JPWO2013035351A1 - Alloy composition for aluminum die-cast mold and method for producing the same - Google Patents

Alloy composition for aluminum die-cast mold and method for producing the same Download PDF

Info

Publication number
JPWO2013035351A1
JPWO2013035351A1 JP2013532462A JP2013532462A JPWO2013035351A1 JP WO2013035351 A1 JPWO2013035351 A1 JP WO2013035351A1 JP 2013532462 A JP2013532462 A JP 2013532462A JP 2013532462 A JP2013532462 A JP 2013532462A JP WO2013035351 A1 JPWO2013035351 A1 JP WO2013035351A1
Authority
JP
Japan
Prior art keywords
alloy
aluminum
aluminum die
mold
alloy composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013532462A
Other languages
Japanese (ja)
Other versions
JP6086444B2 (en
Inventor
千葉 晶彦
晶彦 千葉
云平 李
云平 李
寧 唐
寧 唐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Publication of JPWO2013035351A1 publication Critical patent/JPWO2013035351A1/en
Application granted granted Critical
Publication of JP6086444B2 publication Critical patent/JP6086444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2209Selection of die materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Abstract

60〜70重量%のCoと、25〜33重量%のCrと、4〜7重量%のMoと、残部がSi、Mn、Fe、Zr、C、N、及び/又は不可避的不純物から成るCo−Cr−Mo系合金を、大気中で、温度600〜900℃で、0.5〜5時間保持し、その表面を酸化して製造され、fccのγ相、hcpのε相、またはそれらの混晶相から成る、アルミニウムダイキャスト金型用合金組成物およびその製造方法。Co consisting of 60-70 wt% Co, 25-33 wt% Cr, 4-7 wt% Mo, the balance consisting of Si, Mn, Fe, Zr, C, N and / or inevitable impurities A Cr—Mo alloy is produced by holding the surface at 600 to 900 ° C. in the atmosphere for 0.5 to 5 hours and oxidizing the surface thereof, fcc γ phase, hcp ε phase, or those The alloy composition for aluminum die-casting molds which consists of a mixed crystal phase, and its manufacturing method.

Description

本発明は、アルミニウムの溶湯との反応性が低い、アルミダイキャスト製品の金型材料として好適な、アルミニウムダイキャスト金型用合金組成物およびその製造方法に関するものである。   The present invention relates to an alloy composition for an aluminum die-casting mold that has low reactivity with molten aluminum and is suitable as a mold material for an aluminum die-casting product, and a method for producing the same.

従来、アルミニウムダイキャスト(以下、アルミダイキャストとも記す)の金型用の材料としては、高温引張強さに優れた、JIS SKD61の様な特殊鋼が一般的に使用されている。しかしながら、従来の鉄を主成分とする金型材料は、アルミニウムの溶湯との反応性が高く、特にアルミニウムの溶湯との接触時間が長い、金型のスリーブ部において、鉄成分がアルミニウムの溶湯と反応し、金属間化合物となり、結果的に、金型材料がアルミニウムの溶湯に溶け出すという現象が発生し、短時間の使用で、金型が使用できなくなり、金型を頻繁に交換する必要があるという問題点があった。   Conventionally, a special steel such as JIS SKD61, which is excellent in high-temperature tensile strength, is generally used as a die material for aluminum die-casting (hereinafter also referred to as aluminum die-casting). However, the conventional mold material mainly composed of iron has high reactivity with the molten aluminum, and in particular, the contact portion with the molten aluminum has a long contact time with the molten aluminum alloy. It reacts and becomes an intermetallic compound. As a result, the phenomenon that the mold material melts into the molten aluminum occurs, the mold cannot be used in a short time, and the mold needs to be replaced frequently. There was a problem that there was.

金型の鉄成分がアルミニウムの溶湯に溶け出すのを防止する方法としては、金型のアルミニウムの溶湯の接触部にセラミックスを蒸着する方法があるが、セラミックスと金型との熱膨脹係数の違いから、セラミックス層が剥離してしまい、顕著な効果が得られていない。   As a method of preventing the iron component of the mold from melting into the molten aluminum, there is a method of depositing ceramics at the contact portion of the molten aluminum of the mold, but due to the difference in thermal expansion coefficient between the ceramic and the mold. The ceramic layer peels off, and a remarkable effect is not obtained.

また、金型の鉄成分がアルミニウムの溶湯に溶け出すのを防止する方法として、接触面にニッケル合金層を溶射で形成した後、ニッケル合金層に炭化チタンを真空高温雰囲気で埋め込む方法が提案されているが、製造プロセスが複雑で、高コストになるので実用的ではない(例えば、特許文献1参照)。   Also, as a method to prevent the iron component of the mold from melting into the molten aluminum, a method is proposed in which a nickel alloy layer is formed on the contact surface by thermal spraying and then titanium carbide is embedded in the nickel alloy layer in a vacuum high temperature atmosphere. However, since the manufacturing process is complicated and expensive, it is not practical (see, for example, Patent Document 1).

更に、金型の鉄成分がアルミニウムの溶湯に溶け出すのを防止する方法として、セラミックス製の内側管とそれに嵌合した鋼材製の外側管とから構成され、外側管の内側にニッケル合金層を形成したアルミニウム給湯管の提案もあるが、勘合部に高い寸法精度が要求され、高コストになるので実用的ではない(例えば、特許文献2参照)。   Furthermore, as a method for preventing the iron component of the mold from melting into the molten aluminum, it is composed of a ceramic inner tube and a steel outer tube fitted thereto, and a nickel alloy layer is formed inside the outer tube. Although there is also a proposal for a formed aluminum hot water pipe, it is not practical because a high dimensional accuracy is required for the fitting portion and the cost is high (for example, see Patent Document 2).

特開2005−264306号公報JP 2005-264306 A 特開2007−152377号公報JP 2007-152377 A

そこで、本発明は、このような課題に着目してなされたもので、原材料費としては、鉄系合金よりやや高いが、金型寿命が長く、その結果、金型交換回数が少なくなるような、アルミニウム溶湯との反応性が低いCo−Cr−Mo系合金を使用して、その化学組成を最適化し、更に、表面処理でアルミニウム溶湯に溶けない組成物を表面に形成したアルミニウムダイキャスト金型用合金組成物およびその製造方法を提供することを目的としている。   Therefore, the present invention has been made paying attention to such problems, and the raw material cost is slightly higher than that of the iron-based alloy, but the mold life is long, and as a result, the number of times of mold replacement is reduced. An aluminum die-cast mold using a Co—Cr—Mo alloy with low reactivity with molten aluminum, optimizing its chemical composition, and further forming a composition on the surface that is not soluble in molten aluminum by surface treatment It is an object of the present invention to provide an alloy composition and a method for producing the same.

本発明によれば、60〜70重量%のCoと、25〜33重量%のCrと、4〜7重量%のMoと、残部がSi、Mn、Fe、Zr、C、N、および/または不可避的不純物から成ることを特徴とするアルミニウムダイキャスト金型用合金組成物が得られる。Si、Mn、Fe、Zr、C、N、および/または不可避的不純物は、1重量%未満であることが好ましい。   According to the present invention, 60 to 70 wt% Co, 25 to 33 wt% Cr, 4 to 7 wt% Mo, the balance being Si, Mn, Fe, Zr, C, N, and / or An alloy composition for an aluminum die-casting mold characterized by comprising inevitable impurities is obtained. Si, Mn, Fe, Zr, C, N, and / or inevitable impurities are preferably less than 1% by weight.

また、本発明によれば、fccのγ相、hcpのε相、またはそれらの混晶相から成ることを特徴とするアルミニウムダイキャスト金型用合金組成物が得られる。   In addition, according to the present invention, there can be obtained an alloy composition for an aluminum die-cast mold, comprising an fcc γ phase, an hcp ε phase, or a mixed crystal phase thereof.

さらに、本発明によれば、60〜70重量%のCoと、25〜33重量%のCrと、4〜7重量%のMoと、残部がSi、Mn、Fe、Zr、C、N、および/または不可避的不純物から成るCo−Cr−Mo系合金を、大気中で、温度600〜900℃で、0.5〜5時間保持することにより、その表面を酸化させることを特徴とするアルミニウムダイキャスト金型用合金組成物の製造方法が得られる。   Furthermore, according to the present invention, 60-70 wt% Co, 25-33 wt% Cr, 4-7 wt% Mo, the balance being Si, Mn, Fe, Zr, C, N, and An aluminum die characterized in that the surface thereof is oxidized by holding a Co—Cr—Mo alloy composed of inevitable impurities in the atmosphere at a temperature of 600 to 900 ° C. for 0.5 to 5 hours. A method for producing an alloy composition for cast molds is obtained.

本発明によれば、原材料費としては、鉄系合金よりやや高いが、金型寿命が長く、その結果、金型交換回数が少なくなるような、アルミニウム溶湯との反応性が低いCo−Cr−Mo系合金を使用して、その化学組成を最適化し、更に、表面処理でアルミニウム溶湯に溶けない組成物を表面に形成したアルミニウムダイキャスト金型用合金組成物およびその製造方法を提供することができる。また、アルミダイカスト用Co−Cr−Mo系合金は、従来の鉄系合金より耐熱疲労特性に優れているため、この合金を使用して製造されたアルミダイカスト用金型の耐食性を向上させることができる。アルミダイカスト用Co−Cr−Mo系合金は、アルミニウムダイキャスト金型の他に、亜鉛用、マグネシウム用ダイキャスト金型としても有効である。   According to the present invention, the raw material cost is slightly higher than that of the iron-based alloy, but the mold life is long, and as a result, the number of times of mold replacement is reduced. Co-Cr- having low reactivity with molten aluminum To provide an alloy composition for an aluminum die-casting die, which uses a Mo-based alloy, optimizes its chemical composition, and further forms a composition on the surface that does not dissolve in molten aluminum by surface treatment, and a method for producing the same. it can. In addition, since the Co-Cr-Mo alloy for aluminum die casting has better thermal fatigue characteristics than conventional iron alloys, the corrosion resistance of the die for aluminum die casting produced using this alloy can be improved. it can. The Co—Cr—Mo based alloy for aluminum die casting is effective as a die casting die for zinc and magnesium in addition to an aluminum die casting die.

本発明の実施の形態のアルミニウムダイキャスト金型用合金組成物の製造方法の、Co−29Cr−6Mo−0.14N系合金を、大気中高温酸化処理する前後の表面のX線回折分析結果を示すグラフである。The X-ray diffraction analysis results of the surface before and after the high-temperature oxidation treatment of the Co-29Cr-6Mo-0.14N alloy in the method for producing an alloy composition for an aluminum die-cast mold according to the embodiment of the present invention are shown. It is a graph to show. 本発明の実施の形態のアルミニウムダイキャスト金型用合金組成物を示す、大気中酸化処理後の(a)表面、(b)断面の顕微鏡写真である。It is the microscope picture of the (a) surface after the atmospheric oxidation process which shows the alloy composition for aluminum die-casting molds of embodiment of this invention, (b) cross section. 本発明の実施の形態のアルミニウムダイキャスト金型用合金組成物を示す、異なる温度、時間での大気中酸化処理後の表面(Surface)および断面(Cross section)の顕微鏡写真である。It is the microscope picture of the surface (Surface) and cross section (Cross section) after the oxidation process in air | atmosphere at different temperature and time which shows the alloy composition for aluminum die-casting molds of embodiment of this invention. 本発明の実施の形態のアルミニウムダイキャスト金型用合金組成物を示す、異なる表面粗さでの大気中酸化処理後の表面の顕微鏡写真である。It is a microscope picture of the surface after the oxidation process in air | atmosphere with different surface roughness which shows the alloy composition for aluminum die-casting molds of embodiment of this invention. 未熱処理、および、大気中酸化処理後の本発明の実施の形態のアルミニウムダイキャスト金型用合金組成物であるCo−Cr−Mo−0.14N合金を、720℃のアルミニウムの溶湯に1時間浸漬した後の断面を示す顕微鏡写真である。Co-Cr-Mo-0.14N alloy, which is an alloy composition for an aluminum die-casting mold according to an embodiment of the present invention after unheated and oxidized in air, is placed in a molten aluminum at 720 ° C. for 1 hour. It is a microscope picture which shows the cross section after being immersed. 図5に示す各合金を、720℃アルミニウムの溶湯に浸漬したときの、断面厚さの時間変化を示すグラフである。It is a graph which shows the time change of cross-sectional thickness when each alloy shown in FIG. 5 is immersed in the molten metal of 720 degreeC aluminum. 未処理Co−Cr−Mo−0.14N合金を、720℃のアルミニウムの溶湯に1時間浸漬した後の断面を示す顕微鏡写真である。It is a microscope picture which shows the cross section after immersing an untreated Co-Cr-Mo-0.14N alloy in the molten metal of 720 degreeC for 1 hour. 大気中酸化処理後の本発明の実施の形態のアルミニウムダイキャスト金型用合金組成物であるCo−Cr−Mo−0.14N合金を、720℃のアルミニウムの溶湯に2時間浸漬した後の断面を示す顕微鏡写真である。Cross section after immersing Co-Cr-Mo-0.14N alloy, which is an alloy composition for an aluminum die-casting mold according to an embodiment of the present invention after atmospheric oxidation treatment, in a molten aluminum at 720 ° C for 2 hours FIG.

以下、この発明の実施の形態を図に基づいて説明する。
上記従来技術と本発明の実施の形態との相違点として、従来技術では、JIS SKD61の様な特殊鋼が使用され、金型がアルミニウムの溶湯に溶け出すのを防止する方法としては、溶湯との接触部にセラミックスを蒸着する方法や、ニッケル合金層を溶射形成する方法があるが、本発明の実施の形態では、アルミニウムの溶湯と反応容易な鉄を含有しないCo−Cr−Mo系合金を使用し、大気中高温酸化処理を実施し、試料表面で均一的な酸化皮膜を形成することにより、金型がアルミニウムの溶湯に溶け出すのを有効的に防止することができる。
Embodiments of the present invention will be described below with reference to the drawings.
As a difference between the above-described conventional technique and the embodiment of the present invention, in the conventional technique, a special steel such as JIS SKD61 is used, and a method for preventing the mold from melting into the molten aluminum is as follows. However, in the embodiment of the present invention, a Co—Cr—Mo alloy that does not contain iron that easily reacts with molten aluminum is used. It is possible to effectively prevent the mold from being melted into the molten aluminum by using a high-temperature oxidation treatment in the atmosphere and forming a uniform oxide film on the sample surface.

図1は、本発明の実施の形態によるCo−29Cr−6Mo−0.14N系合金を、大気中で、750℃、24時間で高温酸化処理する前後のXRD(X線回折)分析結果である。図1に示すように、Co−Cr−Mo−0.14N系合金を相変態点(850℃)以下で酸化処理しながら、高温で安定なFCC結晶構造を持つγ相から、低温安定なHCP結晶構造のε相への相変態が起きている。表面形成した酸化物は、Crが主に含まれる(Cr.M)酸化物である。ここで、Mは、合金に含まれた他の元素(Co,Si,Moなど)である。FIG. 1 is a result of XRD (X-ray diffraction) analysis before and after the Co-29Cr-6Mo-0.14N alloy according to the embodiment of the present invention is subjected to high-temperature oxidation treatment at 750 ° C. for 24 hours in the atmosphere. . As shown in FIG. 1, a low temperature stable HCP is obtained from a γ phase having a FCC crystal structure stable at high temperatures while oxidizing a Co—Cr—Mo—0.14N alloy at a phase transformation point (850 ° C.) or lower. A phase transformation of the crystal structure to the ε phase occurs. The oxide formed on the surface is a (Cr.M) 2 O 3 oxide mainly containing Cr. Here, M is another element (Co, Si, Mo, etc.) contained in the alloy.

図2は、本発明の実施の形態によるCo−Cr−Mo−0.14N系合金(CCM alloy)を、750℃、24時間で大気中酸化処理した後の表面組織である。図2に示すように、表面における酸化物が、平均粒径100〜500nmで、均一的に形成されていることが確認できる。酸化物皮膜には空孔が見られず、緻密である。750℃、24時間で大気中酸化処理した後は、酸化物被膜(Oxide layer)の厚さが300〜400nmレベルになっている。   FIG. 2 is a surface texture after the Co—Cr—Mo—0.14N alloy (CCM alloy) according to the embodiment of the present invention is oxidized in the atmosphere at 750 ° C. for 24 hours. As shown in FIG. 2, it can be confirmed that the oxide on the surface is uniformly formed with an average particle diameter of 100 to 500 nm. The oxide film is dense with no pores. After oxidation in the atmosphere at 750 ° C. for 24 hours, the thickness of the oxide layer is about 300 to 400 nm.

図3は、本発明の実施の形態によるCo−Cr−Mo−0.14N系合金を、それぞれ600℃、24時間(T600−24h)および800℃、24時間(T800−24h)で酸化処理を実施した後の表面組織である。図3に示すように、600℃、24時間で熱処理した酸化物皮膜(Oxide layer)は、800℃、24時間の結果と比べて、表面の欠陥(空孔)が多く、皮膜が薄く、酸化物の結晶粒径が細かくなっている。このことから、高温で酸化処理を実施して、酸化物皮膜の厚さが増加することにより、金型がアルミニウムの溶湯に溶け出すのを一層有効的に防止できると考えられる。   FIG. 3 shows the oxidation treatment of the Co—Cr—Mo—0.14N alloy according to the embodiment of the present invention at 600 ° C., 24 hours (T600-24h) and 800 ° C., 24 hours (T800-24h), respectively. It is the surface texture after the execution. As shown in FIG. 3, the oxide film heat-treated at 600 ° C. for 24 hours has many surface defects (holes), the film is thin, and the oxidation film is thinner than the result at 800 ° C. for 24 hours. The crystal grain size of the product is fine. From this, it is considered that by performing the oxidation treatment at a high temperature and increasing the thickness of the oxide film, it is possible to more effectively prevent the mold from melting into the molten aluminum.

図4は、本発明の実施の形態による、試料表面に異なる粗さを持つCo−Cr−Mo−0.14N合金を、それぞれ600℃、24時間(T600−24h)および800℃、24時間(T800−24h)で酸化処理した後の表面組織である。図4に示すように、試料の表面を適度に粗く研磨して酸化処理した試料の方が、酸化物皮膜が均一的に形成されるが、高温(800℃)で酸化処理した後の試料では、この傾向がはっきり見られない。   FIG. 4 shows a Co—Cr—Mo—0.14N alloy with different roughness on the sample surface, according to an embodiment of the present invention, at 600 ° C., 24 hours (T600-24h) and 800 ° C., 24 hours ( It is a surface texture after oxidation treatment at T800-24h). As shown in FIG. 4, the oxide film is formed more uniformly in the sample that has been subjected to oxidation treatment by moderately roughing the surface of the sample, but in the sample after oxidation treatment at a high temperature (800 ° C.) This trend is not clearly seen.

図5は、未熱処理、および、本発明の実施の形態による750℃、24時間酸化処理後のCo−Cr−Mo−0.14N合金(厚さ2mm)を、720℃のアルミニウムの溶湯に1時間浸漬した後の断面組織である。また、図6は、それらの試料を720℃のアルミニウムの溶湯に浸漬したときの、試料の断面の厚さの時間変化を示している。図5および図6に示すように、未処理試料(Untreated samples)では厚さ(X)が大きく減るが、酸化処理後の試料(Treated samples)では厚さの変化がなく、金型がアルミニウムの溶湯に溶け出すのを非常に有効的に防止できている。   FIG. 5 shows that a Co—Cr—Mo—0.14N alloy (thickness: 2 mm) after 750 ° C. and 24 hours oxidation treatment according to an embodiment of the present invention is used as an aluminum melt at 720 ° C. It is a cross-sectional structure after time immersion. Moreover, FIG. 6 shows the time change of the thickness of the cross section of the sample when those samples were immersed in the molten metal of 720 ° C. As shown in FIGS. 5 and 6, the thickness (X) of the untreated sample is greatly reduced, but the thickness of the sample after the oxidation treatment (Treated samples) is not changed, and the mold is made of aluminum. It is very effectively prevented from melting into the molten metal.

図7は、未処理Co−Cr−Mo−0.14N合金を、720℃のアルミニウムの溶湯に1時間浸漬した後の断面組織である。図7に示すように、試料の表面とアルミニウムの溶湯とが激しく反応し、Co−Cr−Mo−0.14N合金(CCM alloy)とアルミニウムの溶湯(Al)との間にCo−Cr−Mo−Alの金属化合物が形成され、アルミニウムの溶湯にCr−MoーAl相が分散されている。そのCo−Cr−Mo−Alの金属化合物の組成(at%)は約83.5Al−10.86Co−4.94Cr−0.71Moであり、分散されているCr−Mo−Al相の組成は、7.12Cr−2.22Mo−89.97Alである。   FIG. 7 shows a cross-sectional structure after immersing an untreated Co—Cr—Mo—0.14N alloy in a molten aluminum at 720 ° C. for 1 hour. As shown in FIG. 7, the surface of the sample and the molten aluminum react vigorously, and the Co—Cr—Mo is formed between the Co—Cr—Mo—0.14N alloy (CCM alloy) and the molten aluminum (Al). A metal compound of -Al is formed, and the Cr-Mo-Al phase is dispersed in the molten aluminum. The composition (at%) of the Co-Cr-Mo-Al metal compound is about 83.5Al-10.86Co-4.94Cr-0.71Mo, and the composition of the dispersed Cr-Mo-Al phase is 7.12Cr-2.22Mo-89.97Al.

図8は、本発明の実施の形態による、750℃、24時間で酸化処理したCo−Cr−Mo−0.14N合金を、720℃のアルミニウムの溶湯に2時間浸漬した後のある断面の組織である。図8に示すように、試料(CCM alloy)の表面とアルミニウムの溶湯(Al)との間の酸化物皮膜に破壊が起きると、合金とアルミニウムの溶湯との間に直接的な反応が起き、図7で述べた金属化合物が形成されて膨張が起き、錐体{すいたい}の形を持つ組織(cone−shaped structure)が形成されている。   FIG. 8 shows a structure of a cross section after a Co—Cr—Mo—0.14N alloy oxidized at 750 ° C. for 24 hours is immersed in a molten aluminum at 720 ° C. for 2 hours according to an embodiment of the present invention. It is. As shown in FIG. 8, when the oxide film between the surface of the sample (CCM alloy) and the molten aluminum (Al) breaks down, a direct reaction occurs between the alloy and the molten aluminum, The metal compound described in FIG. 7 is formed and expansion occurs, and a cone-shaped structure (cone-shaped structure) is formed.

アルミダイキャストマシン(コールドチャンバマシン)を用いて、JISアルミ合金(ADC10 Al−Si−Cu系合金)の自動車部品(キャブレタ)の製造を行い、溶湯射出装置のスリーブの寿命評価を行った。アルミ合金溶湯射出装置のスリーブ材を、開発合金(Co−29Cr−6Mo−0.05C−0.05Zr−0.14N合金)で作製した。また、比較として、JIS SKD61鋼を用いてアルミ合金溶湯射出装置のスリーブ材を試作した。アルミ合金の溶湯は700℃であった。結果として、SKD61製のスリーブは、35,000ショットの使用で亀裂が生じたが、開発合金のスリーブは380,000回のショットでも使用可能な状態であった。このことから、開発合金は、アルミダイキャスト用スルーブ材料として優れていることが判明した。
Using an aluminum die-casting machine (cold chamber machine), JIS aluminum alloy (ADC10 Al—Si—Cu-based alloy) automobile parts (carburetors) were manufactured, and the life evaluation of the sleeve of the molten metal injection device was performed. The sleeve material of the aluminum alloy molten metal injection device was made of the developed alloy (Co-29Cr-6Mo-0.05C-0.05Zr-0.14N alloy). For comparison, a sleeve material for an aluminum alloy molten metal injection device was manufactured using JIS SKD61 steel. The molten aluminum alloy was 700 ° C. As a result, the SKD61 sleeve cracked after 35,000 shots, but the developed alloy sleeve was usable even after 380,000 shots. From this, it was found that the developed alloy is excellent as a through material for aluminum die casting.

Claims (3)

60〜70重量%のCoと、25〜33重量%のCrと、4〜7重量%のMoと、残部がSi、Mn、Fe、Zr、C、N、および/または不可避的不純物から成ることを特徴とするアルミニウムダイキャスト金型用合金組成物。   60 to 70% by weight Co, 25 to 33% by weight Cr, 4 to 7% by weight Mo and the balance consisting of Si, Mn, Fe, Zr, C, N, and / or inevitable impurities An alloy composition for an aluminum die-casting mold characterized by the above. fccのγ相、hcpのε相、またはそれらの混晶相から成ることを特徴とする請求項1記載のアルミニウムダイキャスト金型用合金組成物。   The alloy composition for an aluminum die-casting mold according to claim 1, comprising an fcc γ phase, an hcp ε phase, or a mixed crystal phase thereof. 60〜70重量%のCoと、25〜33重量%のCrと、4〜7重量%のMoと、残部がSi、Mn、Fe、Zr、C、N、および/または不可避的不純物から成るCo−Cr−Mo系合金を、大気中で、温度600〜900℃で、0.5〜5時間保持することにより、その表面を酸化させることを特徴とするアルミニウムダイキャスト金型用合金組成物の製造方法。
Co consisting of 60-70 wt% Co, 25-33 wt% Cr, 4-7 wt% Mo, the balance consisting of Si, Mn, Fe, Zr, C, N and / or inevitable impurities An alloy composition for an aluminum die-casting mold characterized by oxidizing a surface of a Cr—Mo-based alloy by holding it in the atmosphere at a temperature of 600 to 900 ° C. for 0.5 to 5 hours. Production method.
JP2013532462A 2011-09-08 2012-02-10 Alloy composition for aluminum die-cast mold and method for producing the same Active JP6086444B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011195781 2011-09-08
JP2011195781 2011-09-08
PCT/JP2012/053051 WO2013035351A1 (en) 2011-09-08 2012-02-10 Alloy composition for aluminum diecasting mold and manufacturing process therefor

Publications (2)

Publication Number Publication Date
JPWO2013035351A1 true JPWO2013035351A1 (en) 2015-03-23
JP6086444B2 JP6086444B2 (en) 2017-03-01

Family

ID=47831818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013532462A Active JP6086444B2 (en) 2011-09-08 2012-02-10 Alloy composition for aluminum die-cast mold and method for producing the same

Country Status (2)

Country Link
JP (1) JP6086444B2 (en)
WO (1) WO2013035351A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952596B (en) * 2014-05-12 2016-03-23 四川省有色冶金研究院有限公司 A kind of vitallium powder preparation method increasing material manufacture for metal
CN106282671B (en) * 2016-08-29 2018-05-25 深圳市圆梦精密技术研究院 The processing method and minimally-invasive scalpel of Co-Cr-Mo alloys, minimally-invasive scalpel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269994A (en) * 2003-03-11 2004-09-30 Japan Science & Technology Agency BIOCOMPATIBLE Co BASED ALLOY, AND PRODUCTION METHOD THEREFOR
JP2006265633A (en) * 2005-03-24 2006-10-05 Iwate Univ Co-Cr-Mo ALLOY FOR LIVING BODY FOR DEALING WITH MRI, AND ITS PRODUCTION METHOD
JP2008038179A (en) * 2006-08-03 2008-02-21 Hiroshi Kai Hot chamber die-casting machine and casting method using it
WO2010026996A1 (en) * 2008-09-05 2010-03-11 国立大学法人東北大学 METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
JP2010215960A (en) * 2009-03-16 2010-09-30 Iwate Univ Method for producing machine part, and machine part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269994A (en) * 2003-03-11 2004-09-30 Japan Science & Technology Agency BIOCOMPATIBLE Co BASED ALLOY, AND PRODUCTION METHOD THEREFOR
JP2006265633A (en) * 2005-03-24 2006-10-05 Iwate Univ Co-Cr-Mo ALLOY FOR LIVING BODY FOR DEALING WITH MRI, AND ITS PRODUCTION METHOD
JP2008038179A (en) * 2006-08-03 2008-02-21 Hiroshi Kai Hot chamber die-casting machine and casting method using it
WO2010026996A1 (en) * 2008-09-05 2010-03-11 国立大学法人東北大学 METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
JP2010215960A (en) * 2009-03-16 2010-09-30 Iwate Univ Method for producing machine part, and machine part

Also Published As

Publication number Publication date
JP6086444B2 (en) 2017-03-01
WO2013035351A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5822562B2 (en) Aluminum alloy for photosensitive drum substrate and method for producing aluminum alloy extruded tube for photosensitive drum substrate
JP5865487B2 (en) Casting member and method for manufacturing the same, die casting sleeve, and die casting apparatus
KR20190125447A (en) Aluminum alloys and products with high uniformity and elemental content
JP2015521238A (en) Metal crucible and method for forming the same
JP2011179375A (en) Automotive engine valve comprising titanium alloy and having excellent heat resistance
JP2011110587A (en) Surface treated mold and method for manufacturing the same
JP5867332B2 (en) Aluminum alloy wear-resistant member and method for producing the same
JP6108260B1 (en) Mold for hot forging, method for producing forged product using the same, and method for producing hot forging die
JP6086444B2 (en) Alloy composition for aluminum die-cast mold and method for producing the same
US7601389B2 (en) Metal material and method for production thereof
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JP2010105022A (en) Surface-modified steel and precision casting method for casting having modified surface
JP6026431B2 (en) Lead-free rolled aluminum plain bearing
JP3608546B2 (en) Mold for casting and manufacturing method thereof
JP2009084613A (en) Metallic glass alloy composite and its manufacturing method
CN104372188B (en) A kind of preparation method of high tantnickel copper-alloy casting
KR20140087157A (en) Crucible for smelting magnesium and method for the same
JP5942118B2 (en) Melting resistant casting, method for producing the same, and molten metal contact member
JP5383410B2 (en) Manufacturing method of cylindrical sliding member
JP4796994B2 (en) Method for producing molten aluminum erodible cast iron and molten aluminum erodible cast iron
CN110709190A (en) Component for aluminum die casting mold
JP6083521B2 (en) Method for producing Al-Li alloy
JP6236031B2 (en) Die casting mold
RO132661B1 (en) Process for making a very hard rolling mill roller from high-entropy alloy and alloy prepared accordingly
JP2011156546A (en) Protective film for casting die surface

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170125

R150 Certificate of patent or registration of utility model

Ref document number: 6086444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250