JP2728305B2 - Hot working method of intermetallic compound TiA ▲ -based alloy - Google Patents

Hot working method of intermetallic compound TiA ▲ -based alloy

Info

Publication number
JP2728305B2
JP2728305B2 JP33579189A JP33579189A JP2728305B2 JP 2728305 B2 JP2728305 B2 JP 2728305B2 JP 33579189 A JP33579189 A JP 33579189A JP 33579189 A JP33579189 A JP 33579189A JP 2728305 B2 JP2728305 B2 JP 2728305B2
Authority
JP
Japan
Prior art keywords
processing
based alloy
temperature
intermetallic compound
hot working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33579189A
Other languages
Japanese (ja)
Other versions
JPH03197630A (en
Inventor
洋治 水原
直哉 正橋
正雄 木村
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33579189A priority Critical patent/JP2728305B2/en
Publication of JPH03197630A publication Critical patent/JPH03197630A/en
Application granted granted Critical
Publication of JP2728305B2 publication Critical patent/JP2728305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属間化合物TiAl基合金材料の熱間加工法に
係り、特に将来的に軽量耐熱材料として宇宙・航空分野
等での用途が期待されるTiAl基合金材料を熱間加工機で
シース加工法によって成形する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hot working method for an intermetallic compound TiAl-based alloy material, and is expected to be used as a lightweight heat-resistant material in the space and aviation fields in the future. The present invention relates to a method for forming a TiAl-based alloy material to be formed by a sheath working method using a hot working machine.

金属間化合物TiAl基合金材料は軽量で優れた高温強度
を有するため、宇宙・航空分野において構造用材料等へ
の応用が期待されている。
Since the intermetallic compound TiAl-based alloy material is lightweight and has excellent high-temperature strength, it is expected to be applied to structural materials and the like in the space and aviation fields.

〔従来の技術〕[Conventional technology]

金属間化合物TiAl基合金材料は常温延性及び高温での
変形能が低いため加工が困難で実用化されていない。
Since the intermetallic compound TiAl-based alloy material has low ductility at room temperature and low deformability at high temperatures, it is difficult to process and has not been put to practical use.

従来、TiAl基合金材料の加工法として恒温鍛造法を利
用する方法が知られている。例えば特開昭63−171862号
公報にTiAl基耐熱合金の製造方法が開示されている。こ
の方法は、試料だけでなく加工用ダイスも800〜1100℃
の恒温に保持して、比較的遅い歪み速度で加工すること
により、割れを防止する方法である。
Conventionally, a method using a constant temperature forging method as a processing method of a TiAl-based alloy material is known. For example, Japanese Patent Application Laid-Open No. Sho 63-177182 discloses a method for producing a TiAl-based heat-resistant alloy. In this method, not only the sample but also the processing die is 800 ~ 1100 ℃
This is a method for preventing cracking by processing at a relatively low strain rate while maintaining the same constant temperature.

また特開昭61−213361号公報にTiAl基合金材料の周囲
を被覆するシース材を用いて熱間加工を行う方法が開示
されている。この方法ではNi系、Co系あるいはFe−Ni系
の耐熱合金がシース材として用いられている。
Japanese Patent Application Laid-Open No. 61-213361 discloses a method of performing hot working using a sheath material covering the periphery of a TiAl-based alloy material. In this method, a Ni-based, Co-based or Fe-Ni-based heat-resistant alloy is used as a sheath material.

〔発明が解決しようとする課題〕 上記恒温鍛造を用いる熱間加工法では素材の酸化防止
と高温保持、加工用ダイスの高温強度保持のため加工装
置が大型になるばかりか素材と加工用ダイスとの反応を
防止する必要がある。
[Problems to be Solved by the Invention] In the hot working method using the constant temperature forging described above, not only does the processing device become large in order to prevent the oxidation of the material and maintain the high temperature, the high temperature strength of the working die, but also the material and the working die Must be prevented.

また上記第2の方法である、Ni系、Co系あるいはFe−
Ni系耐熱合金をシース材として用いる熱間加工方法で
は、材料中心部では50%程度の加工率が得られるもの
の、端部を中心に割れが生じるため、大きな歩留り低下
が避けられない。特に、加工率が60%を超えると、割れ
が変形より優先するため、実際上加工が不可能となる。
The second method, Ni-based, Co-based or Fe-
In a hot working method using a Ni-based heat-resistant alloy as a sheath material, a working rate of about 50% can be obtained in the center of the material, but cracks occur at the ends, so that a large decrease in yield cannot be avoided. In particular, when the working ratio exceeds 60%, the cracking takes precedence over the deformation, so that working becomes practically impossible.

本発明は、通常の熱間加工方法を用いて、軽微な割れ
も生じることなく、60%程度までの加工率を得ることが
可能な、金属間化合物TiAl基合金材料の熱間加工方法を
提供することを目的とする。
The present invention provides a hot working method of an intermetallic compound TiAl-based alloy material that can obtain a working rate of up to about 60% without using a normal hot working method without causing minor cracks. The purpose is to do.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題は本発明によれば被加工材を被覆するシース
材を用いて金属間化合物TiAl基合金材料を熱間加工する
際に、前記シース材としてチタン合金を用い1000℃以上
の温度で加工することを特徴とする金属間化合物TiAl基
合金材料の熱間加工法によって解決される。本発明の金
属間化合物TiAl基合金材料は、Tiを60〜70重量%、Alを
30〜40重量%含有しており、Ti,Alおよび不可避的不純
物元素からなる二元系のTiAl金属間化合物の他、機械的
性質や組織微細化を図る目的で1種以上の第3元素を添
加した組成の合金をも含んでいる。またシース材として
チタン合金を用いる第1の理由は1000℃以上での変形抵
抗が比較的高く且つ加工性に優れているためである。特
にβ型チタン合金がその特性を有する。
According to the present invention, when hot working an intermetallic compound TiAl-based alloy material using a sheath material covering a work material according to the present invention, processing is performed at a temperature of 1000 ° C. or more using a titanium alloy as the sheath material. The problem is solved by a hot working method for an intermetallic compound TiAl-based alloy material. The intermetallic TiAl-based alloy material of the present invention contains 60 to 70% by weight of Ti,
It contains 30 to 40% by weight, and in addition to binary TiAl intermetallic compounds consisting of Ti, Al and unavoidable impurity elements, one or more third elements for the purpose of mechanical properties and microstructural refinement. It also includes alloys with added compositions. The first reason for using a titanium alloy as the sheath material is that it has relatively high deformation resistance at 1000 ° C. or more and has excellent workability. In particular, β-type titanium alloys have such properties.

またシース材としてチタン合金を用いる第2の理由は
チタン合金は熱伝導性が極めて低いため加熱炉から取り
出して加工する迄の温度低下あるいは金型や圧延ロール
など加工機との接触による温度低下が小さくシースした
試料を加工終了時迄高温に保持できるためである。更に
第3の理由としてチタン合金は1000℃以上の高温では酸
化が激しくそのために加熱中にチタンの酸化物が大量に
形成され、このチタン酸化物が温度低下を防止するため
である。本発明に用いるチタン合金はTi−15V−3Al−3C
r−3Sn,Ti−3Al−8V−6Cr−4Mo−4Zr(通称β−C)、
及びTi−13V−11Cr−3Al等のβ型チタン合金が好ましい
が、Ti−6Al−4V等のα+β型チタン合金も使用出来
る。また熱間加工としては熱間鍛造、熱間圧延、熱間押
出し等が可能である。本発明では、シース材として上記
チタン合金を用いて、1000℃以上の温度で加工する。こ
れは、TiAl基合金材料は1000℃以上の強度の低下と延性
の著しい増加を示し、加工性が著しく増大するためであ
る。
The second reason for using a titanium alloy as the sheath material is that the titanium alloy has a very low thermal conductivity, so that the temperature decreases until it is removed from the heating furnace and processed, or the temperature decreases due to contact with a processing machine such as a die or a rolling roll. This is because a small sheathed sample can be kept at a high temperature until the end of processing. A third reason is that the titanium alloy is highly oxidized at a high temperature of 1000 ° C. or more, and thus a large amount of titanium oxide is formed during heating, and this titanium oxide prevents a temperature decrease. The titanium alloy used in the present invention is Ti-15V-3Al-3C
r-3Sn, Ti-3Al-8V-6Cr-4Mo-4Zr (commonly called β-C),
And β-type titanium alloys such as Ti-13V-11Cr-3Al are preferable, but α + β-type titanium alloys such as Ti-6Al-4V can also be used. Further, as the hot working, hot forging, hot rolling, hot extrusion and the like are possible. In the present invention, the above-mentioned titanium alloy is used as the sheath material and processed at a temperature of 1000 ° C. or higher. This is because the TiAl-based alloy material shows a decrease in strength at 1000 ° C. or more and a remarkable increase in ductility, and the workability significantly increases.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。素材
としてAl33.4重量%、Cr4.2重量%残部Tiおよび不可避
的不純物からなる金属間化合物TiAl基金材料をプラズマ
アーク溶解にりインゴットを鋳造し、第1図に示したよ
うに直径100mm、高さ20mmの円柱状試験片を切り出し、
試験に供した。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As a raw material, an intermetallic compound TiAl base material consisting of 33.4% by weight of Al, 4.2% by weight of Cr, and Ti and inevitable impurities was melted by plasma arc to cast an ingot. As shown in FIG. Cut out a cylindrical test piece of 20 mm in length,
Tested.

その試料を、第2図に示したように直径100mm高さ20m
mのシースのフタ2と、第3図に示した円柱空洞3を有
する円筒函4からなるシースを用い第4図に示すように
封入して据え込み鍛造した。シース材としては従来のCo
基耐熱合金(S816)と本発明に係るTi−15V−3Cr−3Sn
−3Al及びTi−3Al−8V−6Cr−4Mo−4Zrを使用した。円
筒函4内へ試料1を入れフタ2をして円筒函4とフタ2
とをTIG溶接により接合し、TiAl基合金試料1を密封
し、鍛造試料とした。第4図は試料1をシース材に封入
した断面図を示す。大気雰囲気の加熱炉で所定の温度ま
で加熱後、20分間保持して、その後初期歪み速度3毎秒
で据え込み鍛錬を行った。シース材、加工温度を圧下率
を変えて、大気中で加工した場合の結果を第1表に、真
空で加工した場合の結果を第2表に示す。
The sample was 100 mm in diameter and 20 m in height as shown in FIG.
As shown in FIG. 4, upsetting and forging were carried out using a sheath consisting of a lid 2 having a sheath of m and a cylindrical box 4 having a cylindrical cavity 3 shown in FIG. Conventional Co as sheath material
Base heat-resistant alloy (S816) and Ti-15V-3Cr-3Sn according to the present invention
-3Al and Ti-3Al-8V-6Cr-4Mo-4Zr were used. The sample 1 is put in the cylindrical box 4 and the lid 2 is closed.
Were joined by TIG welding, and the TiAl-based alloy sample 1 was sealed to obtain a forged sample. FIG. 4 is a sectional view in which the sample 1 is sealed in a sheath material. After heating to a predetermined temperature in a heating furnace in an air atmosphere, the temperature was maintained for 20 minutes, and then upsetting forging was performed at an initial strain rate of 3 per second. Table 1 shows the results when the sheath material and the processing temperature were changed in the draft and the processing was performed in air, and Table 2 shows the results when the processing was performed in vacuum.

表中圧下率とはTiAl材を封入したシース材が加工され
た時のシース材の変性を含む全加工率であり、加工率と
は前記圧下率を付与した時のTiAl材の加工率を示す。
The reduction rate in the table is the total processing rate including the modification of the sheath material when the sheath material enclosing the TiAl material is processed, and the processing rate indicates the processing rate of the TiAl material when the reduction rate is applied. .

シース材として従来のS816を用い、加工温度を1200℃
として据え込み鍛造を行った例を比較例1とし、一方シ
ース材としてTi−15V−3Cr−3Sn−3Al(チタン合金1)
とし加工温度を1200℃として据え込み鍛造を行った例を
実施例1とする。
Conventional S816 as sheath material, processing temperature 1200 ℃
An example of upsetting forging was taken as Comparative Example 1, while Ti-15V-3Cr-3Sn-3Al (titanium alloy 1) was used as the sheath material.
Example 1 is an example in which the upsetting forging was performed at a processing temperature of 1200 ° C.

上記実施例1と比較例1を圧下率60%迄について比較
した場合、本発明のチタン合金でシースした方が加工率
は低い。これは比較例のシース材(S816)の方がチタン
合金1より変形抵抗が高いためである。しかしながら比
較例では割れが発生している。一方本発明のチタン合金
シースの場合は割れが発生すぜ健全な試料が得られる。
また加工率が80%になると比較例では割れの発生が変形
よりも優先し、55%の加工率しか得られないのに対し、
実施例1では60%の加工率が得られ、しかも割れも発生
しなかった。
When comparing Example 1 and Comparative Example 1 up to a reduction of 60%, the processing rate is lower when sheathed with the titanium alloy of the present invention. This is because the sheath material (S816) of the comparative example has higher deformation resistance than the titanium alloy 1. However, in the comparative example, cracks occurred. On the other hand, in the case of the titanium alloy sheath of the present invention, cracks occur and a sound sample can be obtained.
In addition, when the working ratio becomes 80%, in the comparative example, the occurrence of cracks has priority over the deformation, and only a working ratio of 55% can be obtained.
In Example 1, a processing rate of 60% was obtained, and no cracks occurred.

次にシース材として実施例1と同じチタン合金1を用
い、加工温度を本発明加工温度の下限値近傍の1050℃と
した例を実施例2とし、該下限値以下の950℃とした例
を比較例2とする。本発明における加工温度の範囲内で
ある1050℃で加工した場合、40%以下の圧下率では、12
00℃で加工した場合(実施例1)と比べると、加工率は
やや低下しているが、割れなく加工できる。また、60%
の圧下率では極めて軽微な割れを伴うものの、30%の加
工率が得られた。しかし、本発明の加工温度以下の950
℃で加工した場合(比較例2)、加工率がわずか2%で
すでに割れが発生している。これは1000℃以下ではTiAl
基合金材料の強度が著しく高く、また延性が著しく乏し
いため、加工性が極めて悪くなることによる。
Next, an example in which the same titanium alloy 1 as in Example 1 was used as the sheath material and the processing temperature was set to 1050 ° C. near the lower limit of the processing temperature of the present invention was set to Example 2, and an example where the processing temperature was set to 950 ° C. or less than the lower limit Let it be Comparative Example 2. When processing at 1050 ° C., which is within the range of the processing temperature in the present invention, at a rolling reduction of 40% or less, 12
Although the processing rate is slightly reduced as compared with the case of processing at 00 ° C. (Example 1), processing can be performed without cracking. Also, 60%
At a rolling reduction of, a processing rate of 30% was obtained although extremely small cracks were involved. However, 950 below the processing temperature of the present invention
In the case of processing at a temperature of ° C. (Comparative Example 2), cracking has already occurred at a processing rate of only 2%. This is TiAl below 1000 ° C
This is because the strength of the base alloy material is extremely high and the ductility is extremely poor, so that the workability is extremely poor.

次にシース材としてTi−3Al−8V−6Cr−4Mo−4Zr(通
称β−C)を用いて実施例1と同様に加工を行った例を
実施例3とした。
Next, an example in which processing was performed in the same manner as in Example 1 using Ti-3Al-8V-6Cr-4Mo-4Zr (commonly called β-C) as a sheath material was defined as Example 3.

本実施例3も実施例1と同様圧下率80%迄割れ発生も
なく、加工率も55%迄可能である。
In the third embodiment, as in the first embodiment, no cracking occurs up to a rolling reduction of 80%, and the processing rate can be up to 55%.

また、第2表に示した真空中(5×10-4Torr)、1200
℃での加工温度での結果によれば60%以上の圧下率で加
工率が大気中での加工より低く、80%の圧下率では割れ
を生じている。
In vacuum (5 × 10 −4 Torr) shown in Table 2, 1200
According to the results at the working temperature in ° C, the working rate is lower than the working in the atmosphere at the rolling reduction of more than 60%, and cracking occurs at the rolling reduction of 80%.

しかしながらシース材にS816、Co基耐熱合金を用いた
比較例1,2と比べると35%の加工率を割れを発生せず
に、達成している点で有効である。大気中での加工の方
が真空中での加工より結果が良好であったのは酸化物の
断熱効果のためである。
However, compared with Comparative Examples 1 and 2 using S816 and a Co-based heat-resistant alloy as the sheath material, this is effective in that a processing rate of 35% is achieved without generating cracks. The reason that the processing in the atmosphere was better than that in the vacuum was due to the heat insulating effect of the oxide.

〔発明の効果〕 以上説明したように、本発明によれば、シース材とし
てチタン合金を用い、1000℃以上の温度で加工すること
により、金属間化合物TiAl基合金の熱間加工を、割れな
く60%の加工率まで行うことができる。
[Effects of the Invention] As described above, according to the present invention, by using a titanium alloy as a sheath material and working at a temperature of 1000 ° C or higher, hot working of an intermetallic compound TiAl-based alloy can be performed without cracking. Can perform up to 60% processing rate.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る試料の斜視図であり、 第2図は本発明に係るシースのフタの斜視図であり、 第3図は本発明に係るシースの円筒函の斜視図であり、 第4図は本発明に係るシース材で試料をシースした状態
を示す断面図である。 1……試料、2……フタ、3……円柱空洞、4……円筒
函。
FIG. 1 is a perspective view of a sample according to the present invention, FIG. 2 is a perspective view of a lid of the sheath according to the present invention, FIG. 3 is a perspective view of a cylindrical box of the sheath according to the present invention, FIG. 4 is a sectional view showing a state in which the sample is sheathed with the sheath material according to the present invention. 1 ... sample, 2 ... lid, 3 ... cylindrical cavity, 4 ... cylindrical box.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C22F 1/00 630 8719−4K C22F 1/00 630K 683 8719−4K 683 694 8719−4K 694B (72)発明者 藤井 秀樹 神奈川県相模原市淵野辺5―10―1 新 日本製鐵株式会社第2技術研究所内 (56)参考文献 特開 昭61−213361(JP,A) 特開 平2−236261(JP,A)Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication // C22F 1/00 630 8719-4K C22F 1/00 630K 683 8719-4K 683 694 8719-4K 694B (72) Inventor Hideki Fujii 5-10-1 Fuchinobe, Sagamihara City, Kanagawa Prefecture New Nippon Steel Corporation 2nd Technical Research Institute (56) References JP-A-61-213361 (JP, A) JP-A-2-236261 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被加工材を被覆するシース材を用いて金属
間化合物TiAl基合金材料を熱間加工する際に、前記シー
ス材としてチタン合金を用い1000℃以上の温度で加工す
ることを特徴とする金属間化合物TiAl基合金材料の熱間
加工法。
The present invention is characterized in that when hot working an intermetallic compound TiAl-based alloy material using a sheath material for covering a workpiece, a titanium alloy is used as the sheath material at a temperature of 1000 ° C. or more. Hot working method of the intermetallic compound TiAl based alloy material to be used.
JP33579189A 1989-12-25 1989-12-25 Hot working method of intermetallic compound TiA ▲ -based alloy Expired - Lifetime JP2728305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33579189A JP2728305B2 (en) 1989-12-25 1989-12-25 Hot working method of intermetallic compound TiA ▲ -based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33579189A JP2728305B2 (en) 1989-12-25 1989-12-25 Hot working method of intermetallic compound TiA ▲ -based alloy

Publications (2)

Publication Number Publication Date
JPH03197630A JPH03197630A (en) 1991-08-29
JP2728305B2 true JP2728305B2 (en) 1998-03-18

Family

ID=18292477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33579189A Expired - Lifetime JP2728305B2 (en) 1989-12-25 1989-12-25 Hot working method of intermetallic compound TiA ▲ -based alloy

Country Status (1)

Country Link
JP (1) JP2728305B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259863B2 (en) * 2000-12-15 2009-04-30 ライストリッツ アクチェンゲゼルシャフト Method for manufacturing high load capacity member made of TiAl alloy
AT508323B1 (en) * 2009-06-05 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR PRODUCING A FORGING PIECE FROM A GAMMA TITANIUM ALUMINUM BASE ALLOY
WO2017018509A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot rolling
WO2017018508A1 (en) 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material, and titanium material for use in hot rolling
CN107283124A (en) * 2017-06-27 2017-10-24 太原理工大学 A kind of method without jacket hot-working TiAl alloy

Also Published As

Publication number Publication date
JPH03197630A (en) 1991-08-29

Similar Documents

Publication Publication Date Title
US5124121A (en) Titanium base alloy for excellent formability
US5332545A (en) Method of making low cost Ti-6A1-4V ballistic alloy
US5299353A (en) Turbine blade and process for producing this turbine blade
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH10195563A (en) Ti alloy excellent in heat resistance and treatment thereof
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
US4077811A (en) Process for "Black Fabrication" of molybdenum and molybdenum alloy wrought products
JPH0457734B2 (en)
US5051139A (en) Process for the manufacture of semi-finished products or preformed parts made of refractory metals and resistant to thermal creep
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
JP2728305B2 (en) Hot working method of intermetallic compound TiA ▲ -based alloy
JP2001089821A (en) Titanium alloy having high strength and high ductility and excellent in high temperature atmospheric oxidation resistance
JPH0663049B2 (en) Titanium alloy with excellent superplastic workability
US5417779A (en) High ductility processing for alpha-two titanium materials
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JP3521290B2 (en) Molybdenum thick bar and method for producing the same
JPH10156473A (en) Hot working method of tial base intermetallic compound
RU2000132200A (en) TANTAL-SILICON ALLOY, PRODUCTS CONTAINING THEM, AND METHOD FOR PRODUCING ALLOYS
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
EP1308529A1 (en) Titanium aluminum intermetallic compound based alloy and method of fabricating a product from the alloy
JP3314408B2 (en) Manufacturing method of titanium alloy member
JPH07197154A (en) Titanium aluminum base alloy and its production
JPS6376834A (en) Manufacture of lightweight bolt
JP3065782B2 (en) Hydrogen treatment method for titanium alloy