JP4150700B2 - Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe - Google Patents

Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe Download PDF

Info

Publication number
JP4150700B2
JP4150700B2 JP2004190705A JP2004190705A JP4150700B2 JP 4150700 B2 JP4150700 B2 JP 4150700B2 JP 2004190705 A JP2004190705 A JP 2004190705A JP 2004190705 A JP2004190705 A JP 2004190705A JP 4150700 B2 JP4150700 B2 JP 4150700B2
Authority
JP
Japan
Prior art keywords
titanium
coating layer
treated titanium
exhaust pipe
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004190705A
Other languages
Japanese (ja)
Other versions
JP2006009115A (en
Inventor
兼司 山本
英一郎 吉川
貴司 屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004190705A priority Critical patent/JP4150700B2/en
Priority to US11/153,332 priority patent/US20050284544A1/en
Priority to EP05013365A priority patent/EP1614772A1/en
Priority to RU2005120101/02A priority patent/RU2308540C2/en
Priority to CNA2005100814886A priority patent/CN1715443A/en
Publication of JP2006009115A publication Critical patent/JP2006009115A/en
Application granted granted Critical
Publication of JP4150700B2 publication Critical patent/JP4150700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions

Description

本発明は、表面処理チタン材で構成されるエンジンの排気管と、エンジンの排気管用の酸化性に優れる表面処理チタン材の製造方法に関するものである。 The present invention relates an exhaust pipe of an engine composed of surface-treated titanium material, a method for producing a surface-treated titanium material excellent in oxidation resistance of the exhaust pipe of the engine.

チタン合金は一般的な鉄鋼材料に比較して、比強度が高く、軽量化が強く指向されている自動車を中心とする輸送機分野への適用が進んでいる。その中でエンジン周りの排気系の排気管材料は、現在ステンレス鋼が主流であるが、上記軽量化目的のために排気管のチタン化が検討されている。しかしながら排気管の温度は部位によっては500℃以上の高温になるため、表面処理されないチタン合金材では、酸化の進行が早く、耐高温酸化性が劣るため、耐久性に問題がある。   Titanium alloys have a higher specific strength than common steel materials and are increasingly applied to the field of transportation equipment, particularly automobiles, which are strongly aimed at weight reduction. Among them, the exhaust pipe material around the engine is currently made of stainless steel, but the use of titanium in the exhaust pipe is being studied for the purpose of reducing the weight. However, since the temperature of the exhaust pipe becomes a high temperature of 500 ° C. or more depending on the part, the titanium alloy material that is not surface-treated has a problem in durability because the oxidation proceeds rapidly and the high-temperature oxidation resistance is inferior.

そのために、チタン材の耐高温酸化性 (以下、単に耐酸化性とも言う) を高めるために、従来から各種表面処理が提案されている。例えば、チタン合金表面にAl板をクラッド化した材料が提案されている(特許文献1参照)。また、チタン合金表面にAl−Ti系の蒸着めっきを施す方法が提案されている(特許文献2参照)。あるいは、チタン合金表面にPVD法によりTiCrAlN系皮膜を形成する方法なども提案されている(特許文献3参照)。   For this reason, various surface treatments have been proposed in the past in order to improve the high temperature oxidation resistance (hereinafter also simply referred to as oxidation resistance) of the titanium material. For example, a material in which an Al plate is clad on the surface of a titanium alloy has been proposed (see Patent Document 1). In addition, a method of performing Al—Ti vapor deposition plating on the titanium alloy surface has been proposed (see Patent Document 2). Alternatively, a method of forming a TiCrAlN-based film on a titanium alloy surface by a PVD method has been proposed (see Patent Document 3).

しかしながら、上記クラッド法ではコストが高い。また、蒸着法やPVD法では、処理コストが高い上に、前記排気管など、チタン材が管形状である場合に、管内面への耐酸化性皮膜形成が困難であるなどの問題を有している。   However, the cladding method is expensive. In addition, the vapor deposition method and the PVD method have problems such as high processing costs and difficulty in forming an oxidation resistant film on the inner surface of the tube when the titanium material has a tube shape such as the exhaust pipe. ing.

これに対して、チタン合金表面に、無機質バインダーとAl粉末とを付着させ、焼成して、材料内部への酸素の拡散を防止する酸素バリヤ被膜(耐酸化性皮膜)を形成する方法、あるいは前記焼成後に、Al粉末間に生じた空隙を埋めるためにクロム酸をベースとしたシール材にて封孔を実施する処理方法が提案されている(特許文献4参照)。
特開平10-99976号公報 (請求項) 特開平6-88208 号公報 (請求項) 特開平9-256138号公報 (請求項) 特許第3151713 号公報 (請求項、第1 〜第3 頁)
On the other hand, a method of forming an oxygen barrier film (oxidation-resistant film) for preventing the diffusion of oxygen into the material by attaching an inorganic binder and Al powder to the titanium alloy surface and firing it, or There has been proposed a treatment method in which sealing is performed with a sealing material based on chromic acid in order to fill voids generated between Al powders after firing (see Patent Document 4).
JP-A-10-99976 (Claims) JP-A-6-88208 (Claims) JP-A-9-256138 (Claims) Japanese Patent No. 3151713 (Claims, pages 1 to 3)

チタン合金表面に、Al粉末を焼成させた酸素バリヤ被膜は、前記高温での耐酸化性皮膜として有効である。しかし、焼成後のAl粉末間には空隙が必然的に生じる。したがって、耐酸化性皮膜として十分機能するためには、前記特許文献4 のように、この生じた空隙を、クロム酸をベースとしたシーラ材などで埋める (封孔する) 必要がある。   The oxygen barrier film obtained by firing Al powder on the surface of the titanium alloy is effective as the oxidation-resistant film at the high temperature. However, voids are inevitably generated between the Al powders after firing. Therefore, in order to sufficiently function as an oxidation-resistant film, it is necessary to fill (seal) the generated voids with a sealer material based on chromic acid, as described in Patent Document 4.

このため、Al粉末をチタン基材上に付着させるための無機バインダーを使用した工程、更に、前記焼成後のAl粉末間に生じた空隙を埋めるのにクロム酸を使用する工程、が必要で、これら処理が2段階となっており効率的ではない。また、無機バインダーとして唯一記載されているクロム酸溶液は極めて有毒であり、上記処理工程だけではなく、部材としての用途においても、その安全性が懸念される。   For this reason, a process using an inorganic binder for adhering Al powder onto a titanium substrate, and further a process using chromic acid to fill the voids formed between the Al powders after firing, are necessary. These processes are in two stages and are not efficient. Moreover, the chromic acid solution described only as an inorganic binder is extremely toxic, and there is a concern about its safety not only in the above treatment process but also in use as a member.

本発明はこのような事情に鑑みてなされたものであって、その目的は、耐酸化性に優れ、長期間に渡ってその耐酸化性が維持されるとともに、表面処理自体も安価で安全な、表面処理チタン材で構成されるエンジンの排気管と、エンジンの排気管用の酸化性に優れる表面処理チタン材の製造方法を提供しようとすることを目的とする。 The present invention has been made in view of such circumstances, and its purpose is excellent in oxidation resistance, maintaining the oxidation resistance over a long period of time, and surface treatment itself is also inexpensive and safe. An object of the present invention is to provide an engine exhaust pipe made of a surface-treated titanium material and a method for producing a surface-treated titanium material having excellent oxidizability for an engine exhaust pipe .

上記目的を達成するための、本発明の要旨は、純チタン又はチタン基合金よりなる基材上に5 μm 以上の耐酸化性焼成被覆層が形成された表面処理チタン材であって、前記焼成被覆層は、前記基材上に、10at% 以下のSiを含むAl合金粒子又は純Al粒子、並びにシリコーン樹脂を含む溶液を塗布して、焼成温度200 〜400 ℃で焼成したものである表面処理チタン材で構成されたエンジン排気管であることとする。 To achieve the above object, the present onset Ming aspect is a surface treated titanium material of pure titanium or on a substrate made of titanium based alloys 5 [mu] m or more oxidation-resistant baked film is formed, the The fired coating layer is a surface obtained by applying Al alloy particles or pure Al particles containing 10 at% or less of Si and a solution containing a silicone resin on the base material and firing at a firing temperature of 200 to 400 ° C. The engine exhaust pipe is made of a treated titanium material .

また、上記目的を達成するための、本発明エンジンの排気管用の耐酸化性に優れた表面処理チタン材の製造方法の要旨は、チタン又はチタン基合金よりなる基材上に、10at% 以下のSiを含むAl合金粒子又は純Al粒子、並びにシリコーン樹脂を含む溶液を塗布して、焼成温度200 〜400 ℃で焼成し、耐酸化性被覆層を形成させることである。 In order to achieve the above object, the gist of the method for producing a surface-treated titanium material excellent in oxidation resistance for an exhaust pipe of the engine of the present invention is 10 at% or less on a substrate made of titanium or a titanium-based alloy. A solution containing Si alloy-containing Al alloy particles or pure Al particles and a silicone resin is applied and fired at a firing temperature of 200 to 400 ° C. to form an oxidation-resistant coating layer.

更に、上記目的を達成するための、本発明耐酸化性に優れたエンジン排気管の要旨は、排気管が上記表面処理チタン材で構成されていることである。   Further, the gist of the engine exhaust pipe excellent in oxidation resistance according to the present invention for achieving the above object is that the exhaust pipe is composed of the surface-treated titanium material.

前記した通り、チタン合金表面にAl粉末を焼成させた酸素バリヤ被膜は、高温での耐酸化性皮膜として有効である。しかし、これも前記した通り、焼成後のAl粉末間には空隙が必然的に生じるため、耐酸化性皮膜として十分機能するためには、この生じた空隙を封孔材 (シーラ材) などで埋める (封孔する) 必要がある。   As described above, the oxygen barrier film obtained by firing Al powder on the titanium alloy surface is effective as an oxidation-resistant film at a high temperature. However, as described above, since voids are inevitably generated between the Al powders after firing, in order to sufficiently function as an oxidation-resistant film, the generated voids are sealed with a sealing material (sealer material) or the like. Must be filled (sealed).

この点、本発明においては、この封孔材として、上記要旨の通り、焼成後に金属元素M (但しM は、Ti、Zr、Cr、Si、Alの一種または二種以上)とC 及び/又はO からなる化合物となるものを用いる。従来公知の純Al系の、あるいはSiを10at% 以下含有するAl-Si 合金粉末の焼成被覆層中の粒子間に、前記金属元素M とC 及び/又はO からなる化合物が存在する場合に、焼成被覆の高温での耐酸化性が著しく向上する。   In this respect, in the present invention, as the sealing material, as described above, the metal element M (wherein M is one or more of Ti, Zr, Cr, Si, Al) and C 2 and / or after firing, as described above. A compound consisting of O 2 is used. When the compound composed of the metal elements M and C and / or O is present between particles in a fired coating layer of a conventionally known pure Al-based or Al-Si alloy powder containing Si at 10 at% or less, The oxidation resistance of the fired coating at high temperatures is significantly improved.

しかも、これら前記金属元素M とC 及び/又はO からなる化合物は、Al粉末のバインダーの役割も果たし、焼成被覆層のAl粉末同士、あるいは焼成被覆層とチタン材表面との密着性を向上させる。また、これら化合物原料のチタン材表面への被覆は、上記本発明表面処理チタン材の製造方法の要旨の通り、Al粉末の被覆と同時に処理でき、簡便である。また、これら化合物は、前記した従来のクロム酸のような毒性は無く、表面処理工程だけではなく、部材としての用途においても安全である。 In addition, the compound composed of the metal elements M and C and / or O 2 also serves as a binder for the Al powder, and improves the adhesion between the Al powders of the fired coating layer or between the fired coating layer and the titanium material surface. . Further, the coating on the titanium material surface of these compounds MonoHara fees, as the gist of the production method of the present invention a surface-treated titanium material, can simultaneously process a coating of Al powder, it is convenient. Moreover, these compounds do not have the toxicity like the above-mentioned conventional chromic acid, and are safe not only for the surface treatment process but also for use as a member.

以下に、本発明の実施態様と、本発明の各要件の限定理由とを具体的に説明する。   Hereinafter, embodiments of the present invention and reasons for limiting the requirements of the present invention will be specifically described.

(Al粉末)
本発明の純Al粉末、またはSiを10at% 以下含有するAl-Si 合金粉末は、チタン材表面の焼成被覆層の耐酸化性向上のための基本構成要素である。使用するAl粉末は、純Al (純Al系粉末) 、Siを10at% 以下含有するAl-Si 合金粉末のいずれでも、これらを混合したものでも良く、またAl-Si 合金粉末としては、Al粉末とSi粉末とを混合したものでも良い。
(Al powder)
The pure Al powder of the present invention or the Al—Si alloy powder containing Si at 10 at% or less is a basic component for improving the oxidation resistance of the fired coating layer on the surface of the titanium material. The Al powder to be used may be pure Al (pure Al-based powder), Al-Si alloy powder containing Si at 10at% or less, or a mixture of these, and Al-Si alloy powder may be Al powder. And Si powder may be mixed.

Al-Si 合金粉末の場合、Siを含むために、より高温側での耐酸化性が向上する。但し、Siの含有量の効果は約10at% 程度で飽和し、かつ、Siを10at% 以上含ませる場合、粉末を作製すること自体が困難となる。したがって、Si含有量は10at% 以下とする。   In the case of Al-Si alloy powder, since it contains Si, the oxidation resistance on the higher temperature side is improved. However, the effect of the Si content is saturated at about 10 at%, and when Si is contained at 10 at% or more, it is difficult to produce the powder itself. Accordingly, the Si content is 10 at% or less.

これらAl粉末の製造は、溶湯直接粉化として、アトマイズ法や溶湯攪拌法、回転円盤滴下法、機械的粉化として、スタンプミル法、ボールミル法、振動ミル法、アトライター法など、公知の方法で製造された粉末が適用できる。これらの粉末製造方法では、平均粒径が約2 〜500 μm 程度の幅を持ってAl粉末が製造される。   The production of these Al powders is a known method such as direct atomization of molten metal, atomization method, molten metal stirring method, rotary disk dropping method, mechanical milling, stamp mill method, ball mill method, vibration mill method, attritor method, etc. The powder manufactured in can be applied. In these powder production methods, Al powder is produced with an average particle diameter of about 2 to 500 μm.

ただ、これらAl粉末の粒子径は、焼成被覆層の厚みにも依存するが、粒子径が大きすぎると、粒子間に空隙がより多く形成されるため、好ましくない。この点、前記した粒子間の空隙形成をできるだけ抑制するためには、被覆するAl粉末の平均粒径を20μm 以下とし、平均粒径が20μm 以下のAl粉末を選択、選別して用いることが好ましい。   However, although the particle diameter of these Al powders also depends on the thickness of the fired coating layer, an excessively large particle diameter is not preferable because more voids are formed between the particles. In this respect, in order to suppress the void formation between the particles as much as possible, it is preferable that the average particle diameter of the Al powder to be coated is 20 μm or less, and the Al powder having an average particle diameter of 20 μm or less is selected, selected and used. .

(封孔材)
封孔材としての、金属元素M (但しM は、Ti、Zr、Cr、Si、Alの一種または二種以上)とC 及び/又はO からなる化合物は、本発明において、Al粉末粒子間の空隙を埋めて、焼成被覆層の耐酸化性を向上させる役割を果たす。また、これら化合物はAl粉末のバインダーの役割も果たし、焼成被覆層のAl粉末同士、あるいは焼成被覆層とチタン材表面との密着性を向上させる。
(Sealing material)
As the sealing material, a compound comprising metal element M (where M is one or more of Ti, Zr, Cr, Si, and Al) and C 2 and / or O 2 is used in the present invention between Al powder particles. It fills the gap and plays a role of improving the oxidation resistance of the fired coating layer. These compounds also serve as a binder for the Al powder, and improve the adhesion between the Al powders in the fired coating layer or between the fired coating layer and the titanium material surface.

焼成被覆層中に、金属元素M (但しM は、Ti、Zr、Cr、Si、Alの一種または二種以上)とC 及び/又はO からなる化合物をAl粒子間に形成するには、金属元素M (但しM は、Ti、Zr、Cr、Si、Alの一種または二種以上)とC 及びO 、Hからなる有機金属化合物を、焼成前にチタン材表面に予め塗布する。 In order to form a compound composed of a metal element M (where M is one or more of Ti, Zr, Cr, Si, and Al) and C 2 and / or O 2 between Al particles in the fired coating layer, An organometallic compound composed of element M (where M is one or more of Ti, Zr, Cr, Si, Al) and C 2, O 2, and H is applied in advance to the surface of the titanium material before firing.

これら有機金属化合物としてはシリコーン樹脂を使用する。シリコーン樹脂は安定で取り扱いが容易で毒性が低い。 These organometallic compounds that use a silicone resin. Silicone resins are easy to stable handling toxicity have low.

金属元素M としては、特にSiが、焼成被覆層の高温での耐酸化性向上効果の点から好ましい。したがって、金属元素M としては、他の金属元素を含んでも良いが、Siを必須に含むものが特に好ましい。例えば、SiとC 及び/又はO からなる有機金属化合物として、シリコーン樹脂を選択し、Al粉末とシリコーン樹脂とを含む溶液をチタン表面に塗布して、焼成した場合、Al粉末粒子間に、Si-O-Cからなる化合物が形成され、封孔材の役割を果たす。また、バインダーとしての役割も優れている。   As the metal element M 1, Si is particularly preferable from the viewpoint of improving the oxidation resistance at high temperature of the fired coating layer. Therefore, as the metal element M 1, other metal elements may be included, but those essentially including Si are particularly preferable. For example, when a silicone resin is selected as an organometallic compound composed of Si and C 2 and / or O 2, and a solution containing Al powder and silicone resin is applied to the titanium surface and baked, Si powder is bonded between the Al powder particles. A compound composed of -OC is formed and serves as a sealing material. Moreover, the role as a binder is also excellent.

通常、シリコーン樹脂中のSi/O の比率はほぼ1であるが、適切な焼成温度を選択することで、O とSiの反応が促進され、Si/O比が減少する。これにより粒子間の化合物はより安定となり、高い耐酸化性を示す。これは焼成温度を選択することで、最も安定な酸化物であるSiO2に近づくためであると考えられる。このために焼成温度は200 〜400 ℃の間とする。ただし、焼成によりバインダー部分が硬化し、割れが生じやすくなることから、曲げなどの加工を行う場合には、この曲げ加工などの加工後に焼成を行うことが推奨される。Si-Oの化学結合量は、焼成温度を適宜変更することにより制御することができる。 Usually, the Si / O ratio in the silicone resin is approximately 1, but by selecting an appropriate firing temperature, the reaction between O and Si is promoted and the Si / O ratio is reduced. Thereby, the compound between particles becomes more stable and shows high oxidation resistance. This is thought to be due to the fact that by selecting the firing temperature, it approaches SiO2, which is the most stable oxide. Sintering temperatures for this shall be between 200 to 400 ° C.. However, since the binder portion is hardened by firing and cracking is likely to occur, it is recommended that firing be performed after the bending or the like. The amount of Si—O chemical bonds can be controlled by appropriately changing the firing temperature.

(焼成被覆層)
金属元素M とC 及び/又はO との化合物は、バインダーの機能及び封孔材の機能を果たすためには、焼成被覆層中に、体積割合で5 〜50vol%程度含まれることが好ましい。例えば、大きさの等しい球形のAl粉末粒子が理想的に充填された場合でも、焼成被覆層中の体積割合で約26% は空隙となり、これを埋める必要がある。即ち、化合物の最密充填では、化合物の焼成被覆層中の体積割合で74vol%となる。一方、大きさが異なるAl粉末粒子同士が混在している場合は、更に空隙の焼成被覆層中の体積割合は高くなり、化合物の充填度は上がるので、上記体積割合で5 〜50vol%程度とする。
(Firing coating layer)
The compound of the metal elements M and C and / or O is preferably contained in the fired coating layer in an amount of about 5 to 50 vol% in order to fulfill the function of the binder and the function of the sealing material. For example, even when spherical Al powder particles having the same size are ideally filled, about 26% of the volume ratio in the fired coating layer becomes voids, which need to be filled. That is, in the closest packing of the compound, the volume ratio of the compound in the fired coating layer is 74 vol%. On the other hand, when Al powder particles having different sizes are mixed, the volume ratio in the fired coating layer of the voids is further increased, and the degree of filling of the compound is increased, so that the volume ratio is about 5 to 50 vol%. To do.

(焼成被覆層厚み)
焼成被覆層の厚みは5 μm 以上とする。5 μm 未満以下では、薄過ぎて焼成被覆層自体の酸素バリア効果がなくなる。一方、200 μm を超えても酸素バリア効果は飽和するので、好ましい厚みの上限は200 μm とする。
(Firing coating layer thickness)
The thickness of the fired coating layer shall be 5 μm or more. If it is less than 5 μm, it is too thin to eliminate the oxygen barrier effect of the fired coating layer itself. On the other hand, since the oxygen barrier effect is saturated even if it exceeds 200 μm, the upper limit of the preferable thickness is set to 200 μm.

シリコーン樹脂などを用いた場合の焼成被覆層のAl/Si の比はEDX 等の通常の表面元素分析方法で測定が可能である。また、焼成被覆層のAl粒子間のM/C-O からなる化合物の存在を確認する方法は、焼成被覆層断面(切断面or破面)の元素分析を実施することにより、元素の存在を確認することができる。更に、XPS で測定すれば、焼成被覆層のM-O 、M-C の結合を検出することができる。金属元素M とO とのM-O 、例えばSi-Oなどの化学結合の分析は、XPS あるいはFTIRで測定することが可能である。   The ratio of Al / Si in the fired coating layer when using a silicone resin or the like can be measured by a normal surface element analysis method such as EDX. In addition, the method for confirming the presence of a compound consisting of M / CO 2 between the Al particles of the fired coating layer is to confirm the presence of the element by conducting elemental analysis of the cross section (cut surface or fracture surface) of the fired coating layer. be able to. Further, when measured by XPS, the bonding of M—O and M—C in the fired coating layer can be detected. Analysis of chemical bonds such as M-O, eg, Si-O, between the metal elements M and O can be measured by XPS or FTIR.

(チタン酸化物層)
焼成被覆層を形成する前に、純チタン又はチタン基合金よりなる基材表面を酸化し、予め酸化皮膜を形成することにより、焼成被覆層と基材の密着性が向上し、より高い耐酸化性を得ることが出来る。この場合、表面処理チタン材としては、焼成被覆層と基材との間にチタン酸化物層を有していることとなる。
(Titanium oxide layer)
Before forming the fired coating layer, the surface of the substrate made of pure titanium or titanium-based alloy is oxidized, and an oxide film is formed in advance, thereby improving the adhesion between the fired coating layer and the substrate, and higher oxidation resistance. Sex can be obtained. In this case, the surface-treated titanium material has a titanium oxide layer between the fired coating layer and the base material.

Al粉末粒子の表面に存在する封孔材 (金属元素M とC 、O の化合物) は、用途によっては、基材表面との密着性が不足する場合がある。このような場合、前記特許文献4 などではショットブラストなどの表面粗化処理を行い、アンカー効果により密着性を向上させている。しかし、用途によっては、基材の粗化処理が実施できない場合もある。これに対し、酸化処理を行い基材表面に予めチタンの酸化皮膜を形成すると、封孔材は、この形成されたチタンの酸化皮膜との密着性が格段に優れる。   The sealing material (compounds of metal elements M, C and O) present on the surface of the Al powder particles may have insufficient adhesion to the substrate surface depending on the application. In such a case, in Patent Document 4 and the like, surface roughening treatment such as shot blasting is performed, and the adhesion is improved by the anchor effect. However, depending on the application, the roughening treatment of the substrate may not be performed. On the other hand, when a titanium oxide film is formed on the surface of the base material in advance by oxidation treatment, the sealing material is remarkably excellent in adhesion to the formed titanium oxide film.

この酸化処理は大気中での加熱(推奨温度300 〜500 ℃)あるいは陽極酸化などの湿式方によっても良い。酸化層の厚みは0.1 μm から5 のμm 間であれば効果はほぼ変わらない。尚、酸化層は、断面のSEM あるいは薄い場合はTEM で観察および膜厚測定が可能である。   This oxidation treatment may be performed by a wet method such as heating in the atmosphere (recommended temperature: 300 to 500 ° C.) or anodizing. If the thickness of the oxide layer is between 0.1 μm and 5 μm, the effect will not change. The oxide layer can be observed and measured with a TEM when the cross section is SEM or thin.

(溶融アルミめっき層)
焼成被覆層を形成する前に、純チタン又はチタン基合金よりなる基材表面に溶融アルミめっき層を予め形成することにより、基材の耐食性を更に向上させることができる。この場合、表面処理チタン材としては、焼成被覆層と基材との間に溶融アルミめっき層を有していることとなる。溶融アルミめっきは、それ自体が耐酸化性を有するが、その上に、本発明の焼成被覆層を積層することにより、基材の耐食性を更に向上させることができ、また、溶融アルミめっきの外観性も改善される。
(Molten aluminum plating layer)
Before forming the fired coating layer, the corrosion resistance of the substrate can be further improved by previously forming a molten aluminum plating layer on the surface of the substrate made of pure titanium or a titanium-based alloy. In this case, the surface-treated titanium material has a molten aluminum plating layer between the fired coating layer and the base material. The molten aluminum plating itself has oxidation resistance, but the corrosion resistance of the base material can be further improved by laminating the fired coating layer of the present invention thereon, and the appearance of the molten aluminum plating The sex is also improved.

(表面処理チタン材の製造方法)
本発明における表面処理チタン材の製造方法は、前記した通り、チタン又はチタン基合金よりなる基材上に、10at% 以下のSiを含むAl合金粒子又は純Al粒子、並びにシリコーン樹脂を含む溶液を塗布して、焼成し、耐酸化性被覆層を形成させる。
(Method for producing surface-treated titanium material)
As described above, the method for producing a surface-treated titanium material in the present invention comprises a Al alloy particle or pure Al particle containing 10 at% or less of Si and a solution containing a silicone resin on a substrate made of titanium or a titanium-based alloy. It is applied and fired to form an oxidation resistant coating layer.

(塗布溶液)
この際、基材表面に塗布する溶液については、各化合物が均一に分散あるいは溶解せしめるものであれば水溶液あるいは溶剤の種類については問わない。また塗布溶液中の金属粒子(Al/Si 、および/または金属元素M )とC/O の固形分比率においては、少なくとも、これら金属粒子をC/O 化合物に対して少なくとも5 wt% 以上含有していることが好ましい。これら金属粒子が5 wt% 未満であると、焼成被覆層中の金属粒子(Al/Si 、および/または金属元素M )が不足し、耐酸化性および密着性に対して十分な効果は得られない可能性がある。一方、逆にこれら金属粒子がC/O 化合物に対して80wt% を越えて含有されると、粒子を保持する塗膜の形成能が低下するため、却って、焼成被覆層の密着性や耐久性に問題が生じる可能性がある。よって、5 〜80wt% の範囲内にあることが好ましい。
(Coating solution)
At this time, regarding the solution applied to the substrate surface, any kind of aqueous solution or solvent may be used as long as each compound can be uniformly dispersed or dissolved. Further, in the solid content ratio of the metal particles (Al / Si and / or metal element M) and C / O in the coating solution, at least 5 wt% or more of these metal particles are contained in the C / O compound. It is preferable. When these metal particles are less than 5 wt%, the metal particles (Al / Si and / or metal element M) in the fired coating layer are insufficient, and a sufficient effect on oxidation resistance and adhesion can be obtained. There is no possibility. On the other hand, if these metal particles are contained in an amount exceeding 80 wt% with respect to the C / O compound, the ability to form a coating film that retains the particles will decrease, so the adhesion and durability of the fired coating layer will be reduced. May cause problems. Therefore, it is preferably in the range of 5 to 80 wt%.

(焼成)
焼成では、上記塗布されたシリコーン樹脂を酸化させ、Al粒子間に、金属元素M (但しM は、Ti、Zr、Cr、Si、Alの一種または二種以上)とC 及び/又はO からなる化合物を充填した焼成被覆層を形成し、焼成被覆層の耐酸化性、密着性や耐久性を向上させる。
(Baking)
In firing, the coated silicone resin is oxidized, and consists of metal element M (where M is one or more of Ti, Zr, Cr, Si, Al) and C 2 and / or O 2 between Al particles. A fired coating layer filled with the compound is formed to improve the oxidation resistance, adhesion and durability of the fired coating layer.

このための焼成温度は、有機金属化合物毎に、また、その他の塗布原料条件に応じて、適切な温度が選択されるが、前記シリコーン樹脂の場合には、焼成化合物における、高い耐酸化性を示すM-O の化学結合量を得るための焼成温度を選択する。前記シリコーン樹脂の場合は焼成温度は200 〜400 ℃の間である。また、焼成時間は、選択された温度によって、上記焼成効果を生む必要時間とする。 The firing temperature for this is selected appropriately for each organometallic compound and according to other coating raw material conditions. In the case of the silicone resin , the firing compound has high oxidation resistance. the calcination temperature for obtaining a chemical bond amount of MO indicating to select. For the silicone resin sintering temperature Ru der between 200 to 400 ° C.. Further, the firing time is set to a necessary time for producing the firing effect, depending on the selected temperature.

なお、焼成雰囲気は、通常の焼成雰囲気と同様、酸化雰囲気であれば良く、大気、酸素含有雰囲気などが適宜選択される。   Note that the firing atmosphere may be an oxidizing atmosphere as in a normal firing atmosphere, and air, an oxygen-containing atmosphere, or the like is appropriately selected.

(後処理)
これら耐酸化性の焼成被覆層を形成後、より高い耐酸化性が要求されるときは焼成被覆層を形成後に、後処理として、焼成被覆層の表面にわずかに残留するAl粒子間の空隙を消失させることが出来る。この後処理は、ショットブラストなどの硬質粒子によるブラスト処理が好ましく、ブラスト処理によって、焼成被覆層表面に衝撃を与えて、わずかに残留するAl粒子間の空隙を消失させることが出来る。
(Post-processing)
After the formation of these oxidation-resistant fired coating layers, when higher oxidation resistance is required, after forming the fired coating layer, as a post-treatment, voids between Al particles slightly remaining on the surface of the fired coating layer are formed. Can disappear. This post-treatment is preferably a blast treatment with hard particles such as shot blasting, and the blast treatment can give an impact to the surface of the fired coating layer and eliminate the slight gap between the Al particles.

また、このようなブラスト処理によれば、焼成時に表面に形成されるAlの酸化皮膜あるいは金属元素M (但しM は、Ti、Zr、Cr、Si、Alの一種または二種以上)とC 及び/又はO からなる化合物を、表面のみ除去することで、金属光沢を有する美麗な表面を得ることも出来る。   In addition, according to such blasting treatment, an Al oxide film or metal element M (where M is one or more of Ti, Zr, Cr, Si, Al) and C 2 formed on the surface during firing. A beautiful surface having a metallic luster can also be obtained by removing only the surface of the compound consisting of /.

(適用チタン材)
本発明で言うチタン基材とは、圧延などの塑性加工によって種々の形状とされた、純チタンまたはチタン基合金などのチタン材のことを言う。本発明では、表面処理される対象となるチタン材を規定するものではなく、用途の要求特性 (機械的性質等) に応じて、α合金、α−β合金、β合金のいずれでもよい。例えば、純チタン(JIS 2 種)、Ti-1.5Al、Ti-0.5Al-0.45Si-0.2Nb 、Ti-6Al-4V 、Ti-3Al-2.5V 、Ti-15V-3Al-3Sn-3Cr等が使用できる。
(Applicable titanium material)
The titanium substrate referred to in the present invention refers to a titanium material such as pure titanium or a titanium-based alloy that has been formed into various shapes by plastic working such as rolling. In the present invention, the titanium material to be surface-treated is not specified, and any of an α alloy, an α-β alloy, and a β alloy may be used depending on the required characteristics (mechanical properties, etc.) of the application. For example, pure titanium (JIS type 2), Ti-1.5Al, Ti-0.5Al-0.45Si-0.2Nb, Ti-6Al-4V, Ti-3Al-2.5V, Ti-15V-3Al-3Sn-3Cr, etc. Can be used.

また、特に排気管用途に使用する場合は、発明者らが先に出願した特願2004-071275 号に記載されたチタン合金を使用することが好ましい。即ち、質量% で、Al:0.30 〜1.5%、Si:0.10〜1.0%を含有するチタン合金材であり、好ましくはSi/Al が質量比で1/3 であり、更には、選択的にNb:0.1〜0.5%を含むものが好ましい。Alは耐熱性や耐高温酸化性を向上させるために0.30% 以上含有させ、延性低下や耐食性低下防止のために、1.5%以下の含有とする。SiはAlとの複合添加によって、高温強度を向上させるとともに、耐食性の低下を最小限に抑えつつ、耐高温酸化性、特に耐スケールロス性や耐酸素拡散層形成性を向上させる。また、結晶粒の成長の抑制によって疲労特性や脆性も向上させる。このためにSiは0.10% 以上含有させ、成形性や耐食性低下防止のために1.0%以下の含有とする。更に、選択的にNbを0.1%以上含むと、耐食性の低下を最小限に抑えつつ、耐高温酸化性、特に耐スケールロス性や耐酸素拡散層形成性を向上させる。一方で、成形性低下防止のために、Nbは0.5%以下の含有とする。   In particular, when used for exhaust pipe applications, it is preferable to use a titanium alloy described in Japanese Patent Application No. 2004-071275 filed earlier by the inventors. That is, it is a titanium alloy material containing Al: 0.30 to 1.5% and Si: 0.10 to 1.0% by mass%, preferably Si / Al is 1/3 in mass ratio, and further selectively Nb. : The thing containing 0.1 to 0.5% is preferable. Al is contained in an amount of 0.30% or more for improving heat resistance and high-temperature oxidation resistance, and is contained in an amount of 1.5% or less for preventing deterioration of ductility and corrosion resistance. Si, combined with Al, improves high-temperature strength and minimizes deterioration in corrosion resistance while improving high-temperature oxidation resistance, particularly scale loss resistance and oxygen diffusion layer formation. Further, fatigue characteristics and brittleness are improved by suppressing the growth of crystal grains. For this reason, Si is contained at 0.10% or more, and is contained at 1.0% or less for preventing deterioration of moldability and corrosion resistance. Further, when Nb is selectively contained in an amount of 0.1% or more, high temperature oxidation resistance, in particular, scale loss resistance and oxygen diffusion layer forming property is improved while minimizing the decrease in corrosion resistance. On the other hand, Nb is contained in an amount of 0.5% or less in order to prevent moldability deterioration.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited to the following examples. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.

チタン基材表面に、表1に示す塗布条件で、Al粉末およびシリコーンを混合した溶液を塗布し、焼成して、表1に示す、Alの粒子間における化合物 (金属元素M とC 及び/又はO からなる化合物) として種々のSi/O比からなる耐酸化性焼成被覆層を形成した。これらの供試材に関して、高温酸化試験を実施し、酸化試験後における重量増加より耐酸化性を評価した。表1に評価結果を各々示す。   On the surface of the titanium base material, a solution in which Al powder and silicone are mixed under the coating conditions shown in Table 1 is applied and baked, and the compounds (metal elements M 1 and C 2 and / or 3) between the Al particles shown in Table 1 are baked. As oxidation compounds, oxidation-resistant fired coating layers having various Si / O ratios were formed. These test materials were subjected to a high-temperature oxidation test, and the oxidation resistance was evaluated from the weight increase after the oxidation test. Table 1 shows the evaluation results.

チタン基材として、純チタン圧延板(JIS3種、厚さ1mm)を使用した。塗布溶液は、エタノールあるいはイソプロパノールの有機溶媒中に、平均粒径5μmの純Al粒子 (表にはAlと記載) または異なるSi含有量を有するAl合金粒子 (表にはAl-Si と記載) と、シリコーンとを混合した溶液を作製した。   As a titanium base material, a pure titanium rolled plate (JIS type 3, thickness 1 mm) was used. The coating solution may be pure Al particles having an average particle size of 5 μm (described as Al in the table) or Al alloy particles having different Si contents (described as Al-Si in the table) in an organic solvent such as ethanol or isopropanol. A solution mixed with silicone was prepared.

塗布は、浸漬 (ディップ) にて行い、120℃で0.5 時間乾燥後、250℃で0.5 時間焼成し、各例とも共通して、膜厚約30μmの耐酸化性被覆層を形成した。   The coating was carried out by dipping (dip), dried at 120 ° C. for 0.5 hour, and then baked at 250 ° C. for 0.5 hour to form an oxidation resistant coating layer having a film thickness of about 30 μm in common with each example.

また、表面のチタン酸化層 (予備酸化層) の影響を確認するために、予めチタン基材を500 〜700 ℃の範囲で酸化を行い、酸化層の厚みを変えて形成した基材にも、上記耐酸化性焼成被覆層の形成を実施した (表1 の番号9 〜12) 。この酸化層の厚みも表1 に記載する。   In addition, in order to confirm the influence of the titanium oxide layer (preliminary oxide layer) on the surface, the base material formed by previously oxidizing the titanium base material in the range of 500 to 700 ° C. and changing the thickness of the oxide layer, The oxidation-resistant fired coating layer was formed (numbers 9 to 12 in Table 1). The thickness of this oxide layer is also listed in Table 1.

高温酸化試験は、これらの供試材を、800℃で100時間の高温大気中に曝した場合の、酸化試験後における重量増加を測定して、耐高温酸化性を評価した。   In the high-temperature oxidation test, the resistance to high-temperature oxidation was evaluated by measuring the weight increase after the oxidation test when these specimens were exposed to high-temperature air at 800 ° C. for 100 hours.

表1の発明例3 〜12 (但し、7 、8 は参考例) は、酸化試験後における重量増加が多いものでも2.5mg/cm2 程度である。これに対して、比較例1 は、器材の表面処理をしておらず、耐酸化性焼成被覆層自体が無い。このため、高温酸化試験後における重量増加が12mg/cm2と多い。また、比較例2 は、耐酸化性焼成被覆層がAlの粒子のみであって、Al粒子間における化合物 (金属元素M とC 及び/又はO からなる化合物) が無い。このため、高温酸化試験後における重量増加が8.9mg/cm2 と多い。したがって、発明例3 〜12は、これら比較例1 、2 に比して、著しく、耐高温酸化性が優れていることが分かる。 Invention Examples 3 to 12 in Table 1 (7 and 8 are reference examples) are about 2.5 mg / cm 2 even if the weight increase after the oxidation test is large. On the other hand, Comparative Example 1 does not perform surface treatment of the equipment, and does not have an oxidation-resistant fired coating layer itself. For this reason, the weight increase after a high temperature oxidation test is as large as 12 mg / cm 2 . In Comparative Example 2, the oxidation-resistant fired coating layer is only Al particles, and there is no compound (compound composed of metal elements M and C and / or O) between the Al particles. For this reason, the weight increase after a high temperature oxidation test is as large as 8.9 mg / cm 2 . Therefore, it can be seen that Invention Examples 3 to 12 are remarkably superior in high-temperature oxidation resistance as compared to Comparative Examples 1 and 2.

また、発明例の中でも、基材にチタン酸化層 (予備酸化層) を設けた発明例9 〜12は、チタン酸化層を設けない発明例3 〜8 に比して、総じて、耐高温酸化性が比較的優れている。   Further, among Invention Examples, Invention Examples 9 to 12 in which a titanium oxide layer (preliminary oxidation layer) is provided on a substrate are generally high-temperature oxidation resistant compared to Invention Examples 3 to 8 in which a titanium oxide layer is not provided. Is relatively good.

なお参考例7 、8 は、耐高温酸化性には優れるものの、Al中のSi含有量が10at% を超えている。したがって、Al粉末を作製すること自体が困難となり、工業的には不適であるため、参考例とした。   In Reference Examples 7 and 8, although the high-temperature oxidation resistance is excellent, the Si content in Al exceeds 10 at%. Therefore, since it became difficult to produce Al powder itself and it was industrially unsuitable, it was used as a reference example.

Figure 0004150700
Figure 0004150700

チタン基材表面に、表2 に示す塗布条件で、実施例1 と同様の条件にて、Al粉末および種々の有機金属化合物( シリコーン以外は化学式を記載) を混合した溶液を塗布し、焼成して、表2 に示す、Alの粒子間における化合物 (金属元素M とC 及び/又はO からなる化合物) からなる耐酸化性焼成被覆層を形成した。これらの供試材に関して、実施例1 と同様に、高温酸化試験を実施し、酸化試験後における重量増加より耐酸化性を評価した。表2 に評価結果を各々示す。   On the surface of the titanium base material, a solution in which Al powder and various organometallic compounds (chemical formulas other than silicone are described) are applied and fired under the same coating conditions as in Example 1 under the coating conditions shown in Table 2. As shown in Table 2, an oxidation-resistant fired coating layer made of a compound (compound composed of metal elements M and C and / or O) between Al particles was formed. For these specimens, a high-temperature oxidation test was conducted in the same manner as in Example 1, and the oxidation resistance was evaluated from the weight increase after the oxidation test. Table 2 shows the evaluation results.

チタン基材、塗布溶液、Al粒子、塗布−焼成、高温酸化試験の具体的な条件は、有機金属化合物の種類を除いて、実施例1 と同様の条件とした。   Specific conditions for the titanium substrate, coating solution, Al particles, coating-firing, and high-temperature oxidation test were the same as in Example 1 except for the type of organometallic compound.

表2 の発明例13〜18は、シリコーン以外の有機金属化合物を用いたものでも、酸化試験後における重量増加が多いものでも2.4mg/cm2 程度である。ただ、シリコーンを用いた発明例13、18の方が、シリコーン以外の有機金属化合物を用いた発明例14〜17よりも、比較的耐高温酸化性が優れている。この点、金属元素M としては、特にSiが、焼成被覆層の高温での耐酸化性向上効果の点から好ましいことが分かる。なお、これらシリコーン以外の有機金属化合物を用いた発明例14〜17は、本発明範囲外の参考例である。 Invention Examples 13 to 18 in Table 2 are about 2.4 mg / cm 2 regardless of whether an organometallic compound other than silicone is used or the weight increase after the oxidation test is large. However, Invention Examples 13 and 18 using silicone are relatively superior in high-temperature oxidation resistance to Invention Examples 14 to 17 using organometallic compounds other than silicone. In this respect, as the metal element M 1, it is understood that Si is particularly preferable from the viewpoint of the effect of improving the oxidation resistance of the fired coating layer at a high temperature. Inventive Examples 14 to 17 using these organometallic compounds other than silicone are reference examples outside the scope of the present invention.

比較例1 、2 は、実施例1(表1)の比較例1 、2 と同じである。したがって、発明例13〜18は、比較例1 、2 に比して、著しく、耐高温酸化性が優れていることが分かる。   Comparative Examples 1 and 2 are the same as Comparative Examples 1 and 2 of Example 1 (Table 1). Therefore, it can be seen that Invention Examples 13 to 18 are remarkably superior in high-temperature oxidation resistance as compared with Comparative Examples 1 and 2.

Figure 0004150700
Figure 0004150700

チタン基材として、質量% で、Al:1.0% 、Si:0.33% を含有し、Si/Al が質量比で1/3 であり、選択的にNb:0.2% 含む、前記した好ましいチタン合金材に本発明表面処理を施した。即ち、このチタン合金材表面に、表3 に示す塗布条件で、実施例1 と同様の条件にて、Al粉末およびシリコーンを混合した溶液を塗布し、焼成して、表3 に示す、Alの粒子間における化合物 (金属元素M とC 及び/又はO からなる化合物) からなる耐酸化性焼成被覆層を形成した。これらの供試材に関して、実施例1 と同様に、高温酸化試験を実施し、酸化試験後における重量増加より耐酸化性を評価した。表3 に評価結果を各々示す。   Preferred titanium alloy material as described above, which contains, as a titanium base material, Al: 1.0% and Si: 0.33% in mass%, Si / Al is 1/3 in mass ratio, and selectively contains Nb: 0.2%. Was subjected to the surface treatment of the present invention. That is, on the surface of the titanium alloy material, a mixed solution of Al powder and silicone was applied under the same coating conditions as in Example 1 under the coating conditions shown in Table 3. An oxidation-resistant fired coating layer made of a compound (compound consisting of metal elements M and C and / or O) between the particles was formed. For these specimens, a high-temperature oxidation test was conducted in the same manner as in Example 1, and the oxidation resistance was evaluated from the weight increase after the oxidation test. Table 3 shows the evaluation results.

なお、予め上記チタン基材には、溶融アルミめっき層を、表3 に示す厚みで設けた。表3 の発明例19、21のチタン基材は、上記チタン合金材の内Nbを含有しないもの、表3 の発明例20、22、23のチタン基材は、上記チタン合金材の内Nbを含有するものを用いた。   The titanium base material was previously provided with a molten aluminum plating layer having a thickness shown in Table 3. Inventive Examples 19 and 21 in Table 3 do not contain Nb in the above-mentioned titanium alloy material. Inventive Examples 20, 22, and 23 in Table 3 do not contain Nb in the above-mentioned titanium alloy material. What was contained was used.

更に、表3 の発明例20、22のチタン基材は、形成した焼成被覆層に対し、市販のショットブラスト処理機により、アルミナ製硬質粒子 (平均粒径50μm)によるブラスト処理 (ガス圧力:3kg/cm2) を10秒施した。 Further, the titanium base materials of Invention Examples 20 and 22 in Table 3 were subjected to blasting treatment with hard alumina particles (average particle size 50 μm) on a fired coating layer formed using a commercially available shot blasting machine (gas pressure: 3 kg). / cm 2 ) was applied for 10 seconds.

これ以外の、チタン基材、塗布溶液、Al粒子、塗布−焼成、高温酸化試験などの具体的な条件は、実施例1 と同様の条件とした。   Other specific conditions such as titanium substrate, coating solution, Al particles, coating-firing, high-temperature oxidation test were the same as those in Example 1.

表3 において、予めチタン基材に溶融アルミめっき層を設けた、発明例20〜23の表面処理チタン材は、実施例1 と同じ比較例1 、2 に比して、著しく、耐高温酸化性が優れている。また、表3 における、溶融アルミめっき層を設けない発明例19や溶融アルミめっき層の厚みが薄い発明例21に比して、溶融アルミめっき層を設けた、あるいは、より厚い溶融アルミめっき層を設けた発明例20や、発明例22、23の方が耐高温酸化性が優れている。発明例20や発明例22の耐高温酸化性向上には、ショットブラスト処理も寄与している。   In Table 3, the surface-treated titanium material of Invention Examples 20 to 23, in which a molten aluminum plating layer was previously provided on a titanium base material, was significantly more resistant to high temperature oxidation than Comparative Examples 1 and 2 as in Example 1. Is excellent. Also, in Table 3, compared with Invention Example 19 in which a molten aluminum plating layer is not provided and Invention Example 21 in which the thickness of the molten aluminum plating layer is thin, a molten aluminum plating layer provided or a thicker molten aluminum plating layer is used. Invention Example 20 and Invention Examples 22 and 23 are superior in resistance to high-temperature oxidation. Shot blasting also contributes to the improvement of the high temperature oxidation resistance of Invention Examples 20 and 22.

これら各実施例の結果から、チタン材の耐高温酸化性向上に関する、本発明の各要件の臨界的な意義や、好ましい要件の意義が裏付けられる。また、本発明によれば、表面処理チタン材が、耐酸化性に優れ、長期間に渡ってその耐酸化性が維持されるとともに、表面処理自体も安価で安全なことが分かる。   From the results of these examples, the critical significance of the requirements of the present invention and the significance of the preferred requirements regarding the improvement of the high temperature oxidation resistance of the titanium material are supported. Further, according to the present invention, it can be seen that the surface-treated titanium material is excellent in oxidation resistance, maintains its oxidation resistance over a long period of time, and the surface treatment itself is inexpensive and safe.

Figure 0004150700
Figure 0004150700

本発明によれば、耐酸化性に優れ、長期間に渡ってその耐酸化性が維持されるとともに、表面処理自体も安価で安全な、表面処理チタン材及びその製造方法、更に、そのエンジン排気管を提供できる。
According to the present invention, a surface-treated titanium material and a method for producing the same that are excellent in oxidation resistance, maintained for a long period of time, and inexpensive and safe in surface treatment itself, and further, the engine exhaust thereof. Can provide a tube.

Claims (9)

純チタン又はチタン基合金よりなる基材上に5 μm 以上の耐酸化性焼成被覆層が形成された表面処理チタン材であって、前記焼成被覆層は、前記基材上に、10at% 以下のSiを含むAl合金粒子又は純Al粒子、並びにシリコーン樹脂を含む溶液を塗布して、焼成温度200 〜400 ℃で焼成したものである表面処理チタン材で構成されたエンジン排気管。 A surface-treated titanium material in which an oxidation-resistant fired coating layer of 5 μm or more is formed on a substrate made of pure titanium or a titanium-based alloy, and the fired coating layer is 10 at% or less on the substrate. An engine exhaust pipe composed of a surface-treated titanium material that is obtained by applying a solution containing Al alloy particles or pure Al particles containing Si and a silicone resin , and firing at a firing temperature of 200 to 400 ° C. 前記表面処理チタン材の焼成被覆層におけるAl合金粒子が2 〜10at% のSiを含有するAl合金である請求項1に記載のエンジン排気管。 The engine exhaust pipe according to claim 1, wherein the Al alloy particles in the fired coating layer of the surface-treated titanium material are an Al alloy containing 2 to 10 at% of Si . 前記表面処理チタン材の焼成被覆層中にSi-Oの化学結合が存在し、かつ、このSi/Oの比率は0.4 ≦Si/O≦2 である請求項1または2に記載のエンジン排気管。 3. The engine exhaust pipe according to claim 1 , wherein a Si—O chemical bond is present in the fired coating layer of the surface-treated titanium material, and the Si / O ratio is 0.4 ≦ Si / O ≦ 2. . 前記表面処理チタン材の焼成被覆層と基材との間にチタン酸化物層を有している請求項1乃至3のいずれか1項に記載のエンジン排気管。 The engine exhaust pipe according to any one of claims 1 to 3, further comprising a titanium oxide layer between the fired coating layer of the surface-treated titanium material and the base material . 前記表面処理チタン材の基材上に予め溶融アルミめっき層を有し、溶融アルミめっき層上に耐酸化性焼成被覆層が形成されたものである請求項1乃至4のいずれか1項に記載のエンジン排気管。 The molten aluminum plating layer is previously provided on the base material of the surface-treated titanium material, and the oxidation-resistant fired coating layer is formed on the molten aluminum plating layer. engine exhaust pipe. 前記表面処理チタン材の基材が、質量% で、Al:0.30 〜1.5%、Si:0.10〜1.0%を含有するチタン合金材である請求項1乃至5のいずれか1項に記載のエンジン排気管。 The engine exhaust according to any one of claims 1 to 5, wherein the substrate of the surface-treated titanium material is a titanium alloy material containing Al: 0.30 to 1.5% and Si: 0.10 to 1.0% by mass%. tube. チタン又はチタン基合金よりなる基材上に、10at% 以下のSiを含むAl合金粒子又は純Al粒子、並びにシリコーン樹脂を含む溶液を塗布して、焼成温度200 〜400 ℃で焼成し、耐酸化性被覆層を形成させることを特徴とするエンジン排気管用の耐酸化性に優れた表面処理チタン材の製造方法。 Apply a solution containing Al alloy particles or pure Al particles containing 10 at% or less of Si and a silicone resin on a substrate made of titanium or a titanium-based alloy, and firing at a firing temperature of 200 to 400 ° C. A method for producing a surface-treated titanium material excellent in oxidation resistance for an engine exhaust pipe , characterized by forming a conductive coating layer. 前記焼成被覆層に対し、硬質粒子によるブラスト処理を施す請求項7に記載の表面処理チタン材の製造方法。 The method for producing a surface-treated titanium material according to claim 7, wherein the fired coating layer is subjected to blasting with hard particles . 前記表面処理チタン材の基材が、質量% で、Al:0.30 〜1.5%、Si:0.10〜1.0%を含有するチタン合金材である請求項7または8に記載の表面処理チタン材の製造方法。The method for producing a surface-treated titanium material according to claim 7 or 8, wherein the base material of the surface-treated titanium material is a titanium alloy material containing Al: 0.30 to 1.5% and Si: 0.10 to 1.0% by mass%. .
JP2004190705A 2004-06-29 2004-06-29 Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe Expired - Fee Related JP4150700B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004190705A JP4150700B2 (en) 2004-06-29 2004-06-29 Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe
US11/153,332 US20050284544A1 (en) 2004-06-29 2005-06-16 Surface-treated titanium material excellent in oxidation resistance, production method thereof, and engine exhaust system
EP05013365A EP1614772A1 (en) 2004-06-29 2005-06-21 Surface-treated titanium material excellent in oxidation resistance, production method thereof, and engine exhaust system
RU2005120101/02A RU2308540C2 (en) 2004-06-29 2005-06-28 Superficially treated titanium material with the high resistance to the oxidization, the method of its production and the combustion motor exhaust system made out of this material
CNA2005100814886A CN1715443A (en) 2004-06-29 2005-06-29 Surface-treated titanium material excellent in oxidation resistance, production method thereof, and engine exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190705A JP4150700B2 (en) 2004-06-29 2004-06-29 Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe

Publications (2)

Publication Number Publication Date
JP2006009115A JP2006009115A (en) 2006-01-12
JP4150700B2 true JP4150700B2 (en) 2008-09-17

Family

ID=34937583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190705A Expired - Fee Related JP4150700B2 (en) 2004-06-29 2004-06-29 Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe

Country Status (5)

Country Link
US (1) US20050284544A1 (en)
EP (1) EP1614772A1 (en)
JP (1) JP4150700B2 (en)
CN (1) CN1715443A (en)
RU (1) RU2308540C2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043594A1 (en) * 2005-10-05 2007-04-19 Nippon Steel Corporation Titanium sheet coated with protective film and having excellent resistance against high-temperature oxidation and high-temperature salt damage, automotive exhaust system using the sheet, and method for manufacture of the sheet or system
JP4585420B2 (en) * 2005-10-05 2010-11-24 新日本製鐵株式会社 Protective film-coated titanium plate excellent in heat resistance and oxidation resistance, method for producing the same, and automobile exhaust system using the same
DE112007000544B4 (en) 2006-03-30 2018-04-05 Kabushiki Kaisha Kobe Seiko Sho Titanium material and exhaust pipe for engine
JP5089909B2 (en) * 2006-04-12 2012-12-05 株式会社フジクラ Method for producing metal composite
RU2501882C2 (en) * 2012-03-11 2013-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Method of producing nano-structure commercially pure titanium for biomedicine
JP6344194B2 (en) * 2014-10-24 2018-06-20 新日鐵住金株式会社 Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance
CN111902222B (en) 2018-04-03 2022-07-26 日本制铁株式会社 Titanium plate
CN113278850B (en) * 2021-05-24 2021-11-16 中山大学 High-temperature-resistant titanium alloy protective coating and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1456754A (en) * 1965-08-30 1966-07-08 Electrochimie Soc Metal protection process
DE3742721C1 (en) * 1987-12-17 1988-12-22 Mtu Muenchen Gmbh Process for the aluminum diffusion coating of components made of titanium alloys
DE3906187C1 (en) * 1989-02-28 1989-10-26 Mtu Muenchen Gmbh Titanium alloy component with a protective layer and process for its production
DE3926151C1 (en) * 1989-02-28 1990-05-10 Mtu Muenchen Gmbh
US5202163A (en) * 1989-12-12 1993-04-13 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Surface coating for protecting a component against titanium fire and method for making the surface coating
JP3151713B2 (en) * 1993-02-03 2001-04-03 本田技研工業株式会社 Surface treatment method for titanium material
JP4189350B2 (en) * 2003-06-27 2008-12-03 株式会社神戸製鋼所 Titanium material, manufacturing method thereof and exhaust pipe

Also Published As

Publication number Publication date
US20050284544A1 (en) 2005-12-29
CN1715443A (en) 2006-01-04
JP2006009115A (en) 2006-01-12
RU2005120101A (en) 2007-01-10
EP1614772A1 (en) 2006-01-11
RU2308540C2 (en) 2007-10-20

Similar Documents

Publication Publication Date Title
JP5065248B2 (en) Coating method and coated product on substrate surface
RU2308540C2 (en) Superficially treated titanium material with the high resistance to the oxidization, the method of its production and the combustion motor exhaust system made out of this material
JP2017210658A (en) HEAT-RESISTANT Ti ALLOY AND HEAT-RESISTANT Ti ALLOY MATERIAL
JP4189350B2 (en) Titanium material, manufacturing method thereof and exhaust pipe
JP3361072B2 (en) Method for producing metal member having excellent oxidation resistance
JP3098705B2 (en) Surface nitriding method of aluminum material and nitriding aid
JP5097027B2 (en) Titanium material, manufacturing method thereof and exhaust pipe
EP1932945B1 (en) Titanium sheet coated with protective film and having excellent resistance against high-temperature oxidation and high-temperature salt damage, automotive exhaust system using the sheet, and method for manufacture of the sheet or system
US20130149551A1 (en) Diffusion coating method and chromium coat produced therewith
JP3358796B2 (en) Method for modifying surface of Ti-Al alloy and Ti-Al alloy having modified layer on surface
JPH0693412A (en) Heat resistant ti-based alloy
JP6344194B2 (en) Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance
JP2004115906A (en) METHOD FOR COATING Al-Si ALLOY ON SUBSTRATE OF Ti OR Ti ALLOY
JP4806292B2 (en) Metal surface treatment method
US20100154936A1 (en) Protective coating and process for producing the same
JP2007270201A (en) Surface treated titanium material excellent in high-temperature oxidation resistance and engine exhaust pipe
JPH01152233A (en) Method for using and producing nickel-containing alloy
JP3141524B2 (en) Surface coating material, surface coating treatment method, and valve for internal combustion engine
JP3379917B2 (en) Al-containing film-coated member and method for producing the same
WO2013052992A1 (en) Method of treatment
JP3460968B2 (en) Spray method
JP2808714B2 (en) Coated cemented carbide for wear-resistant tools
JP4452779B2 (en) Film-forming material and method for producing metal material
JP4414984B2 (en) Protective film-coated titanium plate excellent in high temperature salt damage resistance, method for producing the same, and automobile exhaust system using the same
JP2008007799A (en) Titanium sheet coated with protective film, automotive exhaust system using titanium sheet coated with protective film, and method for manufacturing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4150700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees