equivalent needs to be 0.35 or more to secure the strength of the base material, the lower limit value is set to 0.35. On the other hand, the higher the carbon equivalent, the higher the base metal strength, but the lower the base metal toughness and weldability. To secure these, it is necessary to suppress the carbon equivalent to 0.7 or less. Was set to 0.70.

【0024】(3)次に、本発明において限定した鋼板
表層の各成分について述べる。まず、請求項1で成分限
定した各元素について述べる。Cは、母材強度を上昇さ
せる元素であり、母材強度上昇のためには多量に添加す
ることが望ましい。しかしながら、0.20%超のCの
添加は、母材並びに溶接部の靱性を低下させる。従っ
て、Cの上限を0.20%とした。さらに、好ましく
は、溶接性の低下や溶接後の焼入れ性を考慮すると0.
10%以下である。また、Cが0.015%未満では母
材強度の確保が困難になるため、Cの下限値を0.01
5%とした。
(3) Next, each component of the steel sheet surface layer limited in the present invention will be described. First, each element whose components are limited in claim 1 will be described. C is an element that increases the strength of the base material, and it is desirable to add a large amount thereof in order to increase the strength of the base material. However, addition of more than 0.20% of C reduces the toughness of the base metal as well as the weld. Therefore, the upper limit of C is set to 0.20%. Furthermore, it is preferable that the weldability is 0.
It is 10% or less. Further, if C is less than 0.015%, it becomes difficult to secure the strength of the base material, so the lower limit of C is set to 0.01
It was set to 5%.

【0025】Siは、溶製時の脱酸に必要な元素であ
り、適量添加するとマトリックスを固溶強化する。Si
が0.1%未満では、溶製時の脱酸効果が減少するた
め、下限値を0.1%とした。Siを2.0%超添加す
ると、焼入れ性が高くなるだけでなく、靱性も低下す
る。従って、上限値を2.0%とした。Mnは、靱性を
あまり低下させることなく母材強度を上昇させる元素で
ある。Mnが0.3%未満では十分な母材強度が得られ
ず、S脆化が起こりやすくなるため、下限値を0.3%
とした。また、2.0%超のMnを含有すると、溶接部
の靱性が低下するだけでなく、溶接性、延性も劣化する
ため、上限値を2.0%とした。
Si is an element necessary for deoxidation at the time of melting, and when added in an appropriate amount, it solid-solution strengthens the matrix. Si
If less than 0.1%, the deoxidizing effect during melting decreases, so the lower limit was made 0.1%. If Si is added in excess of 2.0%, not only the hardenability increases, but also the toughness decreases. Therefore, the upper limit is set to 2.0%. Mn is an element that increases the strength of the base material without significantly reducing the toughness. If Mn is less than 0.3%, sufficient base metal strength cannot be obtained, and S embrittlement easily occurs, so the lower limit is 0.3%.
And Further, if Mn is contained in excess of 2.0%, not only the toughness of the welded portion is deteriorated but also the weldability and ductility are deteriorated, so the upper limit was made 2.0%.

【0026】Pは、少ないほど好ましく、0.05%超
添加すると母材の粒界に偏析して粒界脆化するためにH
AZの靱性が低下する。よって上限値を0.05%とし
た。Sは、低いほど好ましく、0.05%超含有すると
A系介在物が顕著となり、母材と溶接部の靱性を害し、
板厚方向の延性も低下させる。従って、上限値を0.0
5%とした。Nb、V、TiおよびWは、前述したよう
にいずれの元素も炭化物や窒化物の生成による析出強化
とマトリックスの固溶強化の相乗効果により疲労強度を
向上させる効果がある。この効果が期待できる最低限の
添加量として、0.05%、0.05%、0.05%、
0.10%を下限値とした。また、過度の添加は溶接部
の靱性を低下させ、溶接性の劣化を招くため、それぞれ
の添加量の上限値を、1.0%,2.0%、1.0%、
2.0%とした。
The smaller the content of P, the more preferable it is, and if it is added in excess of 0.05%, it segregates at the grain boundaries of the base material to cause grain boundary embrittlement.
The toughness of AZ decreases. Therefore, the upper limit is set to 0.05%. The lower the S content, the more preferable it is, and if it exceeds 0.05%, A-based inclusions become prominent and the toughness of the base metal and the welded portion is impaired.
It also reduces the ductility in the plate thickness direction. Therefore, the upper limit is 0.0
It was set to 5%. As described above, Nb, V, Ti, and W all have the effect of improving fatigue strength by the synergistic effect of precipitation strengthening due to the formation of carbides and nitrides and solid solution strengthening of the matrix. As the minimum amount of addition that can expect this effect, 0.05%, 0.05%, 0.05%,
0.10% was made into the lower limit. Further, excessive addition lowers the toughness of the welded portion and deteriorates the weldability. Therefore, the upper limits of the respective addition amounts are 1.0%, 2.0%, 1.0%,
It was set to 2.0%.

【0027】本発明においては、上記の元素に加えて、
次のような元素を鋼板に含んでもよく、以下、請求項
2、3、4に成分限定した各元素について記す。Bは、
粒界の焼入れ性を上昇し、HAZ組織がベイナイト組織
の場合にき裂の発生源となる粒界初析フェライトやフェ
ライト・サイド・プレートの生成を抑制して、溶接部の
疲労強度を向上させる。その添加量は、Bが0.000
3%未満では粒界焼入れ性を増加させる効果は少ないた
め、下限値を0.0003%とした。また、0.003
0%超含有すると、B窒化物やほう炭化物を析出して靱
性を低下させるので、上限値を0.0030%とした。
In the present invention, in addition to the above elements,
The following elements may be contained in the steel sheet, and each element whose composition is limited to claims 2, 3, and 4 will be described below. B is
Increases the hardenability of grain boundaries and suppresses the generation of grain boundary proeutectoid ferrite and ferrite side plates that are the source of cracks when the HAZ structure is a bainite structure, and improves the fatigue strength of welds. . The addition amount of B is 0.000.
If it is less than 3%, the effect of increasing the grain boundary hardenability is small, so the lower limit was made 0.0003%. Also, 0.003
If the content exceeds 0%, B nitrides and borocarbides are precipitated to lower the toughness, so the upper limit was made 0.0030%.

【0028】Niは、母材強度を上げるだけでなく、靱
性を大幅に向上させる。その効果が得られる添加量とし
て、下限値を0.1%とした。また、3.0%超添加し
てもその効果は飽和するため、上限値を3.0%とし
た。Crは、母材強度ならびに靱性を向上させる効果が
あり、炭化物や窒化物を生成してHAZ組織を強化する
効果があり、疲労強度も向上させる。これらの効果を得
るには、0.10%の添加が必要である。また、2.0
%超添加してもその効果は飽和し、逆に溶接性が損なわ
れる。そのため、下限値を0.1%、上限値を2.0%
とした。
Ni not only increases the strength of the base material, but also significantly improves the toughness. The lower limit of the amount added to obtain the effect was set to 0.1%. The effect is saturated even if added over 3.0%, so the upper limit was made 3.0%. Cr has the effect of improving the base material strength and toughness, has the effect of forming carbides and nitrides to strengthen the HAZ structure, and also improves fatigue strength. To obtain these effects, addition of 0.10% is necessary. Also, 2.0
Even if added in excess of%, the effect is saturated and conversely the weldability is impaired. Therefore, the lower limit is 0.1% and the upper limit is 2.0%.
And

【0029】Moは、母材強度を向上させるだけでなく
靱性も向上させる効果があり、炭化物や窒化物を生成す
る点で、Crと同様の作用をする。その効果が現れる添
加量として下限値を0.10%とし、その効果が飽和す
る添加量として、上限値を4.0%とした。Cuは、母
材強度を向上させる効果があり、さらに炭化物は生成し
ないが固溶強化により疲労強度を向上させる。0.1%
以上添加しないとその効果はなく、1.5%超添加する
と、スラブの凝固割れの原因になるため、下限値を0.
1%、上限値を1.5%とした。
Mo has the effect of not only improving the strength of the base metal but also improving the toughness, and acts similar to Cr in that it forms carbides and nitrides. The lower limit was 0.10% as the amount of addition of the effect, and the upper limit was 4.0% as the amount of addition of the effect. Cu has the effect of improving the strength of the base material, and does not generate carbides, but improves fatigue strength by solid solution strengthening. 0.1%
If it is not added above, the effect is not obtained, and if it exceeds 1.5%, it causes solidification cracking of the slab, so the lower limit is set to 0.
1% and the upper limit value was 1.5%.

【0030】Caは、疲労き裂の発生源となる硫化物を
固定し、延性を向上させる効果がある。添加量が0.0
005%以下ではその効果が期待できず、また0.00
50%超では靱性を低下させる。よって、下限値を0.
0005%、上限値を0.0050%とした。REM
は、疲労き裂の発生源となる硫化物を固定し、延性を向
上させる点で、Caと同様の効果がある。REMは希土
類元素であればいずれの元素も同様の効果を有すると考
えられるが、これらの中でも特に、LaとCeがそれら
の代表として挙げられる。REM添加による効果が発揮
されるには、合計で0.0005%以上添加することが
必要であり、0.0050%以上添加してもその効果は
飽和し、経済的でもなくなる。よって、下限値を0.0
005%、上限値を0.0050%とした。
Ca has the effect of fixing the sulfide which is the source of fatigue crack generation and improving the ductility. Addition amount is 0.0
If 005% or less, the effect cannot be expected, and 0.00
If it exceeds 50%, the toughness is lowered. Therefore, the lower limit is set to 0.
0005% and the upper limit of 0.0050%. REM
Has the same effect as Ca in that it fixes sulfide, which is the source of fatigue crack generation, and improves ductility. It is considered that any element of REM has the same effect as long as it is a rare earth element, and among these, La and Ce are particularly representative. In order to exert the effect of REM addition, it is necessary to add 0.0005% or more in total, and even if 0.0050% or more is added, the effect is saturated and it is not economical. Therefore, the lower limit is 0.0
005% and the upper limit value was 0.0050%.

【0031】(4)最後に鋼板内層の成分として、好ま
しい範囲を示す。鋼板内層の成分は特に限定する必要は
ないが、C :0.015〜0.20、Si:0.1〜
2.0、Mn:0.3〜2.0、P :0.05以下、
S :0.05以下、を含有し、あるいはさらにNb:
0.005〜1.0、V :0.005〜2.0、T
i:0.005〜1.0、W :0.10〜2.0、B
:0.0003〜0.0030、Ni:0.10〜
3.0、Cr:0.10〜2.0、Mo:0.10〜
4.0、Cu:0.10〜1.5、Ca:0.0005
〜0.0050、REM:0.0005〜0.0050
の1種または2種以上を含有することが望ましい。
(4) Finally, a preferable range is shown as a component of the steel plate inner layer. The components of the steel sheet inner layer are not particularly limited, but C: 0.015 to 0.20, Si: 0.1
2.0, Mn: 0.3 to 2.0, P: 0.05 or less,
S: 0.05 or less, or further Nb:
0.005-1.0, V: 0.005-2.0, T
i: 0.005-1.0, W: 0.10-2.0, B
: 0.0003 to 0.0030, Ni: 0.10
3.0, Cr: 0.10 to 2.0, Mo: 0.10
4.0, Cu: 0.10 to 1.5, Ca: 0.0005
~ 0.0050, REM: 0.0005-0.0050
It is desirable to contain one kind or two or more kinds.

【0032】また、本発明で示した複層鋼板を用いれ
ば、T時隅肉溶接継手、十字隅肉溶接継手、廻し溶接継
手、突き合わせ溶接継手のようないずれの溶接継手で
も、高い母材強度を維持したまま溶接部の疲労強度を向
上させることが出来る。さらに、本発明は不活性ガスを
用いたアーク溶接(MIG)、炭酸ガスあるいは混合ガ
スを用いたアーク溶接(MAG)、タングステン・アー
ク溶接(TIG)のようなガスシールドアーク溶接によ
る溶接方法を用いた場合に特に有効であるが、被覆アー
ク溶接(SMAW)や、サブマージアーク溶接(SA
W)のような溶接方法を用いた溶接継手でも疲労強度を
向上させることができる。
If the multi-layer steel sheet shown in the present invention is used, high base metal strength can be obtained in any welded joint such as T-time fillet welded joint, cross fillet welded joint, lap welded joint and butt welded joint. It is possible to improve the fatigue strength of the welded portion while maintaining the above. Further, the present invention uses a welding method by gas shielded arc welding such as arc welding using an inert gas (MIG), arc welding using a carbon dioxide gas or a mixed gas (MAG), and tungsten arc welding (TIG). In particular, it is effective in case of welding, but covered arc welding (SMAW) and submerged arc welding (SA
Even in a welded joint using a welding method such as W), the fatigue strength can be improved.

【0033】[0033]

【実施例】以下に、本発明の実施例について述べる。各
元素の影響を調査するために、本発明例として鋼A〜J
の10鋼種、比較例として鋼K〜Nの4鋼種、合計14
鋼種の複層スラブを溶製した。複層スラブの製造方法に
は、連続鋳造や2つの鋼板の爆着などが考えられるが、
ここではそれぞれ別々に溶解した表層と内層の化学成分
の溶鋼を、同時に鋳造することにより複層鋼板を得る連
続鋳造方法を用いた。表1に鋼板の表層と内層の化学成
分、炭素当量、および6Nb+3V+6Ti+2Wの値
をKとして示す。ここで、REMはランタノイド、アク
チノイドに属するいずれの元素も用いることが出来る
が、ここでは特にLaとCeとし、それらの合計をRE
Mの添加量とした。また、炭素当量(Ceq)は請求項
1で用いた式により計算した。表中の下線は、本発明の
請求範囲外であることを示す。
EXAMPLES Examples of the present invention will be described below. In order to investigate the influence of each element, steels A to J were used as examples of the present invention.
10 steel types, 4 steel types of steels K to N as comparative examples, 14 in total
Steel type multi-layer slab was melted. Continuous casting and explosion-bonding of two steel plates are conceivable as the manufacturing method of the multi-layer slab,
Here, a continuous casting method is used in which a molten steel having a chemical composition of the surface layer and a molten steel of an inner layer which are separately melted are simultaneously cast to obtain a multilayer steel sheet. In Table 1, the chemical composition of the surface layer and the inner layer of the steel sheet, the carbon equivalent, and the value of 6Nb + 3V + 6Ti + 2W are shown as K. Here, any element belonging to the lanthanoids and actinides can be used as the REM, but here, La and Ce are particularly used, and the sum of them is set to RE.
The addition amount of M was set. The carbon equivalent (Ceq) was calculated by the formula used in claim 1. The underline in the table indicates that it is outside the scope of the claims of the present invention.

【0034】[0034]

【表1】 [Table 1]

【0035】表2には、製造方法、表層の割合、機械特
性を示す。この表に示したように、鋼により熱延まま、
制御圧延、制御冷却、焼き戻しを組み合わせて行うこと
により、板厚を15〜40mmに圧延した。具体的に
は、複層スラブを1200℃で1時間保持した後、熱延
ままについてはそのまま仕上げ板厚まで圧延したが、こ
れ以外は仕上げ板厚の3倍の板厚まで粗圧延を行い、A
3 点以上未再結晶温度以下まで温度待ちをした後に板
厚15〜40mmに圧延を行った。制御圧延のみの場合
は圧延終了後に室温まで空冷し、これと制御冷却を組み
合わせた場合は圧延終了後ただちに500℃にまで水冷
した後室温まで空冷し、さらに焼き戻しを組み合わせた
場合は圧延終了後ただちに水冷して、室温まで冷却した
後、550℃で1時間熱処理を行った。この鋼板のミク
ロ組織観察を行い、鋼板の板厚、鋼板の表裏面の表層厚
さの合計値を測定し、板厚に対する表層の占める割合を
算出した。また、引張試験により、母材の降伏応力、引
張強度、破断伸びを測定した。本発明例では、鋼A〜D
が490MPa級鋼、鋼E〜Iが590MPa級鋼、鋼
Jが780MPa級鋼である。
Table 2 shows the manufacturing method, the ratio of the surface layer, and the mechanical properties. As shown in this table, as hot rolled by steel,
By performing controlled rolling, controlled cooling, and tempering in combination, the plate thickness was rolled to 15 to 40 mm. Specifically, after holding the multi-layer slab at 1200 ° C. for 1 hour, the hot-rolled as-rolled sheet was rolled to a finished sheet thickness as it was, but otherwise, rough rolling was performed to a sheet thickness three times the finished sheet thickness, A
After waiting for a temperature of r 3 points or more to a temperature not higher than the unrecrystallization temperature, rolling was performed to a plate thickness of 15 to 40 mm. In the case of only controlled rolling, it is air-cooled to the room temperature after the rolling is completed, and when it is combined with the controlled cooling, it is immediately water-cooled to 500 ° C after the rolling is completed and then air-cooled to the room temperature, and when the tempering is combined, after the rolling is completed. Immediately after cooling with water and cooling to room temperature, heat treatment was performed at 550 ° C. for 1 hour. The microstructure of this steel plate was observed, the total value of the plate thickness of the steel plate and the surface thickness of the front and back surfaces of the steel plate was measured, and the ratio of the surface layer to the plate thickness was calculated. Further, the yield stress, tensile strength, and elongation at break of the base material were measured by a tensile test. In the present invention example, steels A to D
Is a 490 MPa class steel, Steels E to I are 590 MPa class steels, and Steel J is a 780 MPa class steel.

【0036】[0036]

【表2】 [Table 2]

【0037】この鋼板を用いて、図1(A)(B)に示
すT字隅肉溶接疲労試験片1を作成した。図中、2は平
板、3はリブ板で、両板により隅部4を構成し、この隅
部を溶接した。5は溶接金属である。試験片1の形状
は、a=50mm,b=200mm,c=15mm,d
=30mm,e=15mmであった。T字隅肉溶接継手
は板厚依存性があり、鋼板の板厚により溶接継手の疲労
強度に影響を及ぼすため、異なる板厚の溶接継手の疲労
強度を比較することは出来ない。そこで、板厚が15m
mより厚い鋼板については片面を研削して板厚を15m
mとし、表層を有する研削していない側にリブを溶接し
た。溶接方法としては様々な方法を用いることが可能で
あるが、ここでは炭酸ガスアーク溶接とし、溶接入熱は
18kJ/cmとした。この試験片に対し、大気中、室
温、応力比R(最小応力/最大応力)=0.1で、3点
曲げ疲労試験を行った。表3に、各溶接継手の疲労強度
を示す。ここで、疲労強度としては繰り返し数が200
万回での応力範囲を用いた。
Using this steel sheet, a T-shaped fillet welding fatigue test piece 1 shown in FIGS. 1 (A) and 1 (B) was prepared. In the figure, 2 is a flat plate, 3 is a rib plate, and a corner portion 4 is formed by both plates, and the corner portion is welded. 5 is a weld metal. The shape of the test piece 1 is a = 50 mm, b = 200 mm, c = 15 mm, d
= 30 mm and e = 15 mm. Since the T-shaped fillet welded joint has a plate thickness dependency and the plate thickness of the steel plate affects the fatigue strength of the welded joint, it is not possible to compare the fatigue strength of welded joints having different plate thicknesses. Therefore, the plate thickness is 15m
For steel plates thicker than m, grind one side to a plate thickness of 15 m
m, and the rib was welded to the non-ground side having the surface layer. Although various methods can be used as the welding method, carbon dioxide arc welding was used here and the welding heat input was 18 kJ / cm. A three-point bending fatigue test was performed on this test piece in the air at room temperature with a stress ratio R (minimum stress / maximum stress) = 0.1. Table 3 shows the fatigue strength of each welded joint. Here, the fatigue strength is 200 repetitions.
The stress range at ten thousand times was used.

【0038】[0038]

【表3】 [Table 3]

【0039】次に、溶接継手の疲労試験結果について述
べる。継手1は、表層のNbの添加量が0.05%以
上、Kの値が0.50以上、表層の炭素当量が0.35
以下、内層の炭素当量が0.35以上であり、請求項1
の条件を満たしている、引張強度が490MPa級の複
層高張力鋼Aによる溶接継手である。溶接継手の疲労試
験結果からわかるように、本発明例はNbを添加してH
AZが析出強化や固溶強化により強化されて疲労き裂の
発生が抑制されるため、高い溶接部の疲労強度を得るこ
とが出来る。また、表層部の炭素当量が低くても、複層
化することにより制御圧延・制御冷却をせずに高い母材
強度を同時に得ることが出来る。
Next, the fatigue test results of the welded joint will be described. In the joint 1, the amount of Nb added to the surface layer is 0.05% or more, the value of K is 0.50 or more, and the carbon equivalent of the surface layer is 0.35.
Hereinafter, the carbon equivalent of the inner layer is 0.35 or more,
It is a welded joint made of multi-layer high-strength steel A having a tensile strength of 490 MPa and satisfying the conditions of. As can be seen from the fatigue test results of the welded joint, the present invention example added Hb by adding Nb.
Since AZ is strengthened by precipitation strengthening or solid solution strengthening and the occurrence of fatigue cracks is suppressed, high fatigue strength of welded parts can be obtained. Further, even if the carbon equivalent of the surface layer portion is low, it is possible to obtain high base metal strength at the same time without performing controlled rolling and controlled cooling by forming a multilayer.

【0040】継手2〜4も表層にV、Ti、Wを添加し
た490MPa級の複層高張力鋼B〜Dを用いた溶接継
手で、いずれも同様の効果により疲労強度が高い。継手
5〜9は表層にNb、V、Ti、Wを1種または2種以
上添加し、あるいはさらにB、Ni、Cr、Mo、C
u、Ca、REMを1種または2種以上添加した590
MPa級の複層高張力鋼E〜G、継手10は同様の78
0MPa級の複層高張力鋼Hによる溶接継手である。継
手5はNb、V、Ti、Wの析出強化と固溶強化によ
り、継手6、7は表層のBによる粒界初析フェライトや
フェライト・サイド・プレートの抑制効果、並びにN
i、Cr、Mo、Cuの炭化窒化物の生成や固溶強化に
よる疲労強度向上効果および母材強度向上効果により、
継手8〜10はCa、REMによる疲労き裂の発生源の
抑制効果により、高い溶接部の疲労強度や母材強度を達
成している。
The joints 2 to 4 are also welded joints using the 490 MPa grade multi-layer high-strength steels B to D with V, Ti, and W added to the surface layers, and all have high fatigue strength due to the same effect. The joints 5 to 9 have one or more kinds of Nb, V, Ti and W added to the surface layer, or further B, Ni, Cr, Mo and C.
590 with one or more added u, Ca and REM
The multi-layer high-strength steels E to G of the MPa class and the joint 10 have the same 78
It is a welded joint made of 0 MPa class multi-layer high-strength steel H. The joint 5 has precipitation strengthening of Nb, V, Ti, and W and solid solution strengthening, and the joints 6 and 7 have an effect of suppressing grain boundary proeutectoid ferrite and ferrite side plates by B of the surface layer, and N.
Due to the effect of improving the fatigue strength and the strength of the base material by the formation of carbonitrides of i, Cr, Mo and Cu and solid solution strengthening,
The joints 8 to 10 achieve high fatigue strength of the weld and base metal strength due to the effect of suppressing the source of fatigue cracks caused by Ca and REM.

【0041】一方、継手11は表層にNbを添加した4
90MPa級の複層高張力鋼Kを用いた溶接継手であ
る。この継手は強化元素の添加量が本請求範囲よりも少
なく、Kの値が0.50に満たないため、HAZが十分
強化されておらず、疲労き裂の発生が比較的容易なた
め、溶接継手の疲労強度は発明例よりも低い。また、表
層が50%以上なため、母材強度も不足している。継手
12は表層にNb、V、Ti、Wを添加した590MP
a級の複層高張力鋼Lを用いた溶接継手である。この継
手は、Kの値が同様に0.50に満たないだけでなく、
表層の厚さが1mmに満たないため、疲労強度は向上し
ない。
On the other hand, the joint 11 has Nb added to the surface 4
It is a welded joint that uses 90 MPa grade multi-layer high-strength steel K. In this joint, the addition amount of the strengthening element is less than the present range and the value of K is less than 0.50, the HAZ is not sufficiently strengthened, and fatigue cracking is relatively easy to occur. The fatigue strength of the joint is lower than that of the inventive example. Further, since the surface layer is 50% or more, the strength of the base material is insufficient. Fitting 12 is 590MP with Nb, V, Ti and W added to the surface layer
It is a welded joint using a-grade multi-layer high-strength steel L. Not only does this joint have a K value less than 0.50,
Since the thickness of the surface layer is less than 1 mm, the fatigue strength is not improved.

【0042】継手13は鋼Hの内層と同等の化学成分を
有する単層鋼Mを用いた溶接継手である。炭素当量の低
い表層が無い分だけ、高い母材強度となっているが、強
化元素が少ないため、Kの値が0.5を満たさず、溶接
継手の疲労強度は低い。継手14は鋼Hの表層と同等の
化学成分を有する単層鋼Nを用いた溶接継手である。溶
接継手の疲労強度はHAZの強化などにより向上する
が、母材強度は780MPa級にはおよばず、高い溶接
部の疲労強度と母材強度を両立するためには複層化が有
効であることがわかる。
The joint 13 is a welded joint using a single layer steel M having the same chemical composition as the inner layer of the steel H. Although the base metal strength is high because there is no surface layer with a low carbon equivalent, the K value does not satisfy 0.5 because the number of reinforcing elements is small, and the fatigue strength of the welded joint is low. The joint 14 is a welded joint using single-layer steel N having the same chemical composition as the surface layer of steel H. Although the fatigue strength of welded joints is improved by strengthening HAZ, etc., the base metal strength does not reach the 780 MPa class, and multi-layering is effective in achieving both high fatigue strength and base metal strength of welded parts. I understand.

【0043】[0043]

【発明の効果】以上詳述したように、本発明によれば、
鋼板の表層はNb、V、Ti、Wを適量添加してHAZ
を析出強化と固溶強化により強化し、炭素当量を抑制し
てHAZ組織を制御することにより疲労特性を向上させ
る一方、鋼板の内層は高い母材強度と靱性を有する成分
系にすることにより、溶接部の疲労強度に優れた複層高
張力鋼を得ることが可能となった。このような効果を有
する本発明鋼の産業上の意義は極めて著しいものであ
る。
As described in detail above, according to the present invention,
HAZ is added to the surface of steel sheet by adding Nb, V, Ti and W in appropriate amounts.
By strengthening precipitation strengthening and solid solution strengthening, and improving the fatigue characteristics by controlling the carbon equivalent and controlling the HAZ structure, while the inner layer of the steel sheet is a component system having high base metal strength and toughness, It has become possible to obtain multi-layer high-strength steel with excellent fatigue strength in the weld. The industrial significance of the steel of the present invention having such effects is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るT字隅肉溶接疲労試験片を示す
図である。
FIG. 1 is a view showing a T-shaped fillet welding fatigue test piece according to the present invention.

【符号の説明】[Explanation of symbols]

1 T字隅肉溶接疲労試験片 2 平板 3 リブ板 4 隅部 5 溶接金属 1 T-shaped fillet welding fatigue test piece 2 Flat plate 3 Rib plate 4 Corner 5 Weld metal

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月10日[Submission date] April 10, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】(2)前記表層が重量%で、 B:0.0003〜0.0030 を含有することを特徴とする前記(1)に記載の溶接部
の疲労強度が優れた複層高張力鋼。 (3)前記表層が重量%で、Ni:0.10〜3.0、
Cr:0.10〜2.0、Mo:0.10〜4.0、C
u:0.10〜1.5を1種または2種以上を含有する
ことを特徴とする前記(1)または(2)に記載の溶接
部の疲労強度が優れた複層高張力鋼。
(2) The high-strength multi-layer steel having excellent fatigue strength of the welded part according to (1), characterized in that the surface layer contains B: 0.0003 to 0.0030 in weight%. . (3) The surface layer is wt%, Ni: 0.10 to 3.0,
Cr: 0.10-2.0, Mo: 0.10-4.0, C
u: 0.10-1.5, 1 type (s) or 2 or more types are contained, The multi-layer high-strength steel with the excellent fatigue strength of the welded part as described in said (1) or (2) .

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】これらの元素を一元素もしくは複数元素添
加することにより、Kの値が0.5以上となる場合、疲
労強度を向上させる効果が現れる。従って、その下限値
は0.5とした。また、Kの値が6.0を越えて多量に
添加すると、析出強化や固溶強化による効果が飽和する
だけでなく、後述するように焼き入れ性が高くなるため
に疲労強度は逆に低下する。従って、その上限値を6.
0とした。HAZがフェライトもしくはベイナイト組織
の場合には、結晶粒内から疲労き裂が発生するため、上
記の手法によってHAZ組織を強化することにより、疲
労強度を向上させることが可能である。しかし、HAZ
に占めるマルテンサイト組織の面積率が高くなると、マ
ルテンサイト組織の結晶粒界から疲労き裂が発生しやす
くなるために、疲労強度は向上しない。
By adding one or more of these elements, the effect of improving the fatigue strength appears when the value of K becomes 0.5 or more. Therefore, the lower limit value is set to 0.5. Further, when the K value exceeds 6.0 and is added in a large amount, not only the effects of precipitation strengthening and solid solution strengthening are saturated, but also the hardenability becomes high as will be described later, so that the fatigue strength decreases conversely. To do. Therefore, the upper limit is set to 6.
It was set to 0. When the HAZ has a ferrite or bainite structure, fatigue cracks occur in the crystal grains. Therefore, it is possible to improve fatigue strength by strengthening the HAZ structure by the above method. But HAZ
When the area ratio of the martensite structure in the alloy is high, fatigue cracks are likely to occur from the crystal grain boundaries of the martensite structure, and the fatigue strength is not improved.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】また、本発明で示した複層鋼板を用いれ
ば、T隅肉溶接継手、十字隅肉溶接継手、廻し溶接継
手、突き合わせ溶接継手のようないずれの溶接継手で
も、高い母材強度を維持したまま溶接部の疲労強度を向
上させることが出来る。さらに、本発明は不活性ガスを
用いたアーク溶接(MIG)、炭酸ガスあるいは混合ガ
スを用いたアーク溶接(MAG)、タングステン・アー
ク溶接(TIG)のようなガスシールドアーク溶接によ
る溶接方法を用いた場合に特に有効であるが、被覆アー
ク溶接(SMAW)や、サブマージアーク溶接(SA
W)のような溶接方法を用いた溶接継手でも疲労強度を
向上させることができる。
If the multi-layer steel sheet shown in the present invention is used, high base metal strength can be obtained in any welded joints such as T- shaped fillet welded joints, cross fillet welded joints, turn welded joints and butt welded joints. It is possible to improve the fatigue strength of the welded portion while maintaining the above. Further, the present invention uses a welding method by gas shielded arc welding such as arc welding using an inert gas (MIG), arc welding using a carbon dioxide gas or a mixed gas (MAG), and tungsten arc welding (TIG). In particular, it is effective in case of welding, but covered arc welding (SMAW) and submerged arc welding (SA
Even in a welded joint using a welding method such as W), the fatigue strength can be improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/58 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/58 C22C 38/58

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の表裏面からそれぞれ1.0mm以
上で、かつ板厚の50%未満の領域である表層と、これ
ら表層ではさまれる内層からなる複層鋼において、当該
表層は重量%で、 C :0.015〜0.20、 Si:0.1〜2.0、 Mn:0.3〜2.0、 P :0.05以下、 S :0.05以下、を基本成分とし、更にNb:0.
05〜1.0、 V :0.05〜2.0、 Ti:0.05〜1.0、 W :0.10〜2.0を1種または2種以上を含有
し、 0.5≦6Nb+3V+6Ti+2W≦6.0を満た
し、さらに炭素当量(Ceq)が、 0.20≦Ceq(表層)≦0.35を満たし、残部は
Feと不可避的不純物からなり、 当該内層は炭素当量が、 0.35≦Ceq(内層)≦0.70 であることを特徴とする溶接部の疲労強度が優れた複層
高張力鋼。ただし、 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr
+Mo+V)/5+Nb/3
1. A multi-layer steel comprising a surface layer which is 1.0 mm or more from the front and back surfaces of a steel sheet and is an area of less than 50% of the plate thickness, and an inner layer sandwiched between these surface layers, wherein the surface layer is represented by weight%. , C: 0.015 to 0.20, Si: 0.1 to 2.0, Mn: 0.3 to 2.0, P: 0.05 or less, S: 0.05 or less as a basic component, Furthermore, Nb: 0.
05-1.0, V: 0.05-2.0, Ti: 0.05-1.0, W: 0.10-2.0, containing 1 type or 2 types or more, and 0.5 ≦ 6Nb + 3V + 6Ti + 2W ≦ 6.0, the carbon equivalent (Ceq) satisfies 0.20 ≦ Ceq (surface layer) ≦ 0.35, the balance consists of Fe and inevitable impurities, and the inner layer has a carbon equivalent of 0. 35 <Ceq (inner layer) <0.70 A multi-layer high-strength steel excellent in fatigue strength of a welded portion, characterized by: However, Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr
+ Mo + V) / 5 + Nb / 3
【請求項2】 前記表層が重量%で、 B:0.0003〜0.0030 を含有することを特徴とする請求項1に記載の溶接部の
疲労強度が優れた複層高張力鋼。
2. The multi-layer high-strength steel excellent in fatigue strength of a welded portion according to claim 1, wherein the surface layer contains B: 0.0003 to 0.0030 in weight%.
【請求項3】 前記表層が重量%で、 Ni:0.10〜3.0、 Cr:0.10〜2.0、 Mo:0.10〜4.0、 Cu:0.10〜1.5を1種または2種以上を含有す
ることを特徴とする請求項1または2に記載の溶接部の
疲労強度が優れた複層高張力鋼。
3. The surface layer is, by weight%, Ni: 0.10 to 3.0, Cr: 0.10 to 2.0, Mo: 0.10 to 4.0, Cu: 0.10 to 1. The multi-layered high-strength steel excellent in fatigue strength of a welded part according to claim 1 or 2, characterized in that it contains 5 or more kinds.
【請求項4】 前記表層が重量%で、 Ca:0.0005〜0.0050、 REM:0.0005〜0.0050の1種または2種
を含有することを特徴とする請求項1〜3のいずれか1
項に記載の溶接部の疲労強度が優れた複層高張力鋼。た
だし、REMは希土類元素である。
4. The surface layer contains, by weight, one or two of Ca: 0.0005 to 0.0050 and REM: 0.0005 to 0.0050. One of
A multi-layer high-strength steel excellent in fatigue strength of the welded part according to the item. However, REM is a rare earth element.
JP5072395A 1995-03-10 1995-03-10 Multilayered high tensile strength steel excellent in fatigue strength in weld zone Withdrawn JPH08246102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5072395A JPH08246102A (en) 1995-03-10 1995-03-10 Multilayered high tensile strength steel excellent in fatigue strength in weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5072395A JPH08246102A (en) 1995-03-10 1995-03-10 Multilayered high tensile strength steel excellent in fatigue strength in weld zone

Publications (1)

Publication Number Publication Date
JPH08246102A true JPH08246102A (en) 1996-09-24

Family

ID=12866797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5072395A Withdrawn JPH08246102A (en) 1995-03-10 1995-03-10 Multilayered high tensile strength steel excellent in fatigue strength in weld zone

Country Status (1)

Country Link
JP (1) JPH08246102A (en)

Similar Documents

Publication Publication Date Title
KR0157540B1 (en) High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5604842B2 (en) Steel material for large heat input welding
JP6616006B2 (en) High-strength steel material excellent in low-temperature strain aging impact characteristics and impact characteristics of weld heat-affected zone and its manufacturing method
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
WO2018159719A1 (en) Fillet welded joint and manufacturing method thereof
KR102255821B1 (en) Ultra-thick steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP2008208406A (en) Steel material having small material anisotropy and excellent fatigue crack propagation properties, and producing method therefor
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPH0873983A (en) Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
KR101949025B1 (en) Cold rolled steel sheet for flux cored wire and method of manufacturing the same
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JPH06235044A (en) High tensile strength steel for welding structure excellent in fatigue strength and toughness at weld heat-affected zone
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JPH11229078A (en) High tensile strength steel plate excellent in toughness of parent metal and large heat-input weld heat affected zone and its production
JP2011074445A (en) Method for manufacturing non-heat-treated high-tensile-strength thick steel superior in toughness at heat-affected zone in high-heat-input weld
JPH08253821A (en) Production of welded joint having excellent fatigue strength
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JPH08246102A (en) Multilayered high tensile strength steel excellent in fatigue strength in weld zone
JP2011153366A (en) Method for manufacturing high-tensile-strength steel sheet to be laser-welded or laser/arc hybrid-welded having tensile strength of 1,100 mpa or more

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604