JP4414984B2 - Protective film-coated titanium plate excellent in high temperature salt damage resistance, method for producing the same, and automobile exhaust system using the same - Google Patents
Protective film-coated titanium plate excellent in high temperature salt damage resistance, method for producing the same, and automobile exhaust system using the same Download PDFInfo
- Publication number
- JP4414984B2 JP4414984B2 JP2006165721A JP2006165721A JP4414984B2 JP 4414984 B2 JP4414984 B2 JP 4414984B2 JP 2006165721 A JP2006165721 A JP 2006165721A JP 2006165721 A JP2006165721 A JP 2006165721A JP 4414984 B2 JP4414984 B2 JP 4414984B2
- Authority
- JP
- Japan
- Prior art keywords
- protective film
- titanium plate
- salt damage
- high temperature
- temperature salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、四輪車、二輪車等自動車用排気装置として使用されるチタン材料に関するものであり、メインマフラーはもとより、700℃以上の高温に曝され、特に耐熱性、耐酸化性が要求されるエキゾーストマニホールド、エキゾーストパイプや触媒マフラー等の部位に使用可能な、耐高温塩害性に優れた保護膜被覆チタン板およびその製造方法ならびにそれを用いた自動車用排気装置に関するものである。 The present invention relates to a titanium material used as an exhaust device for automobiles such as four-wheeled vehicles and two-wheeled vehicles, and is exposed to a high temperature of 700 ° C. or higher as well as a main muffler, and particularly requires heat resistance and oxidation resistance. The present invention relates to a protective film-coated titanium plate having excellent resistance to high-temperature salt damage that can be used in parts such as an exhaust manifold, an exhaust pipe, and a catalyst muffler, and a manufacturing method thereof, and an automobile exhaust device using the same.
チタン材料は、軽量でありながら高強度で耐食性も良好であることから自動車の排気装置にも使用されている。自動車やバイクのエンジンから排出される燃焼ガスは、エキゾーストマニホールドにより一つにまとめられ、エキゾーストパイプにより車両後方の排気口から排出される。エキゾーストパイプは、途中に触媒やマフラー(消音器)を入れるためいくつかに分割されて構成される。本明細書では、エキゾーストマニホールドからエキゾーストパイプ、排気口までの全体を通して排気装置と称する。 Titanium materials are used in automobile exhaust systems because they are lightweight but have high strength and good corrosion resistance. Combustion gases discharged from automobile and motorcycle engines are combined into one by an exhaust manifold and discharged from an exhaust port at the rear of the vehicle by an exhaust pipe. The exhaust pipe is divided into several parts to put a catalyst and a muffler (muffler) in the middle. In the present specification, the exhaust system is referred to as the exhaust system from the exhaust manifold to the exhaust pipe and the exhaust port.
こうした排気装置の素材として、特許文献1では、冷間加工性と高温強度を併せ持つチタン合金に関する発明が開示されている。また、酸化防止皮膜を形成し耐酸化性を向上させる方法として、アルミニウム粉を含む酸化防止剤の塗布に関する発明(特許文献2参照。)、Al、Si合金の塗布に関する発明(特許文献3参照。)、Al−Ti系蒸着めっきに関する発明(特許文献4参照。)、AlとNを含有する皮膜に関する発明(特許文献5参照。)、AlまたはSiを含む表面層の溶融めっきに関する発明(特許文献6参照。)等がそれぞれ開示されている。また、耐酸化性に優れる表面処理チタン材として、純Al、または10at%以下のSiを含むAl合金よりなる粒子間に、金属元素M(但しMは、Ti、Zr、Cr、Si、Alの一種または二種以上)とC及び/またはOからなる化合物を充填した、5μm以上の焼成被覆層が形成されたチタン材(特許文献7参照。)が開示されている。 As a material for such an exhaust device, Patent Document 1 discloses an invention relating to a titanium alloy having both cold workability and high temperature strength. Moreover, as a method of forming an antioxidant film and improving oxidation resistance, an invention relating to the application of an antioxidant containing aluminum powder (see Patent Document 2) and an invention relating to the application of Al and Si alloys (see Patent Document 3). ), An invention related to Al—Ti vapor deposition plating (see Patent Document 4), an invention related to a coating containing Al and N (see Patent Document 5), and an invention related to hot dipping of a surface layer containing Al or Si (Patent Document). 6) and the like. Further, as a surface-treated titanium material having excellent oxidation resistance, a metal element M (where M is Ti, Zr, Cr, Si, Al) between particles made of pure Al or an Al alloy containing Si of 10 at% or less. There is disclosed a titanium material (see Patent Document 7) in which a fired coating layer of 5 μm or more, which is filled with a compound composed of one or two or more) and C and / or O, is formed.
チタン材料は600℃以上の高温では酸化しやすく、600〜800℃における連続酸化試験(大気中で各温度に100〜200時間暴露)での酸化増量は、一般に、自動車用排気装置として使用されるフェライト系ステンレス鋼材に比べ、二桁ほど大きいが、塩素イオンが付着した状態で700℃以上の高温に曝されると、塩素イオンの付着がない場合に比べ、さらに酸化が進むという問題がある。すなわち、本発明が解決しようとする問題は、塩素イオン付着がある場合の高温酸化の進行の問題である(以下、塩素イオン付着がある場合の高温酸化を高温塩害とも言い、塩素イオン付着がある場合の耐高温酸化特性を耐高温塩害性とも言う。)。 Titanium materials are easy to oxidize at high temperatures of 600 ° C. or higher, and increased oxidation in continuous oxidation tests at 600 to 800 ° C. (exposure to each temperature for 100 to 200 hours in the atmosphere) is generally used as an exhaust system for automobiles. Although it is about two orders of magnitude larger than ferritic stainless steel materials, there is a problem in that oxidation proceeds further when exposed to a high temperature of 700 ° C. or higher with chlorine ions attached, compared to the case where no chlorine ions are attached. That is, the problem to be solved by the present invention is the problem of the progress of high-temperature oxidation in the presence of chloride ions (hereinafter, high-temperature oxidation in the presence of chloride ions is also called high-temperature salt damage, and there is chloride ion adhesion) The high temperature oxidation resistance of the case is also called high temperature salt resistance.)
何の表面処理も施さない特許文献1記載のチタン合金では、塩素イオンが付着した状態で700℃以上に加熱された場合、酸化は顕著に進み、耐高温塩害性は甚だ不十分である。 In the titanium alloy described in Patent Document 1 that is not subjected to any surface treatment, when heated to 700 ° C. or higher with chlorine ions attached, the oxidation proceeds remarkably and the high temperature salt damage resistance is very insufficient.
また、特許文献2に記載の発明に係る酸化防止剤の塗布では、塗布膜の密着性が悪く、小さな衝撃に対しても塗布膜が剥がれやすいという問題がある上に、700℃以上の耐高温塩害性が不十分である。 In addition, in the application of the antioxidant according to the invention described in Patent Document 2, there is a problem that the adhesion of the coating film is poor and the coating film is easily peeled off even for a small impact, and the high temperature resistance of 700 ° C. or higher. Insufficient salt damage.
また、特許文献3に記載の発明では、Al粒子とSi粒子をフッ化物系フラックスと混合し基材に塗布した後、600℃以上の不活性ガス雰囲気中で加熱する必要があり、手間とコストがかかるという問題がある。 In addition, in the invention described in Patent Document 3, it is necessary to heat Al and Si particles with a fluoride-based flux and apply it to a substrate, and then heat in an inert gas atmosphere at 600 ° C. or more. There is a problem that it takes.
また、特許文献4または5に記載の発明では、蒸着またはスパッタやイオンプレーティング、イオン注入、プラズマ溶射のための設備が必要であること、および基材成形後の皮膜形成が困難であるという問題がある。 Further, in the invention described in Patent Document 4 or 5, there is a problem that equipment for vapor deposition or sputtering, ion plating, ion implantation, and plasma spraying is necessary, and it is difficult to form a film after forming the substrate. There is.
また、特許文献6に記載の発明では、90%以上のAlまたは90%以上のAl+Si(Siは1〜20%)を含む酸化防止膜を溶融めっき法で形成する。同文献では、溶融めっき法以外の方法、例えばAlフレークを含有する有機系塗料の塗布が可能であると記載されているが、有機系樹脂を使用した場合、Alフレークの含有量または、AlとSiの合計含有量を90%以上にすることは困難であって、結局、同文献記載の発明の皮膜形成は推奨されている通り溶融めっきによる方法が基本であると推測できる。このことから、同文献に記載の発明は、めっき槽と加熱が必要であり、やはりコストがかかるという問題がある。 In the invention described in Patent Document 6, an antioxidant film containing 90% or more of Al or 90% or more of Al + Si (Si is 1 to 20%) is formed by a hot dipping method. In this document, it is described that a method other than the hot dipping method, for example, application of an organic paint containing Al flakes is possible, but when an organic resin is used, the content of Al flakes or Al and It is difficult to make the total content of Si 90% or more, and as a result, it can be presumed that the film formation according to the invention described in the document is based on the method by hot dipping as recommended. For this reason, the invention described in this document has a problem that it requires a plating tank and heating, which is also expensive.
特許文献7に記載の、純Al、または10at%以下のSiを含むAl合金よりなる粒子間に、金属元素M(但しMは、Ti、Zr、Cr、Si、Alの一種または二種以上)とC及び/またはOからなる化合物を充填した、5μm以上の焼成被覆層が形成されたチタン材は、耐高温酸化性を有するものの、被覆層が剥がれやすいという問題があった。 A metal element M (where M is one or more of Ti, Zr, Cr, Si, Al) between particles made of pure Al or an Al alloy containing Si of 10 at% or less described in Patent Document 7. Although the titanium material filled with a compound composed of and C and / or O and having a fired coating layer of 5 μm or more has high-temperature oxidation resistance, there is a problem that the coating layer is easily peeled off.
なお、特許文献1〜7の文献中には耐高温塩害性に関する記載は一切ない。 In addition, in the literature of patent documents 1-7, there is no description regarding high temperature salt damage resistance.
そこで、本発明は、大気中および塩素イオンが付着した状態での耐高温酸化性に優れ、かつ密着性に優れた保護膜被覆チタン板およびその製造方法ならびにそれを用いた自動車用排気装置を提供することを目的とするものである。 Accordingly, the present invention provides a protective film-coated titanium plate that is excellent in high-temperature oxidation resistance in the atmosphere and in a state where chlorine ions are attached and has excellent adhesion, a method for producing the same, and an automobile exhaust device using the same. It is intended to do.
本発明者は、チタン材料基材の被覆膜として、高温塩害抑制効果のある構成成分について鋭意調査研究を行った。その結果、Si、Cと微細な箔片状または粉末状の金属Alを含む保護膜を基材上に形成することによって、顕著な高温塩害抑制効果が得られることを見出した。 The present inventor conducted intensive investigation and research on a component having a high-temperature salt damage suppression effect as a coating film of a titanium material base material. As a result, it has been found that a remarkable high-temperature salt damage suppression effect can be obtained by forming a protective film containing Si, C and fine foil pieces or powdered metal Al on a substrate.
本発明はこのような知見に基づくものであり、その要旨とするところは、以下のとおりである。
(1) 平均厚さが0.1〜5μmで、かつ、平均幅ないし平均長さが1〜50μmの箔片状、または、平均径が0.1〜30μmの粒状の金属Alが20〜60質量%の割合で分散した、Siを15〜55質量%、Cを10〜45質量%含有し、残部不可避的不純物からなる厚さ1μm以上、100μm以下の保護膜が、表面に形成されていることを特徴とする、耐高温塩害性に優れた保護膜被覆チタン板。
(2) 前記チタン板が、0.5〜2.1質量%のCuおよび0.4〜2.5質量%のAlの1種または2種を含有し、残部チタンおよび不可避的不純物からなることを特徴とする、上記(1)に記載の耐高温塩害性に優れた保護膜被覆チタン板。
(3) 前記チタン板が、さらに、0.3〜1.1質量%のNbを含有することを特徴とする、上記(1)または(2)に記載の耐高温塩害性に優れた保護膜被覆チタン板。
(4) 上記(1)に記載の成分組成を有する保護膜を、上記(2)または(3)に記載のチタン板の基材に、刷毛塗りまたは、スプレー塗装により形成し、150〜300℃の温度で5〜60分加熱、焼付けすることを特徴とする、耐高温塩害性に優れた保護膜被覆チタン板の製造方法。
(5) 前記保護膜中の成分SiおよびCは、シリコーン樹脂またはシリコーングリースとして配合することを特徴とする、上記(4)に記載の耐高温塩害性に優れた保護膜被覆チタン板の製造方法。
(6) 保護膜被覆前の前記チタン板が冷間圧延後真空焼鈍まま材であることを特徴とする、上記(4)または(5)に記載の保護膜被覆チタン板の製造方法。
(7) 前記保護膜被覆チタン板を、さらに、600℃以上、800℃以下に30分から10時間加熱することを特徴とする、上記(4)ないし(6)のいずれか1項に記載の耐高温塩害性に優れた保護膜被覆チタン板の製造方法。
(8) 上記(1)ないし(3)のいずれか1項に記載の保護膜被覆チタン板を構成部材として使用したことを特徴とする、保護膜被覆チタン板製自動車用排気装置。
(9) 自動車用排気装置の使用に伴う高温保持により、前記保護膜中の成分組成の一部または全部が、Ti−Al金属間化合物、Ti−Si金属間化合物の1種または2種に変化していることを特徴とする、上記(8)に記載の耐高温塩害性に優れた保護膜被覆チタン板製自動車用排気装置。
(10) 前記チタン板基材に、Al2O3、SiO2、TiCのうちのいずれか1種または2種以上が形成されていることを特徴とする、上記(9)に記載の保護膜被覆チタン板製自動車用排気装置。
The present invention is based on such knowledge, and the gist thereof is as follows.
(1) 20-60 metal foils having an average thickness of 0.1-5 μm and an average width or length of 1-50 μm or granular metal Al having an average diameter of 0.1-30 μm A protective film having a thickness of 1 μm or more and 100 μm or less, comprising 15 to 55% by mass of Si and 10 to 45% by mass of C, with the balance being unavoidable, is formed on the surface. A protective film-coated titanium plate excellent in high-temperature salt damage resistance.
(2) The titanium plate contains one or two of 0.5 to 2.1% by mass of Cu and 0.4 to 2.5% by mass of Al, and is composed of the remaining titanium and inevitable impurities. The protective film-coated titanium plate excellent in high-temperature salt damage resistance according to (1) above,
(3) The protective film excellent in high temperature salt damage resistance according to (1) or (2) above, wherein the titanium plate further contains 0.3 to 1.1% by mass of Nb. Coated titanium plate.
(4) A protective film having the component composition described in the above (1) is formed on the substrate of the titanium plate described in the above (2) or (3) by brush coating or spray coating, and 150 to 300 ° C. A method for producing a protective film-coated titanium plate excellent in high temperature salt damage resistance, characterized by heating and baking at a temperature of 5 to 60 minutes.
(5) The method for producing a protective film-coated titanium plate having excellent resistance to high-temperature salt damage as described in (4) above, wherein the components Si and C in the protective film are blended as a silicone resin or silicone grease. .
(6) The method for producing a protective film-coated titanium plate according to the above (4) or (5), wherein the titanium plate before coating with the protective film is a material that is subjected to vacuum annealing after cold rolling.
(7) The protective film-coated titanium plate according to any one of (4) to (6), wherein the protective film-coated titanium plate is further heated to 600 ° C. or higher and 800 ° C. or lower for 30 minutes to 10 hours. A method for producing a protective film-coated titanium plate having excellent high-temperature salt damage.
(8) An automotive exhaust device made of a protective film-coated titanium plate, wherein the protective film-coated titanium plate according to any one of (1) to (3) is used as a constituent member.
(9) A part or all of the component composition in the protective film is changed to one or two of a Ti—Al intermetallic compound and a Ti—Si intermetallic compound by holding at a high temperature accompanying the use of an automobile exhaust system. The exhaust device for automobiles made of a protective film-coated titanium plate excellent in high-temperature salt damage resistance according to (8) above,
(10) The protective film according to (9) above, wherein one or more of Al 2 O 3 , SiO 2 , and TiC are formed on the titanium plate base material. Automotive exhaust device made of coated titanium plate.
本発明によれば、700℃以上の高温においても、耐高温塩害性に優れ、高温で十分な強度があり、かつ室温で加工性が良好なチタン板を提供することが可能になり、四輪車、二輪車等の自動車の排気装置に用いれば、その軽量化が大きく進み、産業上の貢献が極めて顕著である。 According to the present invention, it becomes possible to provide a titanium plate that is excellent in high temperature salt damage resistance even at a high temperature of 700 ° C. or more, has sufficient strength at high temperature, and has good workability at room temperature. If it is used for an exhaust device of an automobile such as a car or a two-wheeled vehicle, the weight reduction is greatly advanced, and the industrial contribution is extremely remarkable.
以下、本発明について詳しく説明する。 The present invention will be described in detail below.
本発明の耐高温塩害性に優れた保護膜被覆チタン板は、チタン基材(チタン板およびチタン板から成形されたチタン製部材を含み、以下、両者を合わせてチタン基材ともいう。)の表面に、平均厚さが0.1〜5μmで、かつ、平均幅ないし平均長さが1〜50μmの箔片状、または、平均径が0.1〜30μmの粒状の金属Alが20〜60質量%の割合で分散した、Siを15〜55質量%、Cを10〜45質量%含有し、残部不可避的不純物からなる厚さ1μm以上、100μm以下の保護膜が、形成されていることを特徴とする。 The protective film-coated titanium plate excellent in high-temperature salt damage resistance according to the present invention is a titanium base material (including a titanium plate and a titanium member formed from the titanium plate, hereinafter, both are also referred to as a titanium base material). On the surface, 20-60 metal foils having an average thickness of 0.1-5 μm and an average width or length of 1-50 μm or granular metal Al having an average diameter of 0.1-30 μm are 20-60. A protective film having a thickness of 1 μm or more and 100 μm or less, which is composed of 15 to 55% by mass of Si and 10 to 45% by mass of C, and the balance unavoidable impurities, is dispersed at a rate of mass%. Features.
保護膜に含有されるAl、Si、およびCの成分元素は、いずれも耐高温塩害性を向上させる働きを有する。保護皮膜に微細な箔片状または粒状の形で均一に分散された金属Alは、チタン基材全面を緻密に覆い、600℃以上の高温に加熱された際に、チタン基材全面を、Ti−Al金属間化合物および/またはAl2O3の形で覆う。一方、Siは、600℃以上の高温に加熱された場合、Ti−Si金属間化合物および/またはSiO2となり、Ti−Al金属間化合物および/またはAl2O3の層の上を覆う。両者が複合することにより、保護皮膜中の酸素のチタン基材中への拡散が確実に抑制され、高温塩害の進行が抑制される。これらの保護膜は、塩素イオンが存在する環境で以降繰返し加熱されてもチタン基材上に残留するので、耐高温塩害性が維持される。また、Cは保護膜の密着性を維持するために必要である。SiおよびCはシリコーン樹脂またはシリコーングリースとして塗布されるのが好ましい。シリコーン樹脂は、シロキサン結合からなる直鎖状ポリマーで、ジメチルシリコーン、または、メチルフェニルシリコーン、または、メチルハイドロジェンシリコーン等を指し、シリコーングリースは、シリコーン樹脂をベースに、増稠剤(アルミニウム、リチウム、シリカ等の微粉末)、油性向上剤(高級脂肪酸、エステル等)、等を配合したものを指す。SiおよびCをシリコーン樹脂として塗布する場合、保護膜中の残部は、OおよびHおよび不可避不純物である。 All of Al, Si, and C component elements contained in the protective film have a function of improving high-temperature salt damage resistance. The metal Al uniformly dispersed in the form of fine foil pieces or particles on the protective film densely covers the entire surface of the titanium base material, and when heated to a high temperature of 600 ° C. or higher, the entire surface of the titanium base material is Ti. -Al intermetallic compound and / or covered in the form of Al 2 O 3. On the other hand, when Si is heated to a high temperature of 600 ° C. or higher, it becomes a Ti—Si intermetallic compound and / or SiO 2 and covers the Ti—Al intermetallic compound and / or Al 2 O 3 layer. By combining both, the diffusion of oxygen in the protective film into the titanium base material is reliably suppressed, and the progress of high temperature salt damage is suppressed. Since these protective films remain on the titanium base material even when repeatedly heated in an environment where chlorine ions are present, the high temperature salt damage resistance is maintained. C is necessary to maintain the adhesion of the protective film. Si and C are preferably applied as silicone resin or silicone grease. Silicone resin is a linear polymer composed of siloxane bonds, and refers to dimethyl silicone, methylphenyl silicone, methyl hydrogen silicone, etc. , Fine powders such as silica), oiliness improvers (higher fatty acids, esters, etc.), and the like. When Si and C are applied as a silicone resin, the balance in the protective film is O and H and inevitable impurities.
ここで、保護膜に分散して含まれる金属Alは、平均厚さ0.1〜5μm、平均幅ないし平均長さ1〜50μm以下の箔片状または、平均径0.1〜30μm以下の粒状で、含有量は20〜60質量%であり、また、保護膜のSi含有量は15〜55質量%、C含有量は10〜45質量%である。 Here, the metal Al dispersed and contained in the protective film is a foil piece having an average thickness of 0.1 to 5 μm, an average width or an average length of 1 to 50 μm, or granular having an average diameter of 0.1 to 30 μm. And content is 20-60 mass%, Si content of a protective film is 15-55 mass%, and C content is 10-45 mass%.
金属Alは、Ti−Al金属間化合物および/またはAl2O3を形成するためには、20質量%以上の含有が必要であり、60質量%を超えると、効果が飽和するため、60質量%以下とする。また、金属Alの形状は、箔片状のAlでは、その寸法を平均厚さ0.1〜5μm、平均幅ないし平均長さ1〜30μmとし、また、粒状のAlでは、その平均径を0.1〜30μmとした。これらのサイズは、保護膜中において、箔片状または粒状の金属Alが均質で、チタン基材上を緻密に覆い、高温に加熱された際に、チタン基材全面にTi−Al金属間化合物層および/またはAl2O3が形成されるようにするために必要な上下限である。Alのサイズの平均値が本範囲の上限を超えた場合、チタン基材表面にTi−Al金属間化合物および/またはAl2O3が形成されない箇所が部分的に生じ、高温塩害が進行する。微細な金属Alならば、チタン基材全面を覆い全面にTi−Al金属間化合物および/またはAl2O3を形成するが、実際に厚さ平均0.1μm未満の箔片ないし平均径0.1μm未満の粒子を製造することは困難であるため、Al箔片または粒の厚さおよび直径の下限を0.1μmとした。保護膜中の金属Alを均質に分散させるためには、保護膜中の金属Alの70%以上が、この寸法範囲に入っていることが望ましい。 The metal Al needs to be contained in an amount of 20% by mass or more in order to form a Ti—Al intermetallic compound and / or Al 2 O 3 , and if it exceeds 60% by mass, the effect is saturated. % Or less. Further, the shape of the metal Al is a foil piece of Al, and the dimensions are an average thickness of 0.1 to 5 μm and an average width or an average length of 1 to 30 μm. In the case of granular Al, the average diameter is 0. .1 to 30 μm. These sizes are such that in the protective film, the foil-like or granular metal Al is homogeneous, densely covers the titanium base material, and when heated to high temperature, the Ti-Al intermetallic compound is formed on the entire surface of the titanium base material. Upper and lower limits necessary for forming a layer and / or Al 2 O 3 . When the average value of the Al size exceeds the upper limit of this range, a portion where Ti—Al intermetallic compound and / or Al 2 O 3 is not formed is partially formed on the surface of the titanium base material, and high temperature salt damage proceeds. In the case of fine metal Al, the entire surface of the titanium substrate is covered and Ti—Al intermetallic compound and / or Al 2 O 3 is formed on the entire surface. Since it is difficult to produce particles of less than 1 μm, the lower limit of the thickness and diameter of the Al foil pieces or grains was set to 0.1 μm. In order to uniformly disperse the metallic Al in the protective film, it is desirable that 70% or more of the metallic Al in the protective film falls within this size range.
高温に加熱された際に十分な耐高温塩害性を有するSiO2層および/またはTi−Si金属間化合物を表面全体に形成するためには、Si含有量は15質量%以上必要である。一方、Siは55質量%を超えると、SiO2層および/またはTi−Si金属間化合物の層が厚くなりすぎ剥離しやすくなるため、上限を55質量%とした。 In order to form a SiO 2 layer and / or a Ti—Si intermetallic compound having sufficient high temperature salt damage resistance when heated to a high temperature on the entire surface, the Si content needs to be 15% by mass or more. On the other hand, when Si exceeds 55% by mass, the SiO 2 layer and / or the Ti—Si intermetallic compound layer becomes too thick and easily peels, so the upper limit was made 55% by mass.
Cは、保護膜の密着性を維持するために10質量%以上必要である。また、Cは、45質量%を超えると、その効果が飽和するため、Cの上限を45質量%とした。 C is required to be 10% by mass or more in order to maintain the adhesion of the protective film. Moreover, since the effect will be saturated if C exceeds 45 mass%, the upper limit of C was 45 mass%.
耐高温塩害効果を得るためには、本発明の保護膜が少量でも表面に満遍なく塗布されていれば十分であるが、厚さ1μm以上としたのは、保護膜を厚さ1μm未満に、表面に均一に塗布することは難しいためであり、100μmを超えて塗布すると高温塩害防止の効果は飽和し、塗料が無駄になるだけでなく剥離しやすくなるため、100μm以下とした。なお、保護膜とは、基材表面に形成された固体状の被覆物のことを指し、塗布時に塗布材に含有していた溶剤が完全に揮発した後の被覆物のことを指す。 In order to obtain a high temperature salt damage resistance effect, it is sufficient that the protective film of the present invention is evenly applied to the surface even in a small amount. However, the thickness of 1 μm or more is that the protective film is less than 1 μm in thickness, This is because it is difficult to uniformly apply to 100 μm, and if it exceeds 100 μm, the effect of preventing high-temperature salt damage is saturated, and the paint is not only wasted but also easily peeled off. The protective film refers to a solid coating formed on the surface of the substrate, and refers to a coating after the solvent contained in the coating material at the time of application is completely volatilized.
本発明の保護膜は、刷毛塗りまたは、スプレー塗装によりチタン基材上に形成するのが好ましい。保護膜の所定成分とトルエン、キシレン、エチルベンゼンの溶剤と混合することにより、刷毛塗り、またはスプレー塗装が可能となる。これらの溶剤は、刷毛塗り、スプレー塗装後の加熱によって揮発するとともに、シリコーン樹脂が硬化し、チタン基材との密着性が高められる。塗装後の加熱温度を150〜300℃の温度とし、5〜60分加熱するのが好ましい。加熱温度は、150℃未満だと保護膜の密着性が不十分となるためであり、300℃を超えても密着性は変わらないため、150〜300℃とした。 The protective film of the present invention is preferably formed on the titanium substrate by brush coating or spray coating. By mixing a predetermined component of the protective film with a solvent of toluene, xylene or ethylbenzene, brush coating or spray coating can be performed. These solvents are volatilized by heating after brush coating or spray coating, and the silicone resin is cured to improve the adhesion to the titanium substrate. The heating temperature after coating is preferably 150 to 300 ° C. and heated for 5 to 60 minutes. When the heating temperature is less than 150 ° C., the adhesiveness of the protective film becomes insufficient, and even when the heating temperature exceeds 300 ° C., the adhesiveness does not change.
上記保護膜の密着性は、基材の表面形状によって大きく異なる。例えば、基材の表面が酸洗肌であると保護膜の密着性は悪い。また、表面積をかせぐために一般鋼板の場合に行われる、ショットブラスト、サンドブラストも密着性を逆に悪化させる。一方、冷間圧延材の表面は、保護膜の密着性が高い。これは、表面に、筋状の鋭角な凸凹があるためである。凹凸の高低差は、2〜5μm、凸部と凹部の間隔は20〜100μm程度である。これらの微小かつ鋭角な凹凸が保護膜の密着性を高めているものと考えられる。冷間圧延ままで保護膜の密着性は十分得られるが、基板として十分な伸びが必要であるため、冷間圧延後に焼鈍を行う。焼鈍温度としては、600℃〜750℃、数時間から数十時間が好ましい。 The adhesion of the protective film varies greatly depending on the surface shape of the substrate. For example, if the surface of the substrate is pickled skin, the adhesion of the protective film is poor. Also, shot blasting and sand blasting, which are performed in the case of a general steel plate in order to increase the surface area, adversely deteriorate the adhesion. On the other hand, the surface of the cold rolled material has high adhesion of the protective film. This is because the surface has streak-like sharp irregularities. The height difference of the unevenness is 2 to 5 μm, and the distance between the convex and concave portions is about 20 to 100 μm. These minute and acute irregularities are considered to enhance the adhesion of the protective film. Adhesion of the protective film can be sufficiently obtained as it is in cold rolling, but sufficient elongation as a substrate is necessary, and thus annealing is performed after cold rolling. The annealing temperature is preferably 600 ° C. to 750 ° C. and several hours to several tens of hours.
保護膜の密着性は、クロスカット法による碁盤目テープ剥離試験、およびデュポン式衝撃試験(いずれもJIS K 5600準拠)等により評価する。 The adhesion of the protective film is evaluated by a cross cut tape peeling test using a cross-cut method, a DuPont impact test (both conforming to JIS K 5600), and the like.
保護膜による耐高温塩害性をさらに十分なものとするには、保護膜被覆チタン板を600℃以上、800℃以下に30分以上、10時間以下加熱するのが有効である。本加熱により、保護膜とチタン基材の界面にTi−Al金属間化合物とTi−Si金属間化合物の他、Al2O3、SiO2が緻密に形成され、これらの保護膜によりチタン基材が被覆されることにより、保護膜は特に優れた耐高温塩害性を発揮する。塩素イオンが存在する環境で、600℃以上に加熱されれば、これらの物質が界面に生成し、耐高温塩害性が発揮されるが、予め緻密な保護膜を形成しておくことにより、より信頼性の高い耐高温塩害性が得られる。これらの物質が生成するためには600℃以上、30分以上の加熱が必要である。800℃超では基板の軟化が顕著なるため、加熱温度の上限を800℃とした。また、10時間超では効果が飽和するため、10時間以下とした。 In order to make the high-temperature salt damage resistance due to the protective film more satisfactory, it is effective to heat the protective film-coated titanium plate to 600 ° C. or higher and 800 ° C. or lower for 30 minutes or longer and 10 hours or shorter. By this heating, in addition to Ti—Al intermetallic compound and Ti—Si intermetallic compound, Al 2 O 3 and SiO 2 are densely formed at the interface between the protective film and the titanium base material. The protective film exhibits particularly excellent high temperature salt damage resistance. If heated to 600 ° C. or higher in an environment where chlorine ions are present, these substances are generated at the interface, and high temperature salt damage resistance is exhibited. However, by forming a dense protective film in advance, Highly reliable high temperature salt damage resistance can be obtained. In order to produce these substances, heating at 600 ° C. or higher for 30 minutes or longer is required. When the temperature exceeds 800 ° C., the softening of the substrate is remarkable, so the upper limit of the heating temperature is set to 800 ° C. Moreover, since the effect is saturated when it exceeds 10 hours, it is set to 10 hours or less.
なお、ここでいう保護膜の組成分析において、Cの分析と金属元素の分析は以下のように行う。 In the composition analysis of the protective film here, the analysis of C and the analysis of metal elements are performed as follows.
Cの含有率は、試料に瞬間的に酸素ガスを付与し完全即時酸化させてCO2ガスとし、これとキャリアーガスとの熱伝導率差を検出する加熱融解熱電導測定法により求める。試料に含まれる、C、H、Nの含有率はこの方法で同時に検出される。例えば、FISONS社製EA−1108を使用することにより測定できる。 The content of C is obtained by a heating and melting thermoconductivity measurement method in which oxygen gas is instantaneously applied to a sample to completely oxidize it to obtain CO 2 gas, and a difference in thermal conductivity between this and carrier gas is detected. The contents of C, H and N contained in the sample are simultaneously detected by this method. For example, it can be measured by using EA-1108 manufactured by FISONS.
Si、Al等の金属元素については、蛍光X線分析(JIS K 0119準拠)を行う。具体的には、保護膜をろ紙上に塗布し、室温で2日間十分に乾燥させ、蛍光X線分析を行う。金属元素の含有率は、先に求めたC、H、Nの含有率と、別途不活性ガス融解赤外線吸収法(JIS H 1620準拠)で求めたOの合計含有率を100質量%から差し引いた分率を、蛍光X線分析で求めた金属元素の含有率で分配することにより求める。 For metal elements such as Si and Al, fluorescent X-ray analysis (based on JIS K 0119) is performed. Specifically, a protective film is applied on a filter paper, and is sufficiently dried at room temperature for 2 days, and a fluorescent X-ray analysis is performed. The metal element content was calculated by subtracting the total content of C, H, and N obtained previously and the total content of O obtained separately by inert gas melting infrared absorption method (based on JIS H 1620) from 100% by mass. A fraction is calculated | required by distributing by the content rate of the metal element calculated | required by the fluorescent X ray analysis.
耐高温塩害性は保護膜で担うものであるため、基材は純チタンでも良いが、純チタンでは600℃以上の高温強度が不十分であるため、本発明では、600〜800℃における0.2%耐力が、純チタン2種材(JIS H 4600)の1.5倍以上で、かつ室温での加工性も必要なため伸び(C方向)が30%以上あるチタン合金基材を前提とする。このようなチタン合金基材として、本発明では、Ti−0.5〜2.1質量%Cu合金、Ti−0.4〜2.5質量%Al合金、およびTi−0.5〜2.1質量%Cu−0.4〜2.5質量%Al合金、Ti−0.5〜2.1質量%Cu−0.3〜1.1質量%Nb合金、Ti−0.4〜2.5質量%Al−0.3〜1.1質量%Nb合金、Ti−0.5〜2.1質量%Cu−0.4〜2.5質量%Al−0.3〜1.1質量%Nb合金を適宜選択できる。これらの合金におけるCuおよびAl含有量の下限は、600〜800℃における0.2%耐力が、純チタン2種材の1.5倍以上となるために必要な含有量である。 Since the high temperature salt damage resistance is borne by the protective film, the substrate may be pure titanium. However, pure titanium has insufficient high temperature strength of 600 ° C. or higher. Assuming a titanium alloy base material with a 2% proof stress of 1.5 times or more of the pure titanium type 2 material (JIS H 4600) and a workability at room temperature, the elongation (C direction) is 30% or more. To do. As such a titanium alloy substrate, in the present invention, Ti-0.5 to 2.1 mass% Cu alloy, Ti-0.4 to 2.5 mass% Al alloy, and Ti-0.5 to 2. 1 mass% Cu-0.4-2.5 mass% Al alloy, Ti-0.5-2.1 mass% Cu-0.3-1.1 mass% Nb alloy, Ti-0.4-2. 5 mass% Al-0.3-1.1 mass% Nb alloy, Ti-0.5-2.1 mass% Cu-0.4-2.5 mass% Al-0.3-1.1 mass% An Nb alloy can be selected as appropriate. The lower limit of the Cu and Al contents in these alloys is a content necessary for the 0.2% proof stress at 600 to 800 ° C. to be 1.5 times or more of the pure titanium two-type material.
また、Cuの含有量を2.1%以下としたのは、2.1%を超えて含有すると溶解時にCuが偏析しやすくなるためである。また、Alの含有量を2.5質量%以下としたのは、2.5質量%を超えて含有すると、室温における強度が高まり、30%以上の伸びが得られなくなるためである。 The reason why the Cu content is 2.1% or less is that if it exceeds 2.1%, Cu is likely to segregate during dissolution. The reason why the Al content is 2.5% by mass or less is that when the Al content exceeds 2.5% by mass, the strength at room temperature increases, and an elongation of 30% or more cannot be obtained.
また、Nbを0.3〜1.1質量%含有させたのは、Nbを含有することにより、耐高温塩害性がさらに向上するからである。耐高温塩害性向上のためには0.3質量%以上の含有が必要であり、1.1質量%を超える含有では耐高温塩害性に関する効果が飽和する。 Further, the reason why 0.3 to 1.1% by mass of Nb is contained is that the high temperature salt damage resistance is further improved by containing Nb. In order to improve the high temperature salt damage resistance, it is necessary to contain 0.3% by mass or more. If the content exceeds 1.1% by mass, the effect on the high temperature salt damage resistance is saturated.
本発明の基材としてのチタン板は、自動車排気装置用のチタン材料を対象としているため、高温における強度が高く、室温での加工性が良好な材料のみを基材としているが、耐高温塩害性のみが要求されるような用途の場合、本発明に記載したチタン基材以外の材料でも効果があることは容易に想像できる。例えば、Ti−6Al−4VやTi−3Al−2.5V、Ti−15V−3Cr−3Al−3Sn等の他のチタン合金板に対しても、耐高温塩害性を付与することが可能である。 Since the titanium plate as a base material of the present invention is intended for a titanium material for automobile exhaust systems, only a material having high strength at high temperatures and good workability at room temperature is used as a base material. It can be easily imagined that a material other than the titanium base material described in the present invention is effective in applications where only the properties are required. For example, high temperature salt damage resistance can be imparted to other titanium alloy plates such as Ti-6Al-4V, Ti-3Al-2.5V, and Ti-15V-3Cr-3Al-3Sn.
本発明のチタン板を用いて製造された自動車用排気装置は、二輪車、四輪車等の自動車用メインマフラー、エキゾーストマニホールド、エキゾーストパイプ等を指す。本発明では、以上述べたように、高温大気中における耐高温塩害性に優れる保護膜が、刷毛塗りやスプレー塗装のような容易な方法で形成することが出来るため、塗装をチタン板に行うだけでなく、チタン板を自動車排気装置として成形した後に行うことも可能である。 An automobile exhaust device manufactured using the titanium plate of the present invention refers to a main muffler for an automobile such as a two-wheeled vehicle or a four-wheeled vehicle, an exhaust manifold, an exhaust pipe, or the like. In the present invention, as described above, a protective film having excellent resistance to high temperature salt damage in a high temperature atmosphere can be formed by an easy method such as brush coating or spray coating. Alternatively, it can be performed after the titanium plate is formed as an automobile exhaust device.
表1−1、表1−2に、試験に用いたチタン基材、表面保護膜のAl、Si、C含有%、金属Alのサイズ、塗装後加熱温度、密着性評価試験結果、および高温塩害試験(塩素イオン付着後の大気加熱試験)結果を示す。密着性評価は、クロスカット法による碁盤目テープ剥離試験、およびデュポン式衝撃試験(いずれもJIS K 5600準拠)である。 In Table 1-1 and Table 1-2, the titanium base material used in the test, the surface protective film Al, Si, C content%, the size of the metal Al, the post-coating heating temperature, the adhesion evaluation test results, and the high temperature salt damage The test (atmospheric heating test after adhesion of chloride ions) results are shown. The adhesion evaluation is a cross-cut tape peeling test by a cross-cut method and a DuPont impact test (both compliant with JIS K 5600).
碁盤目テープ剥離試験は、表面保護膜を塗布した、厚さ1mm×50mm×70mmの試験片に、等間隔スペーサーを用いて1mm間隔で6本の平行な切り込みを入れ、これらの切り込みと直角をなすように、もう6本の平行な切り込みを入れて、1mm角の100個の格子パターンを作り、これにテープを貼り付けてから取り外し、表面保護膜の剥がれをルーペで観察した。 In the cross-cut tape peeling test, a test piece having a thickness of 1 mm × 50 mm × 70 mm coated with a surface protective film is used to make 6 parallel cuts at 1 mm intervals using equally spaced spacers, and perpendicular to these cuts. As was done, another 6 parallel cuts were made to make 100 grid patterns of 1 mm square, tape was affixed to the lattice pattern and removed, and peeling of the surface protective film was observed with a loupe.
デュポン式衝撃試験は、半径6.35mmの撃ち型と受け台の間に、表面保護膜を塗布した試料1mm×50mm×70mmの試験片を、塗面を上にして挟み、質量500gのおもりを500mmの高さから撃ち型の上に落とし、塗面に割れ、剥がれ等の損傷がないかどうかを観察した。 In the DuPont impact test, a sample of 1 mm x 50 mm x 70 mm coated with a surface protection film is sandwiched between a shooting die with a radius of 6.35 mm and a cradle with the coated surface facing upward, and a weight of 500 g is placed. It was dropped onto a shooting mold from a height of 500 mm, and it was observed whether there was any damage such as cracking or peeling on the coated surface.
高温塩害試験の試験片寸法は、厚さ1mm×20mm×20mm、試験片の表面および側面は、#400のペーパーで研磨した。高温塩害試験の条件は、5%食塩水への1時間浸漬と700℃、23時間大気中加熱の5回繰返し後、試料断面を観察し、肉厚が最大に減少した箇所の減肉比率を測定した。また、室温および700℃において引張試験を行った。表中には室温におけるC方向の伸びと700℃における0.2%耐力を示した。 The test piece size of the high temperature salt damage test was 1 mm × 20 mm × 20 mm in thickness, and the surface and side surfaces of the test piece were polished with # 400 paper. The condition of the high temperature salt damage test is 1 hour immersion in 5% saline solution and 700 ° C for 23 hours heating in the atmosphere 5 times, then the sample cross section is observed, and the thickness reduction ratio at the point where the thickness is reduced to the maximum It was measured. Moreover, the tension test was done at room temperature and 700 degreeC. The table shows the elongation in the C direction at room temperature and the 0.2% yield strength at 700 ° C.
No.1〜14は、本発明の保護膜被覆チタン板である。これらチタン板の高温塩害試験後の減肉比率は、いずれも3%以下と小さく、十分な耐高温塩害性を有しているのに対し、保護膜を被覆しないNo.15〜17のチタン板では、高温塩害試験後の減肉が大きかった。室温の伸び(C方向)は、いずれも純チタン2種材と同等か、それよりも大きく、700℃における0.2%耐力は、純チタン2種材の1.5倍以上であり、高温強度と室温での加工性を兼ね備えた、耐高温塩害性に優れた保護膜被覆チタン板と言える。 No. 1 to 14 are protective film-coated titanium plates of the present invention. The thickness reduction ratios after the high temperature salt damage test of these titanium plates are all as small as 3% or less, and they have sufficient high temperature salt damage resistance. In the titanium plates of 15-17, the thinning after the high temperature salt damage test was large. Elongation at room temperature (C direction) is equal to or higher than that of pure titanium two-type material, and 0.2% proof stress at 700 ° C. is 1.5 times or more that of pure titanium two-type material. It can be said that it is a protective film-coated titanium plate that has both strength and processability at room temperature and is excellent in high temperature salt damage resistance.
一方、保護膜中の、含有金属Alの平均サイズが本発明の上限を超えるNo.21、22のチタン板では、保護膜の密着性が悪く、碁盤目剥離試験では、1mm角格子の半分以上が剥離し、デュポン式衝撃試験においても剥離が発生し、また、高温塩害試験後の減肉比率も本発明より大きく、耐高温塩害特性が不十分であり、自動車排気装置用基材としては不適当である。 On the other hand, in the protective film, the average size of the contained metal Al exceeds the upper limit of the present invention. With the 21 and 22 titanium plates, the adhesion of the protective film was poor, and in the cross-cut peel test, more than half of the 1 mm square lattice peeled off, and peeling occurred in the DuPont impact test, and after the high temperature salt damage test The thickness reduction ratio is also larger than that of the present invention, the high temperature salt damage resistance is insufficient, and it is unsuitable as a substrate for automobile exhaust systems.
また、No.18〜20は、チタン基材の成分が本発明の範囲を逸脱した場合の例で、高温塩害試験後減肉比率は十分に小さいが、No.18、19では、700℃での強度(0.2%耐力)が小さいため、No.20は、室温での伸びが小さく、加工性に乏しいため、それぞれ自動車排気装置用基材としては不適当である。 No. Nos. 18 to 20 are examples where the components of the titanium base material depart from the scope of the present invention, and the thinning ratio after the high temperature salt damage test is sufficiently small. 18 and 19, since the strength at 700 ° C. (0.2% yield strength) is small, No. 20 is unsuitable as a base material for automobile exhaust devices because it has a small elongation at room temperature and poor workability.
No.23のフェライト系ステンレス材では、高温塩害試験後減肉比率が大きく、自動車排気装置用基材としては不適当である。 No. The ferritic stainless steel material No. 23 has a large thickness reduction ratio after the high temperature salt damage test and is not suitable as a base material for an automobile exhaust system.
高温塩害試験後、表面に形成された物質をX線回折で同定した結果、判明した主要生成物質を表1−1、表1−2に示す。No.1〜14では、Al2O3、SiO2、TiC、Ti−Al金属間化合物、Ti−Si金属間化合物の1種または2種以上が生成した。一方、保護膜を形成しなかったNo.15〜17では、表面生成物質は、ほとんどがTiO2であり、酸化が進行している。また、基材がフェライト系ステンレス材のNo.23では、Feの酸化物が生成し、酸化が進行した。なお、比較例のNo.21、22〜ではAl2O3、SiO2、TiC、Ti−Al金属間化合物、Ti−Si金属間化合物の1種または2種以上が生成するが、含有金属Alの平均サイズが本発明の上限を超えるため、衝撃試験で保護膜の剥離が発生した。また、比較例のNo.18、19でもAl2O3、SiO2、TiC、Ti−Al金属間化合物、Ti−Si金属間化合物の1種または2種以上が生成するが、高温における強度が不足した。 After the high temperature salt damage test, the substances formed on the surface were identified by X-ray diffraction. As a result, the main product substances found were shown in Table 1-1 and Table 1-2. No. In 1 to 14, one or more of Al 2 O 3 , SiO 2 , TiC, Ti—Al intermetallic compound, and Ti—Si intermetallic compound were produced. On the other hand, no. In 15-17, most of the surface product is TiO 2 and the oxidation proceeds. The base material is a ferritic stainless steel No. In No. 23, an oxide of Fe was generated and oxidation proceeded. The comparative example No. In 21 and 22, one or more of Al 2 O 3 , SiO 2 , TiC, Ti—Al intermetallic compound, and Ti—Si intermetallic compound are produced, but the average size of the contained metal Al is that of the present invention. Since the upper limit was exceeded, peeling of the protective film occurred in the impact test. Moreover, No. of the comparative example. 18 and 19 also produced one or more of Al 2 O 3 , SiO 2 , TiC, Ti—Al intermetallic compound, and Ti—Si intermetallic compound, but the strength at high temperature was insufficient.
なお、実施例1(表1−1、表1−2)に示した本発明の基板は、全て冷間圧延焼鈍材である。 In addition, all the board | substrates of this invention shown in Example 1 (Table 1-1, Table 1-2) are cold rolling annealing materials.
表2に示す大きさのAl箔または粒状Alをシリコーン樹脂に含有させ、キシレンで液体状にした保護被覆膜用塗料をチタン合金基板に塗布し、加熱Iに示す条件で焼付け、No.24〜31の試験材を用意した。 A coating for a protective coating film containing Al foil or granular Al in the size shown in Table 2 in a silicone resin and liquidized with xylene was applied to a titanium alloy substrate and baked under the conditions shown in Heating I. 24-31 test materials were prepared.
No.24〜27は、基板の処理が冷間圧延焼鈍されたものである。具体的には厚さ3.5mmから1mmに冷間圧延した後、真空中で680℃5時間の熱処理を行ったものである。一方、No.28,29の基板の処理は、サンドブラスト後酸洗したものである。酸洗液は、硝酸および沸酸の混合液である。また、No.30,31の基板の処理は、サンドブラストままのものである。サンドブラストに用いた珪砂の粒度は、F30(JIS R6001−1998)である。 No. Nos. 24-27 are obtained by performing cold rolling annealing on the substrate. Specifically, after cold rolling from a thickness of 3.5 mm to 1 mm, heat treatment was performed at 680 ° C. for 5 hours in a vacuum. On the other hand, no. The processing of the substrates 28 and 29 is performed by sandblasting and pickling. The pickling solution is a mixed solution of nitric acid and hydrofluoric acid. No. The processing of the substrates 30 and 31 remains as sandblasting. The particle size of silica sand used for sandblasting is F30 (JIS R6001-1998).
試験項目と方法は実施例1と同じである。密着性評価として、クロスカット法による碁盤目テープ剥離試験、およびデュポン式衝撃試験(いずれもJIS K 5600準拠)を、加熱Iの後に行った。 Test items and methods are the same as in Example 1. As adhesion evaluation, a cross cut tape peeling test and a DuPont impact test (both compliant with JIS K 5600) were performed after heating I.
No.24〜27は本発明の保護膜被覆チタン板である。保護膜を被覆する前のこれらチタン基板の処理は、冷間圧延焼鈍のものである。一方、比較例No.28,29の基板の最終処理は酸洗まま、No.30、31の基板の処理は、サンドブラストままである。これらの密着性を比べると、碁盤目テープ剥離試験、デュポン式衝撃試験ともに、酸洗ままおよびサンドブラストままの基板の保護被覆膜は剥離が発生した。また、加熱IIを加えた本発明のNo.24〜27の高温塩害試験後の減肉比率は、いずれも0.3%以下と小さく、顕著な耐高温塩害性を有している。一方、加熱IIを加えなかったNo.28およびNo.30では、高温塩害試験後の減肉がやや大きかった。 No. 24 to 27 are protective film-coated titanium plates of the present invention. The treatment of these titanium substrates before coating the protective film is that of cold rolling annealing. On the other hand, Comparative Example No. The final treatment of the substrates Nos. 28 and 29 is as-washed, No. The processing of the substrates 30 and 31 is still sandblasting. Comparing these adhesion properties, in both the cross cut tape peeling test and the DuPont impact test, peeling occurred in the protective coating film on the substrate as pickled and sandblasted. Moreover, No. of this invention which added the heating II. The thickness reduction ratios after the high temperature salt damage test of 24-27 are all as small as 0.3% or less, and have remarkable high temperature salt damage resistance. On the other hand, no. 28 and no. In 30, the thinning after the high temperature salt damage test was slightly large.
Claims (10)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006165721A JP4414984B2 (en) | 2005-12-14 | 2006-06-15 | Protective film-coated titanium plate excellent in high temperature salt damage resistance, method for producing the same, and automobile exhaust system using the same |
US11/992,911 US9011976B2 (en) | 2005-10-05 | 2006-10-05 | Titanium sheet covered with protective film superior in high temperature oxidation resistance and high temperature salt damage resistance, automobile exhaust system using same, and methods of production of same |
PCT/JP2006/320348 WO2007043594A1 (en) | 2005-10-05 | 2006-10-05 | Titanium sheet coated with protective film and having excellent resistance against high-temperature oxidation and high-temperature salt damage, automotive exhaust system using the sheet, and method for manufacture of the sheet or system |
SI200632200T SI1932945T1 (en) | 2005-10-05 | 2006-10-05 | Titanium sheet coated with protective film and having excellent resistance against high-temperature oxidation and high-temperature salt damage, automotive exhaust system using the sheet, and method for manufacture of the sheet or system |
EP06811645.8A EP1932945B1 (en) | 2005-10-05 | 2006-10-05 | Titanium sheet coated with protective film and having excellent resistance against high-temperature oxidation and high-temperature salt damage, automotive exhaust system using the sheet, and method for manufacture of the sheet or system |
US14/659,771 US20150192056A1 (en) | 2005-10-05 | 2015-03-17 | Titanium sheet covered with protective film superior in high temperature oxidation resistance and high temperature salt damage resistance, automobile exhaust system using same, and methods of production of same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005360114 | 2005-12-14 | ||
JP2006165721A JP4414984B2 (en) | 2005-12-14 | 2006-06-15 | Protective film-coated titanium plate excellent in high temperature salt damage resistance, method for producing the same, and automobile exhaust system using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007186778A JP2007186778A (en) | 2007-07-26 |
JP4414984B2 true JP4414984B2 (en) | 2010-02-17 |
Family
ID=38342142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006165721A Active JP4414984B2 (en) | 2005-10-05 | 2006-06-15 | Protective film-coated titanium plate excellent in high temperature salt damage resistance, method for producing the same, and automobile exhaust system using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4414984B2 (en) |
-
2006
- 2006-06-15 JP JP2006165721A patent/JP4414984B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007186778A (en) | 2007-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4939013B2 (en) | Hot-dip hot-dip galvanized steel sheet and hot-press formed material | |
JP2002504628A (en) | Method of making corrosion resistant and oxidized slurry layer | |
EP2014782A1 (en) | Titanium material, production thereof, and exhaust pipe | |
US20150192056A1 (en) | Titanium sheet covered with protective film superior in high temperature oxidation resistance and high temperature salt damage resistance, automobile exhaust system using same, and methods of production of same | |
WO2003080888A1 (en) | HEAT-RESISTANT MATERIAL Ti ALLOY MATERIAL EXCELLENT IN RESISTANCE TO CORROSION AT HIGH TEMPERATURE AND TO OXIDATION | |
US20020092586A1 (en) | Corrosion resistant coating system and method | |
JP4414984B2 (en) | Protective film-coated titanium plate excellent in high temperature salt damage resistance, method for producing the same, and automobile exhaust system using the same | |
AU2005210483A1 (en) | Metal dusting resistant stable-carbide forming alloy surfaces | |
Chawla et al. | Performance of Nanostructured Metal Nitride Coated T-22 Boiler Steel in Na 2 SO 4–60% V 2 O 5 Environment at 900° C under Cyclic Conditions | |
JP4150700B2 (en) | Manufacturing method of surface-treated titanium material excellent in oxidation resistance, engine exhaust pipe | |
JP4486621B2 (en) | Protective film-coated titanium plate, protective film-coated titanium plate exhaust device for automobile, and production method thereof | |
JP4585420B2 (en) | Protective film-coated titanium plate excellent in heat resistance and oxidation resistance, method for producing the same, and automobile exhaust system using the same | |
Lee | Effect of diffusion coatings on the high temperature properties of nickel-chromium-superalloys | |
JP5097027B2 (en) | Titanium material, manufacturing method thereof and exhaust pipe | |
JPS61166987A (en) | Fin material for radiator | |
WO2003078673A1 (en) | Metal dusting corrosion resistant alloys with oxides | |
Guoxin et al. | Microstructure and corrosion resistance of simultaneous Al–Fe coating on copper by pack cementation | |
JPH0693412A (en) | Heat resistant ti-based alloy | |
JP3030927B2 (en) | High temperature corrosion resistant member and method of manufacturing the same | |
JP6344194B2 (en) | Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance | |
JP3379917B2 (en) | Al-containing film-coated member and method for producing the same | |
JP2004115906A (en) | METHOD FOR COATING Al-Si ALLOY ON SUBSTRATE OF Ti OR Ti ALLOY | |
JP3338734B2 (en) | Melting-resistant metal member and method of manufacturing the same | |
WO2023153192A1 (en) | Aluminum foil and method for producing same | |
JP3180715B2 (en) | Multi-layer plated metal material and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091120 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4414984 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |