JPH03197630A - Method for hot-working intermetallic compound ti-al base alloy - Google Patents

Method for hot-working intermetallic compound ti-al base alloy

Info

Publication number
JPH03197630A
JPH03197630A JP33579189A JP33579189A JPH03197630A JP H03197630 A JPH03197630 A JP H03197630A JP 33579189 A JP33579189 A JP 33579189A JP 33579189 A JP33579189 A JP 33579189A JP H03197630 A JPH03197630 A JP H03197630A
Authority
JP
Japan
Prior art keywords
processing
hot
alloy
intermetallic compound
sheath material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33579189A
Other languages
Japanese (ja)
Other versions
JP2728305B2 (en
Inventor
Yoji Mizuhara
洋治 水原
Naoya Masahashi
直哉 正橋
Masao Kimura
正雄 木村
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33579189A priority Critical patent/JP2728305B2/en
Publication of JPH03197630A publication Critical patent/JPH03197630A/en
Application granted granted Critical
Publication of JP2728305B2 publication Critical patent/JP2728305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To improve the workability of the Ti-Al base alloy without generating cracks by using a Ti alloy as a sheath material and subjecting it to hot working at a specified temp. CONSTITUTION:At the time of subjecting a Ti-Al intermetallic compound constituted of, by weight, about 60 to 70% Ti and about 30 to 40% Al with inevitable impurities to hot working, a Ti alloy is used as a sheath material coating a material to be worked and is worked at >=1000 deg.C. As the Ti alloy, the one of Ti-15V-3Al-3Cr-3Sn or the like is used. The hot working is executed by hot forging, hot rolling, hot extruding or the like. In this way, the hot working of the intermetallic compound Ti-Al base alloy can be executed up to about 60% draft without generating cracks.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属間化合物TiAl1基合金材料の熱間加工
法に係り、特に将来的に軽量耐熱材料として宇宙・航空
分野等での用途が期待されるTiAj!基合金材料を熱
間加工機でシース加工法によって成形する方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hot working method for an intermetallic compound TiAl single-base alloy material, and is particularly expected to find use in the space and aviation fields as a lightweight heat-resistant material in the future. TiAj to be done! The present invention relates to a method of forming a base alloy material by a sheath processing method using a hot processing machine.

金属間化合物TiAl基合金材料は軽量で優れた高温強
度を有するため、宇宙・航空分野において構造用材料等
への応用が期待されている。
Since intermetallic compound TiAl-based alloy materials are lightweight and have excellent high-temperature strength, they are expected to be applied to structural materials in the aerospace and aviation fields.

〔従来の技術〕[Conventional technology]

金属間化合物Til基合金材料は常温延性及び高温での
変形能が低いため加工が困難で実用化されていない。
Intermetallic compound Til-based alloy materials have low room temperature ductility and low deformability at high temperatures, making them difficult to process and have not been put to practical use.

従来、TiAj2基合金材料の加工法として恒温鍛造法
を利用する方法が知られている。例えば特開昭63−1
71862号公報にTiAl基耐熱合金の製造方法が開
示されている。この方法は、試料だけでなく加工用ダイ
スも800〜1100℃の恒温に保持して、比較的遅い
歪み速度で加工することにより、割れを防止する方法で
ある。
Conventionally, a method using constant temperature forging is known as a processing method for TiAj binary alloy material. For example, JP-A-63-1
No. 71862 discloses a method for producing a TiAl-based heat-resistant alloy. This method prevents cracking by maintaining not only the sample but also the processing die at a constant temperature of 800 to 1100° C. and processing at a relatively slow strain rate.

また特開昭61−213361号公報にTiAj!基合
金材料の周囲を被覆するシース材を用いて熱間加工を行
う方法が開示されている。この方法ではNi系、CO系
あるいはFe−Ni系の耐熱合金がシース材として用い
られている。
Also, TiAj! A method of performing hot working using a sheath material surrounding a base alloy material is disclosed. In this method, a Ni-based, CO-based, or Fe-Ni-based heat-resistant alloy is used as the sheath material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記恒温鍛造を用いる熱間加工法では素材の酸化防止と
高温保持、加工用ダイスの高温強度保持のため加工装置
が大型になるばかりか素材と加工用ダイスとの反応を防
止する必要がある。
In the above-mentioned hot processing method using constant temperature forging, the processing equipment not only becomes large in order to prevent oxidation of the material, maintain high temperature, and maintain high temperature strength of the processing die, but also requires prevention of reaction between the material and the processing die.

また上記第2の方法である、Nl系、Co系あるいはF
e−Ni系耐熱合金をシース材として用いる熱間加工方
法では、材料中心部では50%程度の加工率が得られる
ものの、端部を中心に割れが生じるため、大きな歩留り
低下が避けられない。
In addition, in the second method mentioned above, Nl-based, Co-based or F-based
In a hot working method using an e-Ni heat-resistant alloy as a sheath material, a processing rate of about 50% can be obtained at the center of the material, but cracks occur mainly at the edges, so a large decrease in yield is unavoidable.

特に、加工率が60%を超えると、割れが変形よりも優
先するため、実際上加工が不可能となる。
In particular, when the processing rate exceeds 60%, cracking takes precedence over deformation, making processing practically impossible.

本発明は、通常の熱間加工方法を用いて、軽微な割れも
生じることなく、60%程度までの加工率を得ることが
可能な、金属間化合物TiAj7基合金材料の熱間加工
方法を提供することを目的とする。
The present invention provides a method for hot working an intermetallic compound TiAj 7-based alloy material, which can obtain a processing rate of up to about 60% without producing any minor cracks using a normal hot working method. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は本発明によれば被加工材を被覆するシース材
を用いて金属間化合物TiAl基合金材料を熱間加工す
る際に、前記シース材としてチタン合金を用い1000
℃以上の温度で加工することを特徴とする金属間化合物
TiAl基合金材料の熱間加工法によって解決される。
According to the present invention, the above problem can be solved by using a titanium alloy as the sheath material when hot working an intermetallic compound TiAl-based alloy material using a sheath material that covers a workpiece.
The problem is solved by a hot working method for intermetallic compound TiAl-based alloy materials, which is characterized by working at a temperature of .degree. C. or higher.

本発明の金属間化合物TiAl基合金材料は、Tiを6
0〜70重量%、Alを30〜40重量%含有しており
、Ti、Alおよび不可避的不純物元素からなる二元系
のTiAl金属間化合物の他、機械的性質や組織微細化
を図る目的で1種以上の第3元素を添加した組成の合金
をも含んでいる。またシース材としてチタン合金を用い
る第1の理由は1000℃以上での変形抵抗が比較的高
く且つ加工性に優れているためである。特にβ型チタン
合金がその特性を有する。
The intermetallic compound TiAl-based alloy material of the present invention contains 6 Ti
It contains 0 to 70% by weight and 30 to 40% by weight of Al, and is a binary TiAl intermetallic compound consisting of Ti, Al and inevitable impurity elements, as well as for the purpose of improving mechanical properties and microstructural refinement. It also includes alloys with compositions to which one or more third elements are added. The first reason for using a titanium alloy as the sheath material is that it has relatively high deformation resistance at temperatures of 1000° C. or higher and is excellent in workability. In particular, β-type titanium alloys have this characteristic.

またシース材としてチタン合金を用いる第2の理由はチ
タン合金は熱伝導性が極めて低いため加熱炉から取り出
して加工する迄の温度低下あるいは金型や圧延ロールな
ど加工機との接触による温度低下が小さくシースした試
料を加工終了時上高温に保持できるためである。更に第
3の理由としてチタン合金は1000℃以上の高温では
酸化が激しくそのために加熱中にチタンの酸化物が大量
に形成され、このチタン酸化物が温度低下を防止するた
めである。本発明に用いるチタン合金はTi−15V−
3^1! −5Cr −5Sn、  Ti −3A I
 −3V−6Cr −4M。
The second reason why titanium alloy is used as a sheath material is that titanium alloy has extremely low thermal conductivity, so the temperature drop between taking it out of the heating furnace and processing it, or due to contact with processing machines such as molds and rolling rolls, is very low. This is because a small sheathed sample can be kept at a high temperature at the end of processing. A third reason is that titanium alloys undergo severe oxidation at high temperatures of 1000° C. or higher, and as a result, a large amount of titanium oxide is formed during heating, and this titanium oxide prevents the temperature from decreasing. The titanium alloy used in the present invention is Ti-15V-
3^1! -5Cr -5Sn, Ti -3A I
-3V-6Cr-4M.

4Z直通称β−C)、及びTi−13V−11Cr−3
^β等のβ型チタン合金が好ましいが、Ti−6Aβ−
4V等のα+β型チタン合金も使用出来る。また熱間加
工としては熱間鍛造、熱間圧延、熱間押出し等が可能で
ある。本発明では、シース材として上記チタン合金を用
いて、1000℃以上の温度で加工する。これは、Ti
Al基合金材料は1000℃以上で強度の低下と延性の
著しい増加を示し、加工性が著しく増大するためである
4Z direct name β-C), and Ti-13V-11Cr-3
β-type titanium alloys such as ^β are preferred, but Ti-6Aβ-
α+β type titanium alloys such as 4V can also be used. Further, as hot working, hot forging, hot rolling, hot extrusion, etc. are possible. In the present invention, the titanium alloy described above is used as the sheath material and processed at a temperature of 1000° C. or higher. This is Ti
This is because Al-based alloy materials show a decrease in strength and a significant increase in ductility at temperatures above 1000°C, resulting in a significant increase in workability.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

素材としてAl233.4重量%、Cr4.2重量%残
部Tiおよび不可避的不純物からなる金属間化合物Ti
Al基合金材料をプラズマアーク溶解によりインゴット
を鋳造し、第1図に示したように直径100mm、高さ
20闘の円柱状試験片を切り出し、試験に供した。
As a material, an intermetallic compound consisting of 33.4% by weight of Al, 4.2% by weight of Cr, balance Ti, and unavoidable impurities.
An ingot was cast from an Al-based alloy material by plasma arc melting, and a cylindrical test piece with a diameter of 100 mm and a height of 20mm was cut out as shown in FIG. 1 and used for testing.

その試料を、第2図に示したように直径100mm高さ
20mfllのシースのフタ2と、第3図に示した円柱
空洞3を有する円筒面4からなるシースを用い第4図に
示すように封入して据え込み鍛造した。
The sample was prepared as shown in FIG. 4 using a sheath consisting of a sheath lid 2 with a diameter of 100 mm and a height of 20 m full as shown in FIG. 2, and a cylindrical surface 4 having a cylindrical cavity 3 shown in FIG. It was sealed and upset forged.

シース材としては従来のCo基耐熱合金(3816)と
本発明に係るTi−15シー3Cr −5Sn −31
及びTi−3Aβ−8V−6Cr−4Mo−42rを使
用した。円筒面4内へ試料1を入れフタ2をして円筒面
4とフタ2とをTIG溶接により接合し、TiAl基合
金試料1を密封し、鍛造試料とした。第4図は試料1を
シース材に封入した断面図を示す。大気雰囲気の加熱炉
で所定の温度まで加熱後、20分間保持して、その後初
期歪み速度3毎秒で据え込み鍛造を行った。シース材、
加工温度を圧下率を変えて、大気中で加工した場合の結
果を第1表に、真空で加工した場合の結果を第2表に示
す。
As sheath materials, a conventional Co-based heat-resistant alloy (3816) and Ti-15 seam 3Cr-5Sn-31 according to the present invention were used.
and Ti-3Aβ-8V-6Cr-4Mo-42r were used. The sample 1 was put into the cylindrical surface 4, the lid 2 was put on, and the cylindrical surface 4 and the lid 2 were joined by TIG welding, and the TiAl-based alloy sample 1 was sealed to obtain a forged sample. FIG. 4 shows a cross-sectional view of sample 1 enclosed in a sheath material. After heating to a predetermined temperature in a heating furnace in an atmospheric atmosphere, it was held for 20 minutes, and then upset forging was performed at an initial strain rate of 3 per second. sheath material,
Table 1 shows the results when processing was performed in the atmosphere while changing the processing temperature and rolling reduction rate, and Table 2 shows the results when processing was performed in vacuum.

表中圧下率とはTiAl材を封入したシース材が加工さ
れた時のシース材の変形を含む全加工率であり、加工率
とは前記圧下率を付与した時のTii材の加工率を示す
The rolling reduction rate in the table is the total processing rate including the deformation of the sheath material when the sheath material encapsulating the TiAl material is processed, and the processing rate indicates the processing rate of the Tii material when the above rolling reduction rate is applied. .

シース材として従来の8816を用い、加工温度を12
00℃として据え込み鍛造を行った例を比較例1とし、
一方シース材としてTi −13V −5Cr −5S
n −3Aβ(チタン合金1)とし加工温度を1200
℃として据え込み鍛造を行った例を実施例1とする。
Conventional 8816 was used as the sheath material, and the processing temperature was 12
Comparative example 1 is an example in which upsetting forging was performed at 00°C.
On the other hand, as a sheath material, Ti-13V-5Cr-5S
n-3Aβ (titanium alloy 1) and the processing temperature was 1200.
Example 1 is an example in which upsetting forging was carried out at ℃.

上記実施例1と比較例1を圧下率60%迄について比較
した場合、本発明のチタン合金でシースした方が加工率
は低い。これは比較例のシース材(S816)の方がチ
タン合金1より変形抵抗が高いためである。しかしなが
ら比較例では割れが発生している。−力木発明のチタン
合金シースの場合は割れが発生せず健全な試料が得られ
る。また加工率が80%になると比較例では割れの発生
が変形よりも優先し、55%の加工率しか得られないの
に対し、実施例1では60%の加工率が得られ、しかも
割れも発生しなかった。
When comparing Example 1 and Comparative Example 1 with respect to the reduction rate up to 60%, the processing rate is lower in the case of sheathing with the titanium alloy of the present invention. This is because the sheath material (S816) of the comparative example has higher deformation resistance than titanium alloy 1. However, cracks occurred in the comparative example. - In the case of the titanium alloy sheath invented by Rikiki, a healthy sample can be obtained without cracking. Furthermore, when the processing rate reaches 80%, the occurrence of cracks takes priority over deformation in the comparative example, and only a processing rate of 55% is obtained, whereas in Example 1, a processing rate of 60% is obtained, and there is no cracking. It did not occur.

次にシース材として実施例1と同じチタン合金1を用い
、加工温度を本発明加工温度の下限値近傍の1050℃
とした例を実施例2とし、該下限値以下の950℃とし
た例を比較例2とする。本発明における加工温度の範囲
内である1050℃で加工した場合、40%以下の圧下
率では、1200℃で加工した場合(実施例1)と比べ
ると、加工率はやや低下しているが、割れなく加工でき
る。また、60%の圧下率では極めて軽微な割れを伴う
ものの、30%の加工率が得られた。しかし、本発明の
加工温度以下の950℃で加工した場合(比較例2)、
加工率がわずか2%ですでに割れが発生している。これ
は1000℃以下ではTii基合金材料の強度が著しく
高く、また延性が著しく乏しいため、加工性が極めて悪
くなることによる。
Next, using the same titanium alloy 1 as in Example 1 as the sheath material, the processing temperature was set to 1050°C, which is near the lower limit of the processing temperature of the present invention.
Example 2 is an example in which the temperature was set to 950°C, which is below the lower limit, and Comparative Example 2 is an example in which the temperature was 950°C, which is below the lower limit. When processing at 1050°C, which is within the processing temperature range of the present invention, at a reduction rate of 40% or less, the processing rate is slightly lower than when processing at 1200°C (Example 1). Can be processed without cracking. Further, at a rolling reduction rate of 60%, a working rate of 30% was obtained, although very slight cracking occurred. However, when processed at 950°C, which is lower than the processing temperature of the present invention (Comparative Example 2),
Cracking has already occurred at a processing rate of only 2%. This is because at temperatures below 1000°C, the strength of the Tii-based alloy material is extremely high and its ductility is extremely poor, resulting in extremely poor workability.

次にシース材としてTi−3Aβ−8V−6Cr−4M
o −4Z直通称β−C)を用いて実施例1と同様に加
工を行った例を実施例3とした。
Next, Ti-3Aβ-8V-6Cr-4M was used as a sheath material.
Example 3 was an example in which processing was performed in the same manner as in Example 1 using o-4Z (direct name β-C).

本実施例3も実施例1と同様圧下率80%迄割れ発生も
なく、加工率も55%迄可能である。
Similar to Example 1, this Example 3 also does not cause cracking up to a reduction rate of 80%, and the processing rate can reach up to 55%.

また、第2表に示した真空中(5xxo−’ Torr
)、1200℃での加工温度での結果によれば60%以
上の圧下率で加工率が大気中での加工より低く、80%
の圧下率では割れを生じている。
In addition, in the vacuum shown in Table 2 (5xxo-' Torr
), the results at a processing temperature of 1200℃ show that at a reduction rate of 60% or more, the processing rate is lower than that in the atmosphere, 80%.
At a reduction rate of , cracks occur.

しかしながらシース材に5816、CO基耐熱合金を用
いた比較例1.2と比べると35%の加工率を割れを発
生せずに、達成している点で有効である。
However, compared to Comparative Example 1.2 in which 5816, a CO-based heat-resistant alloy, was used as the sheath material, this example is effective in achieving a processing rate of 35% without cracking.

大気中での加工の方が真空中での加工より結果が良好で
あったのは酸化物の断熱効果のためである。
The reason why machining in air gave better results than machining in vacuum is due to the heat insulating effect of the oxide.

第1表 以上大気中での加熱、 鍛造 第2表 〔発明の効果〕 以上説明したように、本発明によれば、シース材として
チタン合金を用い、1000℃以上の温度で加工するこ
とにより、金属間化合物TiAl基合金の熱間加工を、
割れなく60%の加工率まで行うことができる。
Table 1 and above Heating in the atmosphere, Forging Table 2 [Effects of the invention] As explained above, according to the present invention, by using a titanium alloy as the sheath material and processing at a temperature of 1000°C or higher, Hot processing of intermetallic compound TiAl-based alloy,
Processing rates up to 60% can be achieved without cracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る試料の斜視図であり、第2図は本
発明に係るシースのフタの斜視図であり、 第3図は本発明に係るシースの円筒函の斜視図であり、 第4図は本発明に係るシース材で試料をシースした状態
を示す断面図である。 1・・・試料、 2・・・フタ、 3・・・円柱空洞、
4・・・円筒函。
FIG. 1 is a perspective view of a sample according to the present invention, FIG. 2 is a perspective view of a lid of a sheath according to the present invention, and FIG. 3 is a perspective view of a cylindrical case of a sheath according to the present invention. FIG. 4 is a sectional view showing a sample sheathed with a sheath material according to the present invention. 1... Sample, 2... Lid, 3... Cylindrical cavity,
4...Cylindrical box.

Claims (1)

【特許請求の範囲】[Claims] 1、被加工材を被覆するシース材を用いて金属間化合物
TiAl基合金材料を熱間加工する際に、前記シース材
としてチタン合金を用い1000℃以上の温度で加工す
ることを特徴とする金属間化合物TIAl基合金材料の
熱間加工法。
1. A metal characterized in that when hot working an intermetallic compound TiAl-based alloy material using a sheath material that covers the workpiece, a titanium alloy is used as the sheath material and the processing is performed at a temperature of 1000°C or higher. A method for hot working of intermediate compound TIAl-based alloy materials.
JP33579189A 1989-12-25 1989-12-25 Hot working method of intermetallic compound TiA ▲ -based alloy Expired - Lifetime JP2728305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33579189A JP2728305B2 (en) 1989-12-25 1989-12-25 Hot working method of intermetallic compound TiA ▲ -based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33579189A JP2728305B2 (en) 1989-12-25 1989-12-25 Hot working method of intermetallic compound TiA ▲ -based alloy

Publications (2)

Publication Number Publication Date
JPH03197630A true JPH03197630A (en) 1991-08-29
JP2728305B2 JP2728305B2 (en) 1998-03-18

Family

ID=18292477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33579189A Expired - Lifetime JP2728305B2 (en) 1989-12-25 1989-12-25 Hot working method of intermetallic compound TiA ▲ -based alloy

Country Status (1)

Country Link
JP (1) JP2728305B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538361A (en) * 2000-12-15 2004-12-24 ティッセンクルップ オートモーティヴ アクチエンゲゼルシャフト Method of manufacturing high load capacity member made of TiAl alloy
JP2010280002A (en) * 2009-06-05 2010-12-16 Boehler Schmiedetechnik Gmbh & Co Kg Method for manufacturing forged piece from gamma titanium-aluminum-based alloy
WO2017018509A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot rolling
CN107283124A (en) * 2017-06-27 2017-10-24 太原理工大学 A kind of method without jacket hot-working TiAl alloy
US10920300B2 (en) 2015-07-29 2021-02-16 Nippon Steel Corporation Titanium composite material and titanium material for hot rolling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538361A (en) * 2000-12-15 2004-12-24 ティッセンクルップ オートモーティヴ アクチエンゲゼルシャフト Method of manufacturing high load capacity member made of TiAl alloy
JP2010280002A (en) * 2009-06-05 2010-12-16 Boehler Schmiedetechnik Gmbh & Co Kg Method for manufacturing forged piece from gamma titanium-aluminum-based alloy
WO2017018509A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot rolling
JP6137423B1 (en) * 2015-07-29 2017-05-31 新日鐵住金株式会社 Titanium composite and titanium material for hot rolling
US10920300B2 (en) 2015-07-29 2021-02-16 Nippon Steel Corporation Titanium composite material and titanium material for hot rolling
CN107283124A (en) * 2017-06-27 2017-10-24 太原理工大学 A kind of method without jacket hot-working TiAl alloy

Also Published As

Publication number Publication date
JP2728305B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
US5124121A (en) Titanium base alloy for excellent formability
US5332545A (en) Method of making low cost Ti-6A1-4V ballistic alloy
EP3791003B1 (en) High strength titanium alloys
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
JP3873313B2 (en) Method for producing high-strength titanium alloy
CN107598411A (en) A kind of TC11 titanium alloy welding wires and preparation method thereof
US4077811A (en) Process for "Black Fabrication" of molybdenum and molybdenum alloy wrought products
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
JPH0457734B2 (en)
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
US5125986A (en) Process for preparing titanium and titanium alloy having fine acicular microstructure
EP0411537B1 (en) Process for preparing titanium and titanium alloy materials having a fine equiaxed microstructure
JPH03197630A (en) Method for hot-working intermetallic compound ti-al base alloy
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
US5417779A (en) High ductility processing for alpha-two titanium materials
US3019102A (en) Copper-zirconium-hafnium alloys
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JP3065782B2 (en) Hydrogen treatment method for titanium alloy
JPS636625B2 (en)
RU2774671C2 (en) High-strength titanium alloys
EP0388892B1 (en) Method for plastic-working ingots of heat-resistant alloy containing boron
US2892704A (en) Titanium base alloys
JPH0466630A (en) Ti-al intermetallic compound excellent in hot workability