JP6344194B2 - Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance - Google Patents
Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance Download PDFInfo
- Publication number
- JP6344194B2 JP6344194B2 JP2014217513A JP2014217513A JP6344194B2 JP 6344194 B2 JP6344194 B2 JP 6344194B2 JP 2014217513 A JP2014217513 A JP 2014217513A JP 2014217513 A JP2014217513 A JP 2014217513A JP 6344194 B2 JP6344194 B2 JP 6344194B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- oxidation resistance
- oxidation
- powder
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、耐酸化性に優れたチタン部材及び該チタン部材の製造方法に関する。 The present invention relates to a titanium member excellent in oxidation resistance and a method for producing the titanium member.
軽量、高比強度で耐熱性にも優れるチタン合金は、航空機、自動車、民生品等の広範な分野で利用されている。特に、内燃機関近傍又は排気装置のように、耐熱性が要求される用途では、各用途に応じた耐熱チタン合金が開発されてきた。 Titanium alloys that are lightweight, have high specific strength, and are excellent in heat resistance are used in a wide range of fields such as aircraft, automobiles, and consumer products. In particular, in applications where heat resistance is required, such as in the vicinity of an internal combustion engine or an exhaust device, a heat-resistant titanium alloy corresponding to each application has been developed.
高い高温強度や耐クリープ性が要求される用途では、6質量%程度のAlを含有するNear−α型チタン合金が用いられる。自動車用エンジンの排気バルブがその用途例である。 In applications that require high-temperature strength and creep resistance, Near-α type titanium alloys containing about 6% by mass of Al are used. An application example is an exhaust valve of an automobile engine.
一方、自動車の排気管のように、純チタンに近い室温加工性が要求される用途では、純チタンに多くても1質量%程度のAl、Si、Cuなどの合金元素が添加された合金が用いられている。これらの用途では、相対する排気ガスの温度は800℃程度にまで達するとされている。 On the other hand, in applications where room temperature workability close to that of pure titanium is required, such as automobile exhaust pipes, an alloy in which an alloy element such as Al, Si, Cu or the like of at most about 1% by mass is added to pure titanium is used. It is used. In these applications, the temperature of the opposing exhaust gas is supposed to reach about 800 ° C.
耐熱チタン合金には、高い耐酸化性が要求されるため、主に、二つの方法で改善が進められてきた。 Since heat-resistant titanium alloys are required to have high oxidation resistance, improvements have been made mainly by two methods.
一つは、チタン母材中にAlやSiを添加して合金化する方法である。この方法は、素材インゴットを製造する段階で合金原料を添加する必要があり、合金添加量が多くなると、加工性が著しく低下して、製造コストが増加するという課題がある。 One is a method of alloying by adding Al or Si into a titanium base material. In this method, it is necessary to add an alloy raw material at the stage of manufacturing the raw material ingot, and there is a problem that when the alloy addition amount increases, the workability is remarkably lowered and the manufacturing cost increases.
他の一つは、チタン材表層に耐酸化性を有する皮膜を形成する方法である。この方法は、部材成形後に、必要な部位にのみ表面処理を施す。しかし、PVDや溶射などの方法を用いると、処理費用が高くなるという課題がある。 The other is a method of forming a film having oxidation resistance on the surface layer of the titanium material. In this method, a surface treatment is performed only on a necessary portion after forming a member. However, when a method such as PVD or thermal spraying is used, there is a problem that the processing cost increases.
表面処理によってチタンの耐酸化性を改善しようとする従来技術について、以下に説明する。 A conventional technique for improving the oxidation resistance of titanium by surface treatment will be described below.
特許文献1には、Al粉末をペースト状にしたものをチタン材表面に塗布して400℃程度で焼成する耐酸化皮膜の製造方法が開示されている。しかし、Alは、Tiと同様に酸化され易い元素であり、耐酸化性の効果は十分でない。また、チタン材表層に形成されるアルミ酸化物層は剥離し易いという問題がある。 Patent Document 1 discloses a method for producing an oxidation-resistant film in which a paste of Al powder is applied to a titanium material surface and baked at about 400 ° C. However, Al is an element that is easily oxidized like Ti, and the effect of oxidation resistance is not sufficient. Moreover, there is a problem that the aluminum oxide layer formed on the titanium material surface layer is easily peeled off.
特許文献2には、10at%以下のSiを含むAl合金粒子又は純Al粒子を主成分とする溶液を塗布して、200〜400℃で焼成した皮膜を有するエンジン排気管が開示されている。 Patent Document 2 discloses an engine exhaust pipe having a coating obtained by applying a solution containing Al alloy particles containing 10 at% or less of Si or pure Al particles as a main component and firing at 200 to 400 ° C.
しかし、前述のように、Alは、Tiと同様に酸化され易い元素であり、耐酸化性の効果は十分でない。また、チタン材表層に形成されるアルミ酸化物層は剥離し易いという問題がある。 However, as described above, Al is an element that is easily oxidized like Ti, and the effect of oxidation resistance is not sufficient. Moreover, there is a problem that the aluminum oxide layer formed on the titanium material surface layer is easily peeled off.
さらに、Al粒子間の空隙を埋めるために用いるシリコーン樹脂の耐熱性は、せいぜい400℃までであり、800℃に達するとされる排気管用途に対して耐熱性は十分ではない。また、Al粒子よりもAl−Si粒子を用いた方が、より高温側の耐酸化性が向上するが、10at%以上のSiを含有する粉末の製造が困難である。 Furthermore, the heat resistance of the silicone resin used to fill the voids between the Al particles is at most 400 ° C., and the heat resistance is not sufficient for exhaust pipe applications that reach 800 ° C. Moreover, although the oxidation resistance on the higher temperature side is improved by using Al—Si particles rather than Al particles, it is difficult to produce a powder containing 10 at% or more of Si.
特許文献3には、耐熱性チタン合金部材の表面にTiC、TiB、TiBCのいずれか1種以上からなる皮膜層と、Al又はCrの供給層が形成された耐熱性チタン合金部材が開示されている。しかし、前述のように、Alは、Tiと同様に酸化され易い元素であり、耐酸化性の効果は十分でない。 Patent Document 3 discloses a heat-resistant titanium alloy member in which a coating layer composed of at least one of TiC, TiB, and TiBC and a supply layer of Al or Cr are formed on the surface of the heat-resistant titanium alloy member. Yes. However, as described above, Al is an element that is easily oxidized like Ti, and the effect of oxidation resistance is not sufficient.
特許文献4には、チャンバー内に設置した鉄鋼材料の表面にCr粒子を投射し、加熱しながら窒素ガスを導入して、Cr拡散層を形成するとともに、窒化処理を施す表面処理方法が開示されている。しかし、チタン材において、窒化処理は、表層に非常に硬質な窒化チタン皮膜を形成するものの、耐酸化性は不十分である。 Patent Document 4 discloses a surface treatment method in which Cr particles are projected onto the surface of a steel material installed in a chamber, nitrogen gas is introduced while heating to form a Cr diffusion layer, and a nitriding treatment is performed. ing. However, in the titanium material, the nitriding treatment forms a very hard titanium nitride film on the surface layer, but the oxidation resistance is insufficient.
特許文献5には、チタンを含む基材上に、0.1〜15.0μmの範囲の膜厚を有する、CrとSiを含む金属酸化物皮膜が開示されている。しかし、特許文献5の発明は、発色性に関する表面コーティングに関する技術であり、本発明で課題とする耐酸化性を改善するものではない。 Patent Document 5 discloses a metal oxide film containing Cr and Si having a film thickness in the range of 0.1 to 15.0 μm on a substrate containing titanium. However, the invention of Patent Document 5 is a technique relating to surface coating relating to color developability, and does not improve the oxidation resistance which is the subject of the present invention.
従来、チタン合金部材に耐酸化性を付与するため、チタン合金部材の表面に、AlとCrを含む硬質層、又は、AlとSiを含む硬質層を形成する技術が公開されているが、いずれの硬質層も耐酸化性が十分でない。また、Al−Si粒子を用いて硬質層を形成する場合、より高温側で耐酸化性の高いSiの含有が制約されるという問題がある。 Conventionally, in order to impart oxidation resistance to a titanium alloy member, a technique for forming a hard layer containing Al and Cr or a hard layer containing Al and Si on the surface of the titanium alloy member has been disclosed. The hard layer also has insufficient oxidation resistance. Moreover, when forming a hard layer using an Al-Si particle, there exists a problem that content of Si with high oxidation resistance on a higher temperature side is restricted.
本発明は、上記事情に鑑み、緻密な皮膜を形成するCrとSiを用いて、チタン基材の表面に耐酸化性皮膜を簡便な方法で形成し、耐酸化性に優れたチタン部材と、その製造方法を提供することを目的とする。 In view of the above circumstances, the present invention uses a simple method for forming an oxidation-resistant film on the surface of a titanium substrate using Cr and Si forming a dense film, and a titanium member having excellent oxidation resistance; It aims at providing the manufacturing method.
本発明者らは、上記目的を達成するため、チタン基材の表面に形成する耐酸化性皮膜の組成について鋭意検討した。その結果、チタン基材の表面に、Cr及びSiを含有する皮膜を形成すれば、高い耐酸化性が得られること、及び、その耐酸化性皮膜は、簡便な表面処理方法で形成できることを見出した。 In order to achieve the above-mentioned object, the present inventors diligently studied the composition of the oxidation-resistant film formed on the surface of the titanium base material. As a result, it has been found that if a film containing Cr and Si is formed on the surface of the titanium substrate, high oxidation resistance can be obtained, and that the oxidation resistant film can be formed by a simple surface treatment method. It was.
本発明は、上記知見に基づいてなされたもので、その要旨は、以下のとおりである。 This invention was made | formed based on the said knowledge, The summary is as follows.
(1)チタン基材の表層に、少なくともTi、Cr、Si、及び、Oを含有し、Ti−O化合物、Cr−O化合物、及び、Ti−Si化合物が形成された0.5μm以上5.0μm以下の厚みの皮膜が形成され、かつ、該皮膜下のチタン基材に10μm以上100μm以下の深さの拡散硬化層が形成されていることを特徴とする耐酸化性に優れたチタン部材。 (1) The surface layer of the titanium base material contains at least Ti, Cr, Si, and O, and a Ti—O compound, a Cr—O compound, and a Ti—Si compound are formed. A titanium member having excellent oxidation resistance, wherein a film having a thickness of 0 μm or less is formed, and a diffusion hardened layer having a depth of 10 μm or more and 100 μm or less is formed on a titanium base material under the film.
(2)前記チタン部材が、自動車用のエンジン部材又は排気装置部材に用いられるチタン部材であることを特徴とする前記(1)に記載の耐酸化性に優れたチタン部材。 (2) The titanium member having excellent oxidation resistance according to (1), wherein the titanium member is a titanium member used for an engine member or an exhaust device member for an automobile.
(3)前記(1)又は(2)に記載の耐酸化性に優れたチタン部材の製造方法であって、チタン基材を、CrとSiを含む皮膜形成用粉末に埋め込んで、750〜950℃、1〜4時間の熱処理を施すことを特徴とする耐酸化性に優れたチタン部材の製造方法。 (3) The method for producing a titanium member having excellent oxidation resistance as described in (1) or (2) above, wherein a titanium base material is embedded in powder for film formation containing Cr and Si, and is 750 to 950. The manufacturing method of the titanium member excellent in oxidation resistance characterized by performing the heat processing for 1 to 4 hours at ° C.
(4)前記(1)又は(2)に記載の耐酸化性に優れたチタン部材の製造方法であって、チタン基材の表面に、CrとSiを含む皮膜形成用粉末のスラリーを塗布し、乾燥後、750〜950℃、1〜4時間の熱処理を施すことを特徴とする耐酸化性に優れたチタン部材の製造方法。 (4) A method for producing a titanium member having excellent oxidation resistance as described in (1) or (2) above, wherein a slurry of film forming powder containing Cr and Si is applied to the surface of a titanium base material. A method for producing a titanium member having excellent oxidation resistance, wherein heat treatment is performed at 750 to 950 ° C. for 1 to 4 hours after drying.
(5)前記CrとSiを含む皮膜形成用粉末が、クロムシリサイドの粉末であることを特徴とする前記(3)又は(4)に記載の耐酸化性に優れたチタン部材の製造方法。 (5) The method for producing a titanium member having excellent oxidation resistance according to (3) or (4), wherein the film forming powder containing Cr and Si is a powder of chromium silicide.
(6)前記CrとSiを含む皮膜形成用粉末が、Cr粉末とSi粉末を、質量比で、40:60〜60:40の範囲で混合した粉末であることを特徴とする前記(3)又は(4)に記載の耐酸化性に優れたチタン部材の製造方法。 (6) The film forming powder containing Cr and Si is a powder obtained by mixing Cr powder and Si powder in a mass ratio of 40:60 to 60:40 (3) Or the manufacturing method of the titanium member excellent in oxidation resistance as described in (4).
本発明によれば、耐酸化性に優れたチタン部材を提供することができる。本発明の耐酸化性に優れたチタン部材により、軽量で高強度のチタン材の用途が広がり、航空機や自動車の燃費が向上し、また、自動二輪車の運動性能が向上するので、本発明は、多くの人々の生活環境の向上に大きく貢献する。 ADVANTAGE OF THE INVENTION According to this invention, the titanium member excellent in oxidation resistance can be provided. The titanium member excellent in oxidation resistance of the present invention expands the use of lightweight and high-strength titanium materials, improves the fuel efficiency of aircraft and automobiles, and improves the motor performance of motorcycles. It greatly contributes to improving the living environment of many people.
本発明の耐酸化性に優れたチタン部材(以下「本発明チタン部材」ということがある。)は、チタン基材の表層に、少なくともTi、Cr、Si、及び、Oを含有し、Ti−O化合物、Cr−O化合物、及び、Ti−Si化合物が形成された0.5μm以上5.0μm以下の厚みの皮膜が形成され、かつ、該皮膜下のチタン基材に10μm以上100μm以下の深さの拡散硬化層が形成されていることを特徴とする。 The titanium member excellent in oxidation resistance of the present invention (hereinafter sometimes referred to as “the titanium member of the present invention”) contains at least Ti, Cr, Si, and O in the surface layer of the titanium base material. A film having a thickness of 0.5 μm or more and 5.0 μm or less in which an O compound, a Cr—O compound, or a Ti—Si compound is formed, and a depth of 10 μm or more and 100 μm or less is formed on the titanium base material under the film. A diffusion hardened layer is formed.
また、本発明の耐酸化性に優れたチタン部材の製造方法(以下「本発明製造方法」ということがある。)は、本発明チタン部材の製造方法であって、(a)チタン基材を、CrとSiを含む皮膜形成用粉末に埋め込んで、750〜950℃、1〜4時間の熱処理を施すか、又は、(b)チタン基材の表面に、CrとSiを含む皮膜形成用粉末のスラリーを塗布し、乾燥後、750〜950℃、1〜4時間の熱処理を施すことを特徴とする。 The method for producing a titanium member excellent in oxidation resistance according to the present invention (hereinafter also referred to as “the present invention production method”) is a method for producing a titanium member of the present invention, and comprises (a) a titanium substrate. Embedded in a film-forming powder containing Cr and Si and subjected to heat treatment at 750 to 950 ° C. for 1 to 4 hours, or (b) a film-forming powder containing Cr and Si on the surface of a titanium base material The slurry is applied, dried, and then subjected to heat treatment at 750 to 950 ° C. for 1 to 4 hours.
以下、本発明チタン部材及び本発明製造方法について説明する。まず、本発明チタン部材について説明する。 Hereinafter, the titanium member of the present invention and the production method of the present invention will be described. First, the titanium member of the present invention will be described.
本発明者らは、優れた耐酸化性をチタン基材に付与するため、耐酸化性に優れるCrとSiを含む皮膜を、チタン基材の表面に形成することを検討した。CrとSiを選択した理由は次の通りである。 In order to impart excellent oxidation resistance to a titanium base material, the present inventors have studied to form a film containing Cr and Si having excellent oxidation resistance on the surface of the titanium base material. The reason for selecting Cr and Si is as follows.
Crを含む皮膜は、Crが外方拡散することで、酸化物層の表層側に緻密な酸化物層を形成し、Tiの外方拡散を抑制するので、チタン基材の耐酸化性の向上に有効に機能する。Siを含む皮膜は、Si酸化物がチタン酸化物層内に存在すると、酸素の内方拡散を抑制して、Tiの酸化を抑制するので、チタン基材の耐酸化性の向上に有効に機能する。 The Cr-containing coating forms a dense oxide layer on the surface side of the oxide layer as Cr diffuses outward, and suppresses outward diffusion of Ti, improving the oxidation resistance of the titanium base material It works effectively. The coating containing Si effectively functions to improve the oxidation resistance of the titanium base material because when the Si oxide is present in the titanium oxide layer, it suppresses the inward diffusion of oxygen and suppresses the oxidation of Ti. To do.
さらに、初期の形態がTi−Si化合物であることにより、Ti−Si結合が分解されてSi酸化物及びTi酸化物を形成するまでに、より多くの時間や酸素が必要になることから、チタン基材の耐酸化性の向上に、より一層有効に機能する。 Furthermore, since the initial form is a Ti—Si compound, more time and oxygen are required until the Ti—Si bond is decomposed to form Si oxide and Ti oxide. It functions more effectively to improve the oxidation resistance of the substrate.
即ち、CrとSiが皮膜中に混在することで、Tiの外方拡散を抑制する効果と、酸素の内方拡散を抑制する効果が共存して、チタン基材の耐酸化性が一層向上する。 That is, by mixing Cr and Si in the film, the effect of suppressing the outward diffusion of Ti and the effect of suppressing the inward diffusion of oxygen coexist, and the oxidation resistance of the titanium substrate is further improved. .
以下に、耐酸化性皮膜と拡散硬化層について説明する。 Below, an oxidation-resistant film | membrane and a diffusion hardened layer are demonstrated.
(i)耐酸化性皮膜
耐酸化性皮膜中の相は、皮膜表面をX線回折法で解析することで同定できる。解析の結果、チタン基材のTi(α相)の他、皮膜中のTi−O化合物(TiO2)、Cr−O化合物(Cr2O3)、Ti−Si化合物(Ti5Si3)を同定することができた。
(I) Oxidation-resistant film The phase in the oxidation-resistant film can be identified by analyzing the film surface by an X-ray diffraction method. As a result of the analysis, in addition to Ti (α phase) of the titanium base, Ti—O compound (TiO 2 ), Cr—O compound (Cr 2 O 3 ), Ti—Si compound (Ti 5 Si 3 ) in the film Could be identified.
化合物の原子比は、例えば、TiO2をTiO2-xと一般的に表示するように、酸素濃度の変動を見込んで表示する。Ti−Si化合物には、Ti5Si3の他に、TiSiやTiSi2もある。それ故、熱処理(後述)で被膜中に形成されるそれぞれの化合物は、原子比に拘らず、熱処理で形成され得る全ての化合物を含むものである。 Atomic ratio of the compound, for example, a TiO 2 to TiO 2-x and generally display, for displaying in anticipation of variation in the oxygen concentration. Ti-Si compounds include TiSi and TiSi 2 in addition to Ti 5 Si 3 . Therefore, each compound formed in the film by heat treatment (described later) includes all compounds that can be formed by heat treatment regardless of the atomic ratio.
そして、本発明チタン部材は、皮膜中に、Ti−O化合物、Cr−O化合物、及び、Ti−Si化合物を全て含むものとする。 And this invention titanium member shall contain all the Ti-O compound, a Cr-O compound, and a Ti-Si compound in a membrane | film | coat.
本発明チタン部材においては、チタン基材の表面に、厚さ0.5μm以上5μm以下の耐酸化性皮膜を熱処理(後述する)で形成する。皮膜の厚さ0.5μmより薄いと、所要の耐酸化性が得られない。耐酸化性を確実に得る点で、1.0μm以上が好ましい。 In the titanium member of the present invention, an oxidation resistant film having a thickness of 0.5 μm or more and 5 μm or less is formed on the surface of the titanium substrate by heat treatment (described later). If the thickness of the film is less than 0.5 μm, the required oxidation resistance cannot be obtained. From the viewpoint of reliably obtaining oxidation resistance, 1.0 μm or more is preferable.
一方、被膜の厚さが5.0μmより厚いと、皮膜がチタン基材から剥離し易くなる。皮膜の剥離を抑制する点で、3.0μm以下が好ましい。耐酸化性皮膜の厚みの調整は、熱処理の温度及び時間を調整して行う。 On the other hand, when the thickness of the coating is greater than 5.0 μm, the coating is easily peeled off from the titanium substrate. In order to suppress peeling of the film, 3.0 μm or less is preferable. The thickness of the oxidation resistant film is adjusted by adjusting the temperature and time of the heat treatment.
耐酸化性皮膜中の元素濃度は、Cr及びSiのいずれも、3%以上10%未満が好ましい。CrとSiの元素濃度が3%未満であると、耐酸化性向上効果が発現しない。一方、CrとSiの元素濃度が10%以上であると、皮膜がチタン基材から剥離し易くなる。 The element concentration in the oxidation resistant film is preferably 3% or more and less than 10% for both Cr and Si. When the elemental concentration of Cr and Si is less than 3%, the effect of improving oxidation resistance is not exhibited. On the other hand, when the element concentration of Cr and Si is 10% or more, the film is easily peeled off from the titanium base material.
耐酸化性皮膜中及びチタン基材中の元素濃度は、本発明チタン部材から採取した試験片の断面を鏡面研磨した後、EPMAで、ビーム径0.5μmの線分析を行って測定することができる。 The element concentration in the oxidation-resistant film and in the titanium substrate can be measured by mirror-polishing the cross section of the test piece taken from the titanium member of the present invention and then performing line analysis with a beam diameter of 0.5 μm with EPMA. it can.
(ii)拡散硬化層
本発明チタン部材においては、耐酸化性皮膜下のチタン基材に10μm以上100μm以下の拡散硬化層が形成されていることが必要である。
(Ii) Diffusion hardened layer In the titanium member of the present invention, it is necessary that a diffusion hardened layer of 10 μm or more and 100 μm or less is formed on the titanium base material under the oxidation resistant film.
拡散硬化層は、Cr、Si、及び、Oの内の1つ以上の元素が、チタン基材中に拡散して、チタン基材より硬度が上昇した層である。耐酸化性皮膜とチタン基材の間に元素拡散が生じることで、耐酸化性皮膜とチタン基材の硬度の違いを緩和して、耐酸化性皮膜の剥離を抑制することができる。 The diffusion hardened layer is a layer in which one or more elements of Cr, Si, and O are diffused into the titanium base material, and the hardness is higher than that of the titanium base material. By causing element diffusion between the oxidation-resistant film and the titanium base material, the difference in hardness between the oxidation-resistant film and the titanium base material can be alleviated, and peeling of the oxidation-resistant film can be suppressed.
Cr、Si、及び、Oとも、チタン基材中に拡散することが可能な元素であるので、耐酸化性皮膜とチタン基材の間に緩やかな硬度分布を形成することができる。拡散硬化層は、耐酸化性皮膜を形成する熱処理条件で、皮膜の形成と同時に形成することができる。 Since Cr, Si, and O are both elements that can diffuse into the titanium substrate, a gentle hardness distribution can be formed between the oxidation-resistant film and the titanium substrate. The diffusion hardened layer can be formed simultaneously with the formation of the film under the heat treatment conditions for forming the oxidation resistant film.
拡散硬化層の厚さは、10μm以上100μm以下とする。拡散硬化層の厚さが10μmより薄いと、耐酸化性皮膜の剥離を防止する効果が十分に発現しない。一方、拡散硬化層の厚さが100μmより厚いと、皮膜形成に長時間の熱処理が必要となり、工業的に効率的でない。 The thickness of the diffusion hardened layer is 10 μm or more and 100 μm or less. When the thickness of the diffusion hardened layer is less than 10 μm, the effect of preventing the peeling of the oxidation resistant film is not sufficiently exhibited. On the other hand, if the thickness of the diffusion hardened layer is greater than 100 μm, a long-time heat treatment is required for forming the film, which is not industrially efficient.
拡散硬化層の厚みは、部材断面のマイクロビッカース硬さが、拡散硬化層の影響のないチタン基材の硬さよりも高い値を示す厚みで規定することができる。マイクロビッカース硬さは、本発明チタン部材から採取した試験片の断面を鏡面研磨した後、荷重10gfで測定する。 The thickness of the diffusion hardened layer can be defined by a thickness at which the micro Vickers hardness of the member cross section shows a higher value than the hardness of the titanium base material that is not affected by the diffusion hardened layer. The micro Vickers hardness is measured with a load of 10 gf after mirror-polishing the cross section of the test piece taken from the titanium member of the present invention.
次に、本発明製造方法について説明する。 Next, the manufacturing method of the present invention will be described.
耐酸化性皮膜の耐酸化性を担うCrとSiの原料として、粒径1〜10μmのクロムシリサイド(CrSi2)粉末を用いた。クロムシリサイド粉末中にチタン基材を埋め込んで熱処理を施す、粉末パック法という方法を用いて、チタン基材の表面に耐酸化性皮膜を形成した。 Chromium silicide (CrSi 2 ) powder having a particle diameter of 1 to 10 μm was used as a raw material for Cr and Si, which is responsible for the oxidation resistance of the oxidation resistant film. An oxidation-resistant film was formed on the surface of the titanium base material by using a method called a powder pack method in which a titanium base material was embedded in chromium silicide powder and subjected to heat treatment.
ただし、耐酸化性皮膜の形成に用いる粉末は、クロムシリサイド(CrSi2)に限定されない。Cr粉末とSi粉末を用いてもよい。その場合、CrとSiの質量比を、40:60〜60:40の範囲とすることで、クロムシリサイド(CrSi2)を用いた場合と同様の結果を得ることができる。 However, the powder used for forming the oxidation resistant film is not limited to chromium silicide (CrSi 2 ). Cr powder and Si powder may be used. In that case, by setting the mass ratio of Cr and Si in the range of 40:60 to 60:40, the same result as in the case of using chromium silicide (CrSi 2 ) can be obtained.
また、耐酸化性皮膜は、クロムシリサイド(CrSi2)粉末と水を混合したスラリー、又は、Cr粉末、Si粉末、水を混合したスラリーをチタン基材に塗布し、乾燥後、熱処理を施す方法によって形成することもできる。耐酸化性皮膜の形成は、上記手法に限らず、種々の手法によって形成することが可能である。 The oxidation-resistant film is a method in which a slurry obtained by mixing chromium silicide (CrSi 2 ) powder and water, or a slurry obtained by mixing Cr powder, Si powder, and water is applied to a titanium substrate, dried, and then subjected to heat treatment. Can also be formed. The formation of the oxidation resistant film is not limited to the above method, and can be formed by various methods.
熱処理は、750℃以上950℃以下で、1時間以上4時間以下行う。熱処理温度が750℃より低いと、耐酸化性皮膜及び拡散硬化層の形成速度が遅く、工業的に効率的でない。一方、熱処理温度が950℃より高いと、耐酸化性皮膜が厚くなりすぎて、チタン基材から剥離し易くなる。 The heat treatment is performed at 750 ° C. to 950 ° C. for 1 hour to 4 hours. When the heat treatment temperature is lower than 750 ° C., the formation speed of the oxidation resistant film and the diffusion hardened layer is slow, which is not industrially efficient. On the other hand, if the heat treatment temperature is higher than 950 ° C., the oxidation-resistant film becomes too thick and is easily peeled off from the titanium substrate.
熱処理は、1×10-2Torr以上1×10-6Torr未満の真空雰囲気で行うことが好ましい。熱処理を、大気中又は1×10-2Torr未満の低真空雰囲気で行うと、Tiの酸化が激しく、耐酸化性皮膜がチタン基材から剥離し易くなる。一方、熱処理を、1×10-6Torr以上の高真空雰囲気で行うと、酸素が足りなくなり、耐酸化性皮膜の形成が困難になる。 The heat treatment is preferably performed in a vacuum atmosphere of 1 × 10 −2 Torr or more and less than 1 × 10 −6 Torr. When the heat treatment is performed in the air or in a low vacuum atmosphere of less than 1 × 10 −2 Torr, the oxidation of Ti is intense and the oxidation resistant film is easily peeled from the titanium substrate. On the other hand, when the heat treatment is performed in a high vacuum atmosphere of 1 × 10 −6 Torr or more, oxygen is insufficient and it becomes difficult to form an oxidation resistant film.
次に、本発明チタン部材の製造に使用するチタン基材(以下「本発明チタン基材」ということがある。)の製造方法について説明する。 Next, the manufacturing method of the titanium base material (henceforth "this invention titanium base material") used for manufacture of this invention titanium member is demonstrated.
本発明チタン基材は、工業用純チタン、又は、各種のチタン合金から、本発明チタン部材の用途に応じて選択する。 The titanium substrate of the present invention is selected from industrial pure titanium or various titanium alloys according to the use of the titanium member of the present invention.
例えば、本発明チタン基材として、Ti−6%Al−4%V、Ti−5%Al−1%Feなどのα+βチタン合金、Ti−6%Al−2.7%Sn−4%Zr−0.4%Mo−0.45%Si(Ti−1100)、Ti−6%Al−2%Sn−4%Zr−2%Mo−0.1%Si(6242S)などのNear−α型チタン合金などを使用することができる。なお、%は質量%を意味する。以下、同じである。 For example, as the titanium substrate of the present invention, Ti-6% Al-4% V, Ti-5% Al-1% Fe and other α + β titanium alloys, Ti-6% Al-2.7% Sn-4% Zr- Near-α type titanium such as 0.4% Mo-0.45% Si (Ti-1100), Ti-6% Al-2% Sn-4% Zr-2% Mo-0.1% Si (6242S) An alloy or the like can be used. In addition,% means the mass%. The same applies hereinafter.
また、本発明チタン基材として、自動車用排気管に使用するTi−1%Cu−1%Sn−0.35%Si−0.2%Nb−0.05%O(酸素)、及び、Ti−0.1%Fe−0.45%Si−0.05%O(酸素)などの耐熱チタン合金を使用することできる。 Moreover, Ti-1% Cu-1% Sn-0.35% Si-0.2% Nb-0.05% O (oxygen) and Ti used for the exhaust pipe for automobiles as the titanium base material of the present invention A heat-resistant titanium alloy such as -0.1% Fe-0.45% Si-0.05% O (oxygen) can be used.
本発明チタン基材は、スポンジチタン、母合金、スクラップなどの原料を調整し、消耗電極式真空アーク溶解法、電子ビーム溶解法、プラズマ溶解法などで製造したチタン合金を、鍛造、熱延などの展伸工程を経て板状、棒状、又は、管状に加工して製造する。 The titanium substrate of the present invention is a titanium alloy manufactured by consumable electrode vacuum arc melting method, electron beam melting method, plasma melting method, etc. by adjusting raw materials such as sponge titanium, mother alloy, scrap, etc., forging, hot rolling, etc. The plate is processed into a plate shape, a rod shape, or a tubular shape through the stretching process.
本発明チタン基材は、さらに、熱間又は冷間の成形、又は、切削で、所要のチタン部材形状に加工したものでもよい。また、本発明チタン基材は、鋳造法や、3次元積層成形法など部材形状に成型したものでもよい。 The titanium substrate of the present invention may be further processed into a required titanium member shape by hot or cold forming or cutting. In addition, the titanium substrate of the present invention may be formed into a member shape such as a casting method or a three-dimensional lamination molding method.
本発明チタン基材の微視組織は、特に限定されるものではない。一般に、自動車用排気管のように、管成形や曲げ加工などの良好な室温成形性が要求される場合、本発明チタン基材の微視組織は、等軸組織に制御される。一方、自動車用エンジンの排気バルブなど高温クリープ強度が要求される場合、本発明チタン基材の微視組織は、針状α相を主とする針状組織に制御されることが多い。 The microstructure of the titanium substrate of the present invention is not particularly limited. In general, when an excellent room temperature formability such as pipe forming or bending is required as in an automobile exhaust pipe, the microstructure of the titanium substrate of the present invention is controlled to be equiaxed. On the other hand, when high temperature creep strength such as an exhaust valve of an automobile engine is required, the microstructure of the titanium base material of the present invention is often controlled to a needle-like structure mainly including a needle-like α phase.
ここで、耐酸化性皮膜の評価方法について説明する。 Here, an evaluation method of the oxidation resistant film will be described.
耐酸化性は、約1mm厚×20mm角の試験片の全面に表面処理を施した後、700℃×200時間の静止大気中に暴露し、暴露後の増加質量を試験片の表面積で割った値(以下「酸化増量」と記載する。)で評価した。 The oxidation resistance was obtained by subjecting the entire surface of a test piece of about 1 mm thickness × 20 mm square to surface treatment, and then exposing it to a static atmosphere at 700 ° C. × 200 hours, and dividing the increased mass after the exposure by the surface area of the test piece. Evaluation was made with a value (hereinafter referred to as “oxidation increase”).
耐酸化性に優れるチタン合金として開発されたTi−1%Cu−1%Sn−0.35%Si−0.2%Nb−0.05%O(酸素)、及び、Ti−0.1%Fe−0.45%Si−0.05%O(酸素)を、表面処理を施さないで評価した場合の酸化質量が1.7mg/cm2であることから、評価対象の酸化質量が1.7mg/cm2を下回る1.5mg/cm2未満であるとき、合格と評価した。 Ti-1% Cu-1% Sn-0.35% Si-0.2% Nb-0.05% O (oxygen) and Ti-0.1% developed as titanium alloys with excellent oxidation resistance Since the oxidized mass when Fe-0.45% Si-0.05% O (oxygen) is evaluated without surface treatment is 1.7 mg / cm 2 , the oxidized mass to be evaluated is 1. When it was less than 1.5 mg / cm 2 below 7 mg / cm 2 , it was evaluated as acceptable.
耐酸化性皮膜の密着性は、デュポン式衝撃試験で評価した。半径6.35mmの撃ち型と受け台の間に、耐酸化性皮膜を形成した1mm厚×50mm×70mmの試験片を、耐酸化性皮膜を上にして挟み、質量500gの錘を500mmの高さから撃ち型の上に落とし、耐酸化性皮膜の面に、割れ、剥がれ等の損傷の有無を評価した。 The adhesion of the oxidation resistant film was evaluated by a DuPont impact test. A test piece of 1 mm thickness x 50 mm x 70 mm with an oxidation-resistant film formed between a shooting die having a radius of 6.35 mm and a cradle is sandwiched with the oxidation-resistant film on top, and a weight with a mass of 500 g is placed at a height of 500 mm. Then, it was dropped on a shooting mold, and the presence or absence of damage such as cracking or peeling was evaluated on the surface of the oxidation-resistant film.
本発明製造方法によれば、耐酸化性に優れた皮膜を有するチタン部材(本発明チタン部材)を製造することができる。 According to the production method of the present invention, a titanium member having a film excellent in oxidation resistance (the present titanium member) can be produced.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(実施例1)
成分組成が、(A)Ti−1%Cu−1%Sn−0.35%Si−0.2%Nb−0.05%O(酸素)、又は、(B)Ti−0.1%Fe−0.45%Si−0.05%O(酸素)のチタン合金をVAR(真空アーク溶解)法を用いて溶解し、鍛造、熱延、冷延して、厚み1mmのチタン合金板を製造した。このチタン合金板に、真空中で、750℃、5時間の焼鈍を施して、チタン基材とした。
Example 1
The component composition is (A) Ti-1% Cu-1% Sn-0.35% Si-0.2% Nb-0.05% O (oxygen) or (B) Ti-0.1% Fe -0.45% Si-0.05% O (oxygen) titanium alloy is melted using VAR (vacuum arc melting) method, forged, hot-rolled and cold-rolled to produce a 1mm-thick titanium alloy plate did. This titanium alloy plate was annealed in vacuum at 750 ° C. for 5 hours to obtain a titanium substrate.
チタン基材を、耐火物の皿に載せ、粒径1〜5μmのCrSi2粉末で覆い、その後、表1に示す温度及び時間で熱処理を施し、耐酸化性皮膜を形成した。耐酸化性皮膜を形成したチタン基材(チタン部材)を上記粉末から取り出し、アルコールで洗浄した後、静止大気中で、チタン部材に700℃、200時間の熱処理を施した。 The titanium substrate was placed on a refractory dish and covered with a CrSi 2 powder having a particle size of 1 to 5 μm, and then heat-treated at the temperature and time shown in Table 1 to form an oxidation resistant film. The titanium base material (titanium member) on which the oxidation-resistant film was formed was taken out of the powder, washed with alcohol, and then subjected to heat treatment at 700 ° C. for 200 hours in a static atmosphere.
拡散硬化層の厚みは、チタン部材から採取した試験片の断面を鏡面研磨した後、荷重10gfのマイクロビッカース硬さを測定し、チタン基材より高い硬度となる深さで規定した。 The thickness of the diffusion hardened layer was defined by a depth at which the micro Vickers hardness with a load of 10 gf was measured after mirror polishing of the cross section of the test piece collected from the titanium member and the hardness was higher than that of the titanium base material.
表1に、耐酸化性皮膜を形成する熱処理の温度及び時間、耐酸化性皮膜の厚み、拡散硬化層の厚み、耐酸化性の評価、及び、密着性の評価を、纏めて示す。 Table 1 summarizes the temperature and time of heat treatment for forming the oxidation resistant film, the thickness of the oxidation resistant film, the thickness of the diffusion hardened layer, the evaluation of oxidation resistance, and the evaluation of adhesion.
なお、表1中、基材Aは、(A)Ti−1%Cu−1%Sn−0.35%Si−0.2%Nb−0.05%O(酸素)のチタン合金から製造したチタン基材で、基材Bは、(B)Ti−0.1%Fe−0.45%Si−0.05%O(酸素)のチタン合金から製造したチタン基材である。 In Table 1, the base material A was manufactured from a titanium alloy of (A) Ti-1% Cu-1% Sn-0.35% Si-0.2% Nb-0.05% O (oxygen). The base material B is a titanium base material manufactured from a titanium alloy of (B) Ti-0.1% Fe-0.45% Si-0.05% O (oxygen).
No.1〜6は発明例であり、熱処理の温度及び時間を変えて、耐酸化性皮膜の厚みと拡散硬化層の厚みを変化させた。いずれも、耐酸化性皮膜の厚みが0.5〜5.0μmの範囲にあり、拡散硬化層の厚みが10〜100μmの範囲にある。 No. 1-6 are invention examples, and changed the thickness of the oxidation-resistant film and the thickness of the diffusion hardened layer by changing the temperature and time of the heat treatment. In any case, the thickness of the oxidation-resistant film is in the range of 0.5 to 5.0 μm, and the thickness of the diffusion hardened layer is in the range of 10 to 100 μm.
No.7は、耐酸化性皮膜の厚みが0.4μmで、本発明の範囲を外れる比較例であり、耐酸化性の指標も1.6mg/cm2と不合格である。 No. 7 is a comparative example in which the thickness of the oxidation resistant film is 0.4 μm, which is out of the range of the present invention, and the oxidation resistance index is also 1.6 mg / cm 2 , which is unacceptable.
No.8は、耐酸化性皮膜の厚みが6μmで、本発明の範囲を外れる比較例であり、耐酸化性皮膜が剥離し、密着性が不合格である。 No. No. 8 is a comparative example in which the thickness of the oxidation resistant film is 6 μm, which is out of the scope of the present invention, and the oxidation resistant film peels off and the adhesion is unacceptable.
No.9は、耐酸化性皮膜と拡散硬化層を形成しない比較例であり、耐酸化性の指標が1.7mg/cm2で不合格である。 No. 9 is a comparative example in which an oxidation resistant film and a diffusion hardened layer are not formed, and the oxidation resistance index is 1.7 mg / cm 2 , which is unacceptable.
前述したように、本発明によれば、耐酸化性に優れたチタン部材を提供することができる。本発明の耐酸化性に優れたチタン部材により、軽量で高強度のチタン材の用途が広がり、航空機や自動車の燃費が向上し、また、自動二輪車の運動性能が向上するので、本発明は、多くの人々の生活環境の向上に大きく貢献する。よって、本発明は、チタン製造・加工産業において利用可能性が高いものである。 As described above, according to the present invention, a titanium member having excellent oxidation resistance can be provided. The titanium member excellent in oxidation resistance of the present invention expands the use of lightweight and high-strength titanium materials, improves the fuel efficiency of aircraft and automobiles, and improves the motor performance of motorcycles. It greatly contributes to improving the living environment of many people. Therefore, the present invention has high applicability in the titanium manufacturing / processing industry.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014217513A JP6344194B2 (en) | 2014-10-24 | 2014-10-24 | Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014217513A JP6344194B2 (en) | 2014-10-24 | 2014-10-24 | Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016084502A JP2016084502A (en) | 2016-05-19 |
JP6344194B2 true JP6344194B2 (en) | 2018-06-20 |
Family
ID=55973306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014217513A Active JP6344194B2 (en) | 2014-10-24 | 2014-10-24 | Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6344194B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6895721B2 (en) * | 2016-07-12 | 2021-06-30 | 帝人株式会社 | A method for producing a metal compound film and a laminate containing the metal compound film. |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1718563A (en) * | 1925-04-17 | 1929-06-25 | Gen Electric | Treatment of metals |
US3047419A (en) * | 1954-02-26 | 1962-07-31 | Fansteel Metallurgical Corp | Method of forming titanium silicide coatings |
US3037883A (en) * | 1959-02-18 | 1962-06-05 | Chromalloy Corp | Diffusion coating of non-ferrous metals |
US4178193A (en) * | 1975-03-17 | 1979-12-11 | Kanter Jerome J | Method of improving corrosion resistance with coating by friction |
JPH0448043A (en) * | 1990-06-14 | 1992-02-18 | Daido Steel Co Ltd | Composite material and its manufacture |
JP3361072B2 (en) * | 1998-02-20 | 2003-01-07 | 株式会社豊田中央研究所 | Method for producing metal member having excellent oxidation resistance |
JP3810330B2 (en) * | 2002-03-05 | 2006-08-16 | 独立行政法人科学技術振興機構 | Heat resistant alloy material excellent in high temperature corrosion resistance and method for producing the same |
JP2004115906A (en) * | 2002-09-20 | 2004-04-15 | Ichiro Kawakatsu | METHOD FOR COATING Al-Si ALLOY ON SUBSTRATE OF Ti OR Ti ALLOY |
JP4150700B2 (en) * | 2004-06-29 | 2008-09-17 | 株式会社神戸製鋼所 | Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe |
-
2014
- 2014-10-24 JP JP2014217513A patent/JP6344194B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016084502A (en) | 2016-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dadé et al. | Short-and long-term oxidation behaviour of an advanced Ti2AlNb alloy | |
JP4189687B2 (en) | Magnesium alloy material | |
EP3276019B1 (en) | Magnesium-lithium alloy, rolled material formed from magnesium-lithium alloy, and processed article containing magnesium-lithium alloy as starting material | |
JP2009097095A (en) | Titanium-aluminum based alloy | |
EP2674506A1 (en) | Abrasion-resistant titanium alloy member having excellent fatigue strength | |
US11767573B2 (en) | Ferritic stainless steel sheet and method of producing same, and al or al alloy coated stainless steel sheet | |
JP2017210658A (en) | HEAT-RESISTANT Ti ALLOY AND HEAT-RESISTANT Ti ALLOY MATERIAL | |
Vojtěch et al. | Intermetallic protective coatings on titanium | |
EP2204466A1 (en) | METHOD OF TREATING SURFACE OF Ti-Al ALLOY AND TI-AL ALLOY OBTAINED BY THE SAME | |
Vojtěch et al. | Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment | |
JPWO2017018514A1 (en) | Titanium composite and titanium material for hot rolling | |
WO2017057453A1 (en) | Die for hot forging, method for manufacturing forged product using same, and method for manufacturing die for hot forging | |
CN1284666C (en) | Production of heat resistant alloy with good high temperature oxidation resistance | |
JP6344194B2 (en) | Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance | |
JP6787428B2 (en) | Titanium material for hot rolling | |
Lin et al. | High-temperature oxidation behavior of a cast Ti-47.5 Al-2.5 V-1.0 Cr-0.2 Zr alloy | |
JP6394475B2 (en) | Titanium member and manufacturing method thereof | |
JP4150700B2 (en) | Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe | |
JP2022130467A (en) | TiAl ALLOY MATERIAL AND METHOD FOR PRODUCING THE SAME, AND METHOD FOR FORGING TiAl ALLOY MATERIAL | |
Zhang et al. | Preparation and oxidation resistance of a crack-free Al diffusion coating on Ti22Al26Nb | |
JP4973301B2 (en) | Ni3 (Si, Ti) intermetallic compound excellent in oxidation resistance and corrosion resistance, the intermetallic compound rolled foil, and a method for producing the intermetallic compound rolled foil | |
JPS6326186B2 (en) | ||
WO2020235202A1 (en) | Tial alloy material, production method therefor, and hot forging method for tial alloy material | |
JP3297012B2 (en) | High strength titanium alloy with excellent cold rollability | |
JPWO2013035351A1 (en) | Alloy composition for aluminum die-cast mold and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180507 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6344194 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |