JPH08238501A - Method for sheathing tial base intermetallic compound - Google Patents

Method for sheathing tial base intermetallic compound

Info

Publication number
JPH08238501A
JPH08238501A JP6864495A JP6864495A JPH08238501A JP H08238501 A JPH08238501 A JP H08238501A JP 6864495 A JP6864495 A JP 6864495A JP 6864495 A JP6864495 A JP 6864495A JP H08238501 A JPH08238501 A JP H08238501A
Authority
JP
Japan
Prior art keywords
intermetallic compound
tial
based intermetallic
sheath material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6864495A
Other languages
Japanese (ja)
Inventor
Yoji Mizuhara
原 洋 治 水
Tadatsugu Yoshida
田 忠 継 吉
Keizo Hashimoto
本 敬 三 橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6864495A priority Critical patent/JPH08238501A/en
Publication of JPH08238501A publication Critical patent/JPH08238501A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE: To provide a hot working method by which a TiAl base intermetallic compound is easily taken out of a sheath material after working in the hot- working method of TiAl base intermetallic compound, especially in a sheathing method. CONSTITUTION: In the sheathing method of the TiAl base intermetallic compound, steel is used as a covering material, an oxide 2 is inserted between the steel 1 and the TiAl base intermetallic compound 3, or the oxide is enclosed into the steel after forming those oxides on the surface of this TiAl base intermetallic compound and hot working is execute. The oxide used as a reaction inhibitor may be inserted in a sheet shape or a powdered shape at the time of enclosing the TiAl base intermetallic compound into the sheath material 3 or the oxide may be uniformly on the intermetallic compound. In this way, machining such as cutting and grinding of the sheath material after forming is simplified, so machining time and machining cost are further reduced and also the yield of the TiAl base intermetallic compound is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、TiAl基金属間化合
物の熱間加工に係わり、特に航空機、宇宙往還機用部品
や自動車のエンジン部材などに用途が期待されるTiA
l基金属間化合物をシース加工法によって熱間加工機で
成形する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hot working of a TiAl-based intermetallic compound, and is particularly expected to be used for parts for aircraft, space shuttles, automobile engine parts, etc.
The present invention relates to a method of molding an l-based intermetallic compound by a hot working machine by a sheath working method.

【0002】[0002]

【従来の技術】TiAl基金属間化合物は、軽量で優れ
た高温強度を有しているため、上述のような構造用材料
として注目されている。しかし、室温、高温での変形能
の欠如、難切削性が材料製造プロセス上の問題となって
いる。
2. Description of the Related Art A TiAl-based intermetallic compound is light in weight and has excellent high-temperature strength, and therefore has been attracting attention as a structural material as described above. However, lack of deformability at room temperature and high temperature and difficulty in cutting are problems in the material manufacturing process.

【0003】従来、TiAl基金属間化合物の熱間加工
法として特開昭63−171862号公報に開示されて
いる恒温鍛造法が知られている。この方法は、試料だけ
でなく加工用ダイスも800〜1100℃の恒温に保持
した後、比較的遅い歪速度で加工することにより割れを
防止する方法である。また、特開平2−224803号
公報では真空(10-2Torr以下)または不活性ガス雰囲
気下で温度900〜1150℃、10-2〜10-4/secの
低歪速度の条件下で行う恒温圧延法を利用した方法が開
示されている。何れの加工法においても高温で、かつ一
定温度で加工を行うので、高温の保持と素材の酸化防止
および素材と加工用ダイスとの反応防止が必要となる。
またこれに伴って、雰囲気制御、温度コントロールの為
の設備を必要とするため、加工装置全体が大型になって
いた。
Conventionally, as a hot working method for a TiAl-based intermetallic compound, a constant temperature forging method disclosed in JP-A-63-171862 is known. According to this method, not only the sample but also the processing die is kept at a constant temperature of 800 to 1100 ° C. and then processed at a relatively low strain rate to prevent cracking. Further, in Japanese Unexamined Patent Publication No. 2-224803, a constant temperature of 900 to 1150 ° C. under a vacuum (10 −2 Torr or less) or an inert gas atmosphere and a low strain rate of 10 −2 to 10 −4 / sec. A method using a rolling method is disclosed. In any of the processing methods, since the processing is performed at a high temperature and at a constant temperature, it is necessary to maintain the high temperature, prevent the material from oxidizing, and prevent the reaction between the material and the processing die.
Along with this, a facility for atmosphere control and temperature control is required, so that the entire processing apparatus becomes large.

【0004】これらの問題点を解消する発明として、特
開昭61−213361号公報に素材の周囲を被覆する
シース材を用いて熱間加工を行う方法が開示されてい
る。この方法ではNi系、Co系あるいはFe−Ni系
の耐熱合金がシース材として用いられ、1000℃以上
で加工を行った結果、加工率50%程度まで素材は酸化
されることなく成形されている。更に、特開平3−19
7630号公報ではシース材としてTiAl基金属間化
合物の変形抵抗に近いチタン合金を用いたシース加工法
が開示されている。シース材をTi合金にした結果、T
iAl基金属間化合物の熱間加工を割れなく前述のシー
ス材では加工できなかった60%の加工率まで成形が可
能になっている。これらシース加工法では、TiAl基
金属間化合物を被覆材で密封する工程を設けるだけで前
述した高価で大型な恒温鍛造機や恒温圧延機を必要とせ
ず、通常の加工プロセスを利用した成形が可能となっ
た。さらに加工率も高く、高歪速度の条件下でも成形で
きるため、加工速度の面からも優れている。
As an invention for solving these problems, Japanese Patent Application Laid-Open No. 61-213361 discloses a method of performing hot working using a sheath material which covers the periphery of the material. In this method, a Ni-based, Co-based, or Fe-Ni-based heat-resistant alloy is used as a sheath material, and as a result of processing at 1000 ° C. or higher, the material is molded up to a processing rate of about 50% without being oxidized. . Furthermore, JP-A-3-19
Japanese Patent No. 7630 discloses a sheath processing method using a titanium alloy having a deformation resistance close to that of a TiAl-based intermetallic compound as a sheath material. As a result of changing the sheath material to Ti alloy, T
The hot working of the iAl-based intermetallic compound can be performed without cracking up to a working rate of 60% which could not be processed by the above-mentioned sheath material. These sheath processing methods do not require the expensive and large-sized constant temperature forging machine or constant temperature rolling machine just by providing a step of sealing the TiAl-based intermetallic compound with a coating material, and molding using a normal processing process is possible. Became. Further, the processing rate is high, and since it can be molded even under the condition of high strain rate, it is excellent in terms of processing rate.

【0005】[0005]

【発明が解決しようとする課題】シース加工では素材で
あるTiAl基金属間化合物の酸化を防ぐために、真空
中で熱間加工するか大気中で加工を行う際には、真空封
入した後に溶接を行うので何れの場合もシース材内は脱
気された状態になっている。また、TiAl基金属間化
合物の加工特性上、熱間加工を行う環境は1000℃以
上の高温となり、そして加工条件として比較的低歪速度
の条件下で、かつ多パスとなるため通常の金属加工に比
べると加工時間が掛かる。一方、被加工材、シース材で
ある金属間化合物、耐熱合金はそれぞれ金属元素から構
成されている。
In order to prevent the TiAl-based intermetallic compound, which is a raw material, from being oxidized in sheath processing, when hot working in vacuum or working in air, welding is performed after vacuum sealing. Since it is performed, the inside of the sheath material is degassed in any case. In addition, due to the processing characteristics of the TiAl-based intermetallic compound, the environment for hot working is a high temperature of 1000 ° C. or higher, and the processing conditions are relatively low strain rate and multiple passes, so normal metal working is performed. Processing time is longer than that of. On the other hand, the material to be processed, the intermetallic compound as the sheath material, and the heat-resistant alloy are each composed of a metal element.

【0006】以上の加工条件とシース材内の構成では加
工後に両材料が圧着するか、あるいはそれぞれの構成原
子の固相拡散による接合が起こってしまう。従って、成
形後にTiAl基金属間化合物を取り出すためにはシー
ス材の切断、研削等の機械加工が必要となり、プロセス
上、工程が増えてしまう。さらに、上記のシース材は何
れも難切削性材料であり、加工経費が掛かるという問題
点がある。また、素材とシース材の間で接合してしまう
ので素材の表面も研削しなければならず、素材の歩留ま
りの低下も避けられないことが課題となっていた。
Under the above processing conditions and the structure of the sheath material, both materials will be pressure bonded after processing, or bonding will occur due to solid phase diffusion of the respective constituent atoms. Therefore, in order to take out the TiAl-based intermetallic compound after molding, it is necessary to perform machining such as cutting and grinding of the sheath material, which increases the number of steps in the process. Furthermore, all of the above-mentioned sheath materials are difficult-to-cut materials, and there is a problem that processing costs are high. Further, since the material and the sheath material are bonded to each other, the surface of the material has to be ground, and a reduction in the yield of the material is unavoidable.

【0007】本発明は、TiAl基金属間化合物の熱間
加工法に関するものであり、特にシース加工法において
シース材とTiAl基金属間化合物の反応を防ぎ、加工
後、TiAl基金属間化合物を容易に取り出す方法を提
供することを目的とするものである。
The present invention relates to a hot working method of a TiAl-based intermetallic compound, and particularly, in the sheath working method, it is possible to prevent the reaction between the sheath material and the TiAl-based intermetallic compound and to facilitate the TiAl-based intermetallic compound after the working. The purpose is to provide a method of taking out the same.

【0008】[0008]

【課題を解決するための手段】本発明は、下記の事項を
その要旨としている。すなわち、 被加工材を被覆するシース材を用いて熱間加工する
際に、被覆するシース材と内部のTiAl基金属間化合
物の間に、このTiAl基金属間化合物との反応性の低
い酸化物を挿入して行うことを特徴とするTiAl基金
属間化合物の熱間加工法。 被覆するシース材と内部のTiAl基金属間化合物
の間に挿入する酸化物の形状としてシート状のものを用
いる前記に記載のTiAl基金属間化合物の熱間加工
法。 被覆するシース材と内部のTiAl基金属間化合物
の間に挿入する酸化物の形状として粉末状のものを用い
る前記に記載のTiAl基金属間化合物の熱間加工
法。 被加工材を被覆するシース材を用いて熱間加工する
際に、TiAl基金属間化合物の表面に、このTiAl
基金属間化合物との反応性の低い酸化物を形成した後、
シース材に封入して行うTiAl基金属間化合物の熱間
加工法。
The gist of the present invention is as follows. That is, when performing hot working using a sheath material that coats a material to be processed, an oxide having a low reactivity with the TiAl-based intermetallic compound between the sheath material to be coated and the internal TiAl-based intermetallic compound. A hot working method for a TiAl-based intermetallic compound, characterized in that The hot working method for a TiAl-based intermetallic compound as described above, wherein a sheet-shaped oxide is inserted between the sheath material to be coated and the TiAl-based intermetallic compound inside. The hot working method of a TiAl-based intermetallic compound as described above, wherein a powdery oxide is inserted between the sheath material to be coated and the TiAl-based intermetallic compound inside. During hot working using a sheath material that covers the workpiece, the TiAl-based intermetallic compound is formed on the surface of the TiAl-based intermetallic compound.
After forming an oxide with low reactivity with the base intermetallic compound,
A hot working method of a TiAl-based intermetallic compound by enclosing it in a sheath material.

【0009】以下に、本発明を詳細に説明する。まず、
加工に供されるTiAl基金属間化合物はTiとAlか
らなる組成であることは勿論、これにCr、V、Mn、
Nbなどを添加した材料も含まれる。TiAl基金属間
化合物とシース材の間に形成する層は、加工条件に鑑み
て熱的、化学的に安定でなければならず、またTiAl
基金属間化合物との化学反応性が低く、接合に好ましい
条件とは逆の条件、つまり熱膨張係数などの物理的性質
が両者の材料から懸け離れた物質が良い。熱的、化学的
に安定な材料群としてセラミックスが知られており、中
でもAl2 3 、CaO等の酸化物はTiAl基金属間
化合物を高周波溶解するための坩堝にも使用されている
ことから、熱的に安定であり、TiAl基金属間化合物
との反応性が低いといえる。また、チタンと鋼の接合か
らなるチタンクラッド鋼において熱間の大気中で金属同
士の接合を行う場合、酸化物が生成するために接合しな
いことが報告されており、反応防止層として酸化物の優
位性が挙げられる。さらに、酸化物は熱伝導率が金属に
比べて低いので、シース加工時において表面からの温度
低下を防ぐ断熱の効果も備えている点においても優れて
いる。
The present invention will be described in detail below. First,
The TiAl-based intermetallic compound used for processing is of course composed of Ti and Al, and of course, Cr, V, Mn,
Materials including Nb added are also included. The layer formed between the TiAl-based intermetallic compound and the sheath material must be thermally and chemically stable in view of processing conditions.
It is preferable to use a substance that has low chemical reactivity with the base intermetallic compound and is opposite to the preferable conditions for bonding, that is, a substance whose physical properties such as a thermal expansion coefficient are far from those of both materials. Ceramics are known as a group of thermally and chemically stable materials. Among them, oxides such as Al 2 O 3 and CaO are also used in crucibles for high-frequency melting of TiAl-based intermetallic compounds. It can be said that it is thermally stable and has low reactivity with the TiAl-based intermetallic compound. In addition, it has been reported that when performing metal-to-metal bonding in a hot air atmosphere in titanium-clad steel composed of titanium and steel, no bonding occurs due to the formation of oxides. There are advantages. Furthermore, since oxide has a lower thermal conductivity than metal, it is also excellent in that it has a heat insulating effect of preventing a temperature drop from the surface during sheath processing.

【0010】酸化物の中においては加工時の環境が10
00℃以上の高温であることを踏まえ、熱的に安定な、
つまり生成自由エネルギーが低い、Al2 3 、CaO
を使用することが望ましい。特に、Al2 3 はTiA
l基金属間化合物の耐酸化性の保護膜として有効である
ことが確認されている。その理由は、TiO2 等に比べ
緻密に形成でき、金属原子、酸素の拡散を抑制するから
である。
In the oxide, the processing environment is 10
Considering the high temperature of 00 ℃ or more, it is thermally stable,
That is, Al 2 O 3 and CaO, which have low free energy of formation
Is preferred. In particular, Al 2 O 3 is TiA
It has been confirmed that it is effective as an oxidation resistant protective film for an l-based intermetallic compound. The reason is that it can be formed more densely than TiO 2 or the like and suppresses the diffusion of metal atoms and oxygen.

【0011】本発明のような反応防止層を設けない場合
では、加工後にシース材よりTiAl基金属間化合物を
取り出すためには切削する必要があり、その上シース材
と反応した箇所を研削しなければならない。しかし、T
iAl基金属間化合物は難削材であるため、切削仕上げ
面表層域は多くのクラックが生成し易く、製品として実
用化された場合、靭性値が低くなることが予想される。
一方、反応防止層として安定な酸化物を形成すれば、シ
ース材からTiAl基金属間化合物を取りだした後にT
iAl基金属間化合物の表層を研削する必要がない。そ
れは熱的、化学的に安定な酸化物を用いれば、TiAl
基金属間化合物の表面に酸化物が形成されたままでも使
用環境上TiAl基金属間化合物の特性を阻害するよう
なことがないからである。むしろAl2 3 を用いた場
合、耐酸化特性のために保護膜としての特性を望めるの
で有益である。
In the case where the reaction preventive layer as in the present invention is not provided, it is necessary to cut in order to take out the TiAl-based intermetallic compound from the sheath material after processing, and the portion that has reacted with the sheath material must be ground. I have to. But T
Since the iAl-based intermetallic compound is a difficult-to-cut material, many cracks are easily generated in the surface layer region of the cut finish surface, and it is expected that the toughness value will be low when it is put into practical use as a product.
On the other hand, if a stable oxide is formed as the reaction-preventing layer, after removing the TiAl-based intermetallic compound from the sheath material, T
It is not necessary to grind the surface layer of the iAl-based intermetallic compound. If a thermally and chemically stable oxide is used, TiAl
This is because even if an oxide is formed on the surface of the base intermetallic compound, the characteristics of the TiAl base intermetallic compound are not impaired in the environment of use. Rather, when Al 2 O 3 is used, it is advantageous because it can be expected to have characteristics as a protective film due to its oxidation resistance.

【0012】酸化物からなる反応防止層としては、シー
ス材にTiAl基金属間化合物を封入する際にシート状
あるいは粉末状で挿入しても良いが、プラズマ溶射や分
子制御ゾルゲル法等の各種コーティング技術によりTi
Al基金属間化合物の上に均一に形成しても差し支えな
い。また、TiAl基金属間化合物自身を改質すること
によってもTiAl基金属間化合物の表面に酸化物を形
成することは可能である。例えば、横浜国大の吉原らが
TiAl基金属間化合物の耐酸化特性向上の為に行って
いるような低酸素分圧雰囲気下で熱処理を行い、表面に
酸化被膜を形成する方法を用いればよい。
The reaction preventing layer made of an oxide may be inserted in a sheet form or a powder form when the TiAl-based intermetallic compound is sealed in the sheath material, but various coatings such as plasma spraying and molecular control sol-gel method are also available. Ti by technology
It may be formed uniformly on the Al-based intermetallic compound. It is also possible to form an oxide on the surface of the TiAl-based intermetallic compound by modifying the TiAl-based intermetallic compound itself. For example, a method of forming an oxide film on the surface by performing heat treatment in a low oxygen partial pressure atmosphere as is done by Yoshiwara et al. Of Yokohama National University to improve the oxidation resistance of TiAl-based intermetallic compounds may be used. .

【0013】以上の述べた方法により、TiAl基金属
間化合物とシース材の間にTiAl基金属間化合物と反
応しにくく、かつ化学的に安定な酸化物を形成すること
ができる。その時のシース材としては従来用いられてい
たNi等の耐熱合金やTi合金だけでなく、ステンレス
等の鋼材にも使用できる。
By the method described above, it is possible to form a chemically stable oxide between the TiAl-based intermetallic compound and the sheath material, which hardly reacts with the TiAl-based intermetallic compound. As the sheath material at that time, not only conventionally used heat-resistant alloys such as Ni and Ti alloys but also steel materials such as stainless steel can be used.

【0014】一方、熱間加工としては熱間鍛造、熱間圧
延、熱間押しだし等が可能であるが、最終的には何れも
高加工率となるため、シース材、TiAl基金属間化合
物ともかなり変形する。そこで反応防止層は加工中にT
iAl基金属間化合物とシース材が接合しないように或
程度の厚さを確保しなければならない。
On the other hand, as hot working, hot forging, hot rolling, hot extrusion and the like are possible, but in the end all of them have a high working rate, so both the sheath material and the TiAl-based intermetallic compound can be obtained. Deforms considerably. Therefore, the reaction preventive layer is
It is necessary to secure a certain thickness so that the iAl-based intermetallic compound and the sheath material do not bond.

【0015】[0015]

【実施例】以下に、本発明を実施例および比較例により
さらに説明する。素材としてAl33.4重量%、Cr
4.2重量%(以下、表示がない場合は重量%)残部T
iおよび不可避的不純物からなるTiAl基金属間化合
物をプラズマアーク溶解によりインゴットを鋳造し、高
温変形特性を向上させるために1000℃以上の温度で
恒温鍛造法により組織制御を行った。そこから供試材と
して50×50×5mmの大きさに板材を切りだし、試
験に用いた。
The present invention will be further described below with reference to Examples and Comparative Examples. 33.4% by weight of Al as material, Cr
4.2 wt% (hereinafter, wt% unless otherwise noted) balance T
A TiAl-based intermetallic compound consisting of i and unavoidable impurities was cast into an ingot by plasma arc melting, and the structure was controlled by a constant temperature forging method at a temperature of 1000 ° C. or higher in order to improve high-temperature deformation characteristics. From this, a plate material having a size of 50 × 50 × 5 mm was cut out as a test material and used for the test.

【0016】シース材としては熱間加工特性に優れるT
i合金、すなわち、Ti−15%V−3%Al−3%C
r−3%SnとSUS304の二種類を用意した。
As a sheath material, T is excellent in hot working characteristics.
i alloy, that is, Ti-15% V-3% Al-3% C
Two types of r-3% Sn and SUS304 were prepared.

【0017】図1に示すように、蓋になる80×200
×10mmのシース材1と試料2を封入できる大きさに
空洞を有するシース材3の間に試料2を封入する。シー
ス材と供試材の反応防止材として、Al2 3 のシー
トで被ったもの、CaOの粉末をシース材と試料の間
に挿入する方法、ゾルゲル法によって直接TiAl基
金属間化合物の表面にAl2 3 をコーティングしたも
のの計3通り用意し、封入した。比較例として、何も処
理しない供試材のまま封入したものも用意した。
As shown in FIG. 1, the lid 80 × 200
The sample 2 is enclosed between the sheath material 1 having a size of 10 mm and the sheath material 3 having a cavity having a size capable of enclosing the sample 2. As a reaction-preventing material between the sheath material and the test material, one covered with an Al 2 O 3 sheet, a method of inserting CaO powder between the sheath material and the sample, and a sol-gel method directly on the surface of the TiAl-based intermetallic compound A total of 3 coatings of Al 2 O 3 were prepared and sealed. As a comparative example, a test material that was not processed and enclosed as it was was also prepared.

【0018】封入後は真空中でシース材1、3の側面を
電子ビーム溶接により接合し、試料を密閉し、圧延試料
とした。大気雰囲気の炉で所定の温度まで加熱後、60
分保持した後、表1に示した条件で圧延を行った。表1
中の加工率とは、圧延後に求めたTiAl基金属間化合
物の加工率である。
After encapsulation, the side surfaces of the sheath materials 1 and 3 were joined in a vacuum by electron beam welding, and the sample was sealed to obtain a rolled sample. After heating to the specified temperature in an atmospheric furnace, 60
After holding for a minute, rolling was performed under the conditions shown in Table 1. Table 1
The processing rate in the table is the processing rate of the TiAl-based intermetallic compound obtained after rolling.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例1 反応防止材としてAl2 3 のシートを用いた。シース
材にSUS304を使った場合では、炉の温度として1
250℃、1050℃の二水準で行った。またTi合金
を用いた場合では1250℃に保持した後、それぞれ表
1に示す条件にて圧延を行った。圧延後、TiAl基金
属間化合物とシース材の境界部分を圧延方向二箇所とそ
れとは垂直方向の二箇所を切断し、TiAl基金属間化
合物をシース材から剥離できるか否かを評価し、併せて
TiAl基金属間化合物の厚みを測定して加工率を求め
た。
Example 1 A sheet of Al 2 O 3 was used as a reaction inhibitor. When SUS304 is used for the sheath material, the furnace temperature is 1
It carried out at two levels of 250 degreeC and 1050 degreeC. When a Ti alloy was used, it was held at 1250 ° C. and then rolled under the conditions shown in Table 1. After rolling, the boundary between the TiAl-based intermetallic compound and the sheath material was cut at two locations in the rolling direction and at two locations perpendicular to it, and it was evaluated whether the TiAl-based intermetallic compound could be separated from the sheath material. The thickness of the TiAl-based intermetallic compound was measured to obtain the processing rate.

【0021】シース材の種類によらず、何れの圧延条件
においても切断後、容易にシース材より内部のTiAl
基金属間化合物を剥離することができ、しかも割れが発
生せずに健全なものが得られた。
Regardless of the type of sheath material, TiAl inside the sheath material can be easily formed after cutting under any rolling condition.
The base intermetallic compound could be peeled off, and a sound product was obtained without cracking.

【0022】SUS304をシース材に用い、炉の温度
1250℃、ロール速度1m/min の条件で圧延した時の
得られたTiAl基金属間化合物についてその表面を分
析した。その結果を、図2に示す。図2によれば、一部
Al2 3 が圧延によって付着していたが、シース材か
らの金属原子の拡散は検出されず、健全な圧延材である
ことが確認された。
The surface of the obtained TiAl-based intermetallic compound was analyzed when SUS304 was used as a sheath material and rolled under the conditions of a furnace temperature of 1250 ° C. and a roll speed of 1 m / min. The result is shown in FIG. According to FIG. 2, although Al 2 O 3 was partly adhered by rolling, no diffusion of metal atoms from the sheath material was detected and it was confirmed that the material was sound rolled.

【0023】比較例1 表1の比較例1に示す条件で、反応防止材を使用せず、
直接シース材にTiAl基金属間化合物を封入して圧延
した。圧延後四箇所を切断した結果、TiAl基金属間
化合物自体は圧延されていたが、どの条件においてもシ
ース材からTiAl基金属間化合物を剥離することがで
きなかった。これは加工に必要な高温で熱処理を行い圧
延を行うため、シース材とTiAl基金属間化合物の間
で金属原子の拡散によって反応が起こり接合してしまう
ためである。
Comparative Example 1 Under the conditions shown in Comparative Example 1 of Table 1, no reaction inhibitor was used,
The TiAl-based intermetallic compound was directly enclosed in the sheath material and rolled. As a result of cutting the four places after rolling, the TiAl-based intermetallic compound itself was rolled, but the TiAl-based intermetallic compound could not be peeled from the sheath material under any conditions. This is because heat treatment is performed at a high temperature necessary for processing and rolling is performed, so that a reaction occurs due to the diffusion of metal atoms between the sheath material and the TiAl-based intermetallic compound, resulting in bonding.

【0024】Ti合金をシース材として用い、炉の温度
1250℃、ロール速度1m/min の条件で圧延を行った
圧延材の断面の光学顕微鏡写真を、図3として示す。T
iAl基金属間化合物とシース材であるTi合金の界面
をEPMAによる線分析を行った結果、それぞれの構成
原子が拡散しており、その反応層は約400μmにも達
していることが判明した。これはシース材としてSUS
304を用いた場合でも同様に反応層が生成される結果
となった。
FIG. 3 shows an optical micrograph of a cross section of a rolled material obtained by rolling a Ti alloy as a sheath material under the conditions of a furnace temperature of 1250 ° C. and a roll speed of 1 m / min. T
As a result of a line analysis by EPMA at the interface between the iAl-based intermetallic compound and the Ti alloy that is the sheath material, it was found that each constituent atom diffuses, and the reaction layer thereof reaches up to about 400 μm. This is SUS as a sheath material
Even when 304 was used, a reaction layer was similarly produced.

【0025】実施例2 反応防止材としてCaO粉末を用いた。加工後はAl2
3 シートを用いた場合と同様にTiAl基金属間化合
物を容易に取り出すことができ、均一で割れの無い健全
材が得られた。CaOはAl2 3 に比べて生成自由エ
ネルギーが低く、実施例2より低い温度でも適用可能で
ある。また、反応防止材の形態も粉末で用いても良いこ
とがこの結果から明かである。
[0025]Example 2  CaO powder was used as a reaction inhibitor. Al after processing2
O3TiAl-based intermetallic compound as in the case of using a sheet
Objects can be taken out easily, and they are uniform and sound without cracks.
The wood was obtained. CaO is Al2O3Freedom compared to
Low energy, applicable at lower temperature than Example 2
is there. Also, the form of the reaction inhibitor may be powder.
Is clear from this result.

【0026】実施例3 ゾルゲル法によりTiAl基金属間化合物の表面に直接
Al2 3 をコーティングしてシース材に封入した。加
工率が高いものについては一部コーティング層が破損し
ている箇所が見られたが、TiAl基金属間化合物の表
面が露出するようなことはなかった。そして上記二つの
実施例と同様に、シース材から簡単に剥離でき、圧延材
も健全であった。このことから、TiAl基金属間化合
物の表面に酸化物を形成しても加工後容易にTiAl基
金属間化合物を取り出すことができ、しかも加工には影
響がないことが判った。
Example 3 The surface of a TiAl-based intermetallic compound was directly coated with Al 2 O 3 by a sol-gel method and sealed in a sheath material. In the case of a high workability, some coating layers were damaged, but the surface of the TiAl-based intermetallic compound was not exposed. As in the above two examples, the sheath material could be easily peeled off and the rolled material was sound. From this, it was found that even if an oxide was formed on the surface of the TiAl-based intermetallic compound, the TiAl-based intermetallic compound could be easily taken out after the processing and had no effect on the processing.

【0027】[0027]

【発明の効果】以上、説明したように、本発明によれ
ば、被加工材を被覆するシース材を用いてTiAl基金
属間化合物を熱間加工する際に、シース材とTiAl基
金属間化合物の間にTiAl基金属間化合物との反応性
が低く、化学的に安定なAl2 3 、CaO等の酸化物
を挿入するか、あるいはTiAl基金属間化合物の表面
にそれら酸化物を形成することにより、熱間加工後、容
易にTiAl基金属間化合物を取り出すことができる。
As described above, according to the present invention, when the TiAl-based intermetallic compound is hot-worked by using the sheath material that covers the workpiece, the sheath material and the TiAl-based intermetallic compound are used. Intercalation between TiAl-based intermetallic compounds and chemically stable oxides such as Al 2 O 3 and CaO are inserted, or these oxides are formed on the surface of TiAl-based intermetallic compounds. As a result, the TiAl-based intermetallic compound can be easily taken out after the hot working.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる試料とシース材の構成を示す斜
視図である。
FIG. 1 is a perspective view showing configurations of a sample and a sheath material according to the present invention.

【図2】本発明に係わる、反応防止材としてAl2 3
のシートを用い、シース材にSUS340を使用し、圧
延して得られた圧延材の断面の光学顕微鏡写真である。
FIG. 2 shows Al 2 O 3 as a reaction inhibitor according to the present invention.
3 is an optical micrograph of a cross section of a rolled material obtained by rolling the sheet of No. 1 and using SUS340 as a sheath material.

【図3】比較例に係わる反応防止材を用いず、シース材
としてTi合金を用い、圧延して得られた圧延材の断面
の光学顕微鏡写真である。
FIG. 3 is an optical micrograph of a cross section of a rolled material obtained by rolling a Ti alloy as a sheath material without using the reaction preventing material according to the comparative example.

【符号の説明】[Explanation of symbols]

1,3 シース材 2 試料 1,3 Sheath material 2 samples

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被加工材を被覆するシース材を用いて熱間
加工する際に、被覆するシース材と内部のTiAl基金
属間化合物の間に、このTiAl基金属間化合物との反
応性の低い酸化物を挿入して行うことを特徴とする、T
iAl基金属間化合物の熱間加工法。
1. When performing hot working using a sheath material for coating a material to be processed, the reactivity of the TiAl-based intermetallic compound between the sheath material to be coated and the internal TiAl-based intermetallic compound is improved. T, characterized by inserting a low oxide
Hot working method of iAl-based intermetallic compound.
【請求項2】被覆するシース材と内部のTiAl基金属
間化合物の間に挿入する酸化物の形状がシート状のもの
を用いる請求項1に記載のTiAl基金属間化合物の熱
間加工法。
2. The hot working method for a TiAl-based intermetallic compound according to claim 1, wherein a sheet-shaped oxide is inserted between the sheath material for coating and the TiAl-based intermetallic compound inside.
【請求項3】被覆するシース材と内部のTiAl基金属
間化合物の間に挿入する酸化物の形状が粉末状のものを
用いる請求項1に記載のTiAl基金属間化合物の熱間
加工法。
3. The hot working method for a TiAl-based intermetallic compound according to claim 1, wherein the oxide to be inserted between the sheath material to be coated and the TiAl-based intermetallic compound inside is in the form of powder.
【請求項4】被加工材を被覆するシース材を用いて熱間
加工する際に、TiAl基金属間化合物の表面に、この
TiAl基金属間化合物との反応性の低い酸化物を形成
した後、シース材に封入して行うことを特徴とする、T
iAl基金属間化合物の熱間加工法。
4. An oxide having a low reactivity with the TiAl-based intermetallic compound is formed on the surface of the TiAl-based intermetallic compound during hot working using a sheath material that covers the workpiece. , T is characterized by being enclosed in a sheath material.
Hot working method of iAl-based intermetallic compound.
JP6864495A 1995-03-02 1995-03-02 Method for sheathing tial base intermetallic compound Withdrawn JPH08238501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6864495A JPH08238501A (en) 1995-03-02 1995-03-02 Method for sheathing tial base intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6864495A JPH08238501A (en) 1995-03-02 1995-03-02 Method for sheathing tial base intermetallic compound

Publications (1)

Publication Number Publication Date
JPH08238501A true JPH08238501A (en) 1996-09-17

Family

ID=13379641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6864495A Withdrawn JPH08238501A (en) 1995-03-02 1995-03-02 Method for sheathing tial base intermetallic compound

Country Status (1)

Country Link
JP (1) JPH08238501A (en)

Similar Documents

Publication Publication Date Title
EP1785502A1 (en) Direct rolling of cast gamma titanium aluminide alloys
JPH1157810A (en) Production of titanium alloy sheet material
JP6515359B2 (en) Titanium composite material and titanium material for hot rolling
EP2204466A1 (en) METHOD OF TREATING SURFACE OF Ti-Al ALLOY AND TI-AL ALLOY OBTAINED BY THE SAME
JP2004519330A (en) Method for producing clad material having steel base material and corrosion resistant metal coating
EP2272664A1 (en) Process for manufacturing foils, sheets and shaped parts from an alloy with titanium and aluminium as its main elements.
US5121535A (en) Method for production of thin sections of reactive metals
JP3258663B2 (en) Diffusion barrier layer
JP6787428B2 (en) Titanium material for hot rolling
JPH10156473A (en) Hot working method of tial base intermetallic compound
JPH08238501A (en) Method for sheathing tial base intermetallic compound
GB2252930A (en) Braze bonding of oxidation-resistant foils
US6528177B2 (en) Cladding material and manufacturing method therefor
JPH08238503A (en) Method for hot working tial base intermetallic compound
US5127146A (en) Method for production of thin sections of reactive metals
JP2728305B2 (en) Hot working method of intermetallic compound TiA ▲ -based alloy
EP3730666B1 (en) TiAl ALLOY MEMBER, METHOD OF MANUFACTURING THE SAME, AND METHOD OF FORGING TiAl ALLOY MEMBER
JPH0693412A (en) Heat resistant ti-based alloy
US3800406A (en) Tantalum clad niobium
JP6344194B2 (en) Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance
JPS61223106A (en) Production of high alloy clad product
WO2017018521A1 (en) Titanium material for hot rolling
WO2017018509A1 (en) Titanium composite material and titanium material for hot rolling
JPH01287243A (en) Ti-al intermetallic compound containing mn and nb and its manufacture
JP2879725B2 (en) Method of manufacturing clad plate of Ta and Cu

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507