JPS636625B2 - - Google Patents

Info

Publication number
JPS636625B2
JPS636625B2 JP5343985A JP5343985A JPS636625B2 JP S636625 B2 JPS636625 B2 JP S636625B2 JP 5343985 A JP5343985 A JP 5343985A JP 5343985 A JP5343985 A JP 5343985A JP S636625 B2 JPS636625 B2 JP S636625B2
Authority
JP
Japan
Prior art keywords
tial
alloy
based alloy
sheath material
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5343985A
Other languages
Japanese (ja)
Other versions
JPS61213361A (en
Inventor
Osamu Nakano
Nobutaka Oguro
Naohiro Nishimoto
Tadao Kato
Tokuzo Tsujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP5343985A priority Critical patent/JPS61213361A/en
Publication of JPS61213361A publication Critical patent/JPS61213361A/en
Publication of JPS636625B2 publication Critical patent/JPS636625B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は金属間化合物TiAl基合金の成型材を
熱間加工機でシース加工法によつて成型する方法
に関する。 従来技術 チタンとアルミニウム2元系合金において、チ
タンが74〜65重量%、アルミニウムが26〜35重量
%ではTi3AlとTiAlの2相からなる金属間化合物
を、チタンが65〜56重量%、アルミニウムが35〜
44重量%ではTiAlの単相からなる金属間化合物
を作る。これら及びこれらに第3、第4元素等を
添加した多元系TiAl基合金は、軽量、耐酸化性、
高温比強度、高温クリープが要求される軽量耐熱
構造用材料として注目されている。しかし、これ
らの合金は常温延性に乏しく高温変形能が小さい
ため、その成型加工は極めて困難であり、現在実
用化されていない。 従来、TiAl基合金の成型加工法としては、特
殊な恒温鍛造法を利用して成型加工する方法のみ
が知られている。 この方法は恒温鍛造法を利用するため、(1)この
合金を1100℃の高温に保持すること、(2)酸化防
止、(3)加工用ダイスの高温強度の保持、(4)この合
金と加工用ダイスとの化学反応防止等を必要と
し、そのため装置は大型化となると共に高価とな
る等の問題点があつた。 発明の目的 本発明は前記問題点を解消しようとするもので
あり、その目的は、難加工性材料である金属間化
合物TiAl基合金を熱間加工機でシース加工法に
よつて容易に成型加工する方法を提供するにあ
る。 発明の構成 本発明者らは前記目的を達成すべく鋭意研究の
結果、特定のシース材を使用し、このシース材で
TiAl基合金を封入した後、熱間加工機で熱間加
工すると容易に成型することができることを究明
した。この知見に基いて本発明を完成した。 本発明の要旨は、主成分であるチタンとアルミ
ニウムの重量比が、74〜56:26〜44である金属間
化合物TiAl基合金を成型する方法において、シ
ース材として前記TiAl基合金の1000℃以上にお
ける高温変形抵抗に近い高温変形抵抗を持つNi
系、Co系またはFe−Ni系の耐熱合金を用い、該
シース材で前記TiAl基合金を封入した後、1000
℃以上で熱間加工機でシース加工することを特徴
とする金属間化合物TiAl基合金の成型法にある。 金属間化合物TiAl基合金は前記したように、
主成分であるチタンとアルミニウムの重量比が74
〜56:26〜44である合金組成に第3、第4元素等
を添加したものである。このTiAl基合金は常温
延性に乏しいが、1000℃以上では強度の低下と延
性の著しい増加を示す。しかしながら、TiAl基
合金の高温強度は、なお大きく1000℃で250MPa
の耐力をもつ。従つて、シース材としては、1000
℃以上における高温変形抵抗が金属間化合物
TiAl基合金に近い高強度材料であることが必要
である。またこれと同時にシース材がTiAl基合
金と化学反応を起さず、可塑加工、切削加工及び
溶接が可能であることが必要であるため、Ni系、
Co系またはFe−Ni系の耐熱合金がよいことが分
つた。 Ni系合金としては、例えば、Astroloy,
HastelloyX及びS,Inconel alloy617及び625,
Nimonic alloy105,115及びPK33,Rene41,
TDNickel,TDNiCr,Udimet500,520,700及
び710,UdimetAF2−10A,Waspaloy等が挙げ
られる。 Co系合金としては、CM−7,Haynessalloy
No.188,L−605,MAR−M918、及びS816等
が挙げられる。 Fe−Ni系合金としては、Incoloy alloy802及
び807等が挙げられる。 金属間化合物TiAl基合金をシース材に封入す
るに際しては、該合金は1000℃以上では著しく酸
化されるので、真空中あるいはアルゴンガス雰囲
気下で溶接により密封するのがよい。 熱間加工機でシース加工するには、加工温度は
1100℃以上で、1回の加工量を7.5%、加工速度
は1.5m/min程度であることがよい。 実施例 Ti66重量%、Al34重量%からなる金属間化合
物合金を使用し、長さ20mm、巾10mm、厚さ10mmの
形状のものを作つた。シース材としてCo系合金
のS816(1000℃における耐力80MPa)を使用し、
長さ40mm、巾30mm、厚さ13mmの形状のものとし、
その中心部に長さ20mm、巾10mm、深さ5mmのくぼ
みを形成したものを作つた。この2個のシース材
を上下に合せ、その中央部に前記TiAl基合金成
形物を挿入し、真空中で上下のシース材の継ぎ目
を溶接し密封した。 これを1100℃及び1200℃で1時間加熱保持した
後、熱間加工機を用い1.5m/minの圧延速度で圧
下率7.5%の圧延加工を施した。次いで上記温度
で10分間加熱保持した後、同一条件で圧延を行つ
た。この工程を繰返し行い、最大圧下率60%まで
行つた。この時のTiAl基合金の最大加工率は55
%となり、シース材との化学反応もなく、酸化も
みられず、かつ凹凸のない平滑な成型材が得られ
た。 なお、比較のため、シース材として、金属間化
合物TiAl基合金よりも高温変形抵抗が著しく低
いInconel alloy600(1000℃における耐力20MPa)
及びNimonic alloy90(1000℃における耐力
40MPa)を使用し、前記の方法と同じ方法で
TiAl基合金の成型材を作つた。 それらの1200℃で熱間圧延を行つた結果を示す
と次の表1の通りであつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for molding a molded material of an intermetallic compound TiAl-based alloy by a sheath processing method using a hot processing machine. Prior art In a titanium-aluminum binary alloy, when titanium is 74 to 65% by weight and aluminum is 26 to 35% by weight, an intermetallic compound consisting of two phases of Ti 3 Al and TiAl is formed, and titanium is 65 to 56% by weight, and aluminum is 26 to 35% by weight. Aluminum is 35~
44% by weight creates an intermetallic compound consisting of a single phase of TiAl. These and multi-component TiAl-based alloys with third and fourth elements added to them are lightweight, oxidation resistant,
It is attracting attention as a lightweight, heat-resistant structural material that requires high-temperature specific strength and high-temperature creep. However, these alloys have poor cold ductility and low high-temperature deformability, so forming them is extremely difficult, and they are not currently in practical use. Conventionally, the only known method for forming TiAl-based alloys is to use a special constant temperature forging method. This method uses isothermal forging, so (1) this alloy is kept at a high temperature of 1100℃, (2) it is prevented from oxidizing, (3) the high-temperature strength of the processing die is maintained, and (4) this alloy and It is necessary to prevent a chemical reaction with the processing die, and as a result, the device becomes large and expensive. Purpose of the Invention The present invention is intended to solve the above-mentioned problems, and its purpose is to easily form an intermetallic compound TiAl-based alloy, which is a difficult-to-process material, by a sheath processing method using a hot processing machine. This is to provide a way to do so. Structure of the Invention As a result of intensive research to achieve the above object, the present inventors used a specific sheath material, and with this sheath material,
We found that after enclosing a TiAl-based alloy, it can be easily molded by hot processing using a hot processing machine. The present invention was completed based on this knowledge. The gist of the present invention is to provide a method for molding an intermetallic compound TiAl-based alloy in which the weight ratio of titanium and aluminum, which are the main components, is 74-56:26-44. Ni has a high temperature deformation resistance close to that of
After enclosing the TiAl-based alloy with the sheath material, 1000
A method for forming an intermetallic compound TiAl-based alloy, which is characterized by sheath processing using a hot processing machine at temperatures above ℃. As mentioned above, the intermetallic compound TiAl-based alloy is
The weight ratio of the main components titanium and aluminum is 74
~56: This is an alloy composition in which the third and fourth elements are added to the alloy composition of 26 to 44. This TiAl-based alloy has poor ductility at room temperature, but shows a decrease in strength and a significant increase in ductility at temperatures above 1000°C. However, the high-temperature strength of TiAl-based alloys is still large, 250 MPa at 1000°C.
It has a strength of . Therefore, as a sheath material, 1000
Intermetallic compounds have high temperature deformation resistance above ℃
It is necessary to use a high-strength material close to a TiAl-based alloy. At the same time, it is necessary that the sheath material does not cause chemical reactions with the TiAl-based alloy and can be plasticized, cut, and welded.
It was found that Co-based or Fe-Ni-based heat-resistant alloys are good. Examples of Ni-based alloys include Astroloy,
HastelloyX and S, Inconel alloy617 and 625,
Nimonic alloy105, 115 and PK33, Rene41,
Examples include TDNickel, TDNiCr, Udimet500, 520, 700 and 710, UdimetAF2-10A, Waspaloy, and the like. Co-based alloys include CM-7, Haynessalloy
No. 188, L-605, MAR-M918, and S816 are included. Examples of the Fe-Ni alloy include Incoloy alloy 802 and 807. When enclosing the intermetallic compound TiAl-based alloy in a sheath material, it is preferable to seal it by welding in a vacuum or in an argon gas atmosphere, since the alloy is significantly oxidized at temperatures above 1000°C. To process the sheath with a hot processing machine, the processing temperature is
It is preferable that the temperature is 1100°C or higher, the amount of processing per time is 7.5%, and the processing speed is about 1.5 m/min. Example Using an intermetallic compound alloy consisting of 66% by weight of Ti and 34% by weight of Al, a piece having a shape of 20 mm in length, 10 mm in width, and 10 mm in thickness was made. Co-based alloy S816 (yield strength 80MPa at 1000℃) is used as the sheath material.
It shall have a shape of 40 mm in length, 30 mm in width, and 13 mm in thickness,
A depression with a length of 20 mm, width of 10 mm, and depth of 5 mm was formed in the center. These two sheath materials were aligned one above the other, the TiAl-based alloy molded article was inserted into the center, and the joint between the upper and lower sheath materials was welded and sealed in a vacuum. After heating and holding this at 1100° C. and 1200° C. for 1 hour, it was rolled using a hot working machine at a rolling speed of 1.5 m/min and a reduction ratio of 7.5%. Next, after heating and holding at the above temperature for 10 minutes, rolling was performed under the same conditions. This process was repeated until the maximum reduction rate was 60%. The maximum machining rate of TiAl-based alloy at this time is 55
%, there was no chemical reaction with the sheath material, no oxidation was observed, and a smooth molded material with no irregularities was obtained. For comparison, Inconel alloy 600 (yield strength 20 MPa at 1000°C), which has significantly lower high-temperature deformation resistance than intermetallic TiAl-based alloys, was used as the sheath material.
and Nimonic alloy90 (proof strength at 1000℃
40MPa) using the same method as above.
A molded material of TiAl-based alloy was made. The results of hot rolling at 1200°C are shown in Table 1 below.

【表】 上記圧下率はTiAl基合金を封入したシース材
が圧延された時のシース材の変形を含む全加工率
(%)を示し、加工率は前記の圧下率を与えた時
のTiAl基合金の加工率(%)を示す。 表1の結果が示すように、1000℃以上でのシー
ス材の高温変形抵抗がTiAl基合金よりも低くな
る程加工率が著しく低下することがわかる。 次にTiAl基合金の組成を変え、シース材とし
てS816を用い、圧延温度を1100℃で行つた時の
結果を示すと次の表2の通りであつた。
[Table] The above rolling reduction rate indicates the total processing rate (%) including the deformation of the sheath material when the sheath material encapsulating the TiAl-based alloy is rolled. Indicates the processing rate (%) of the alloy. As shown in the results in Table 1, it can be seen that as the high-temperature deformation resistance of the sheath material at 1000° C. or higher is lower than that of the TiAl-based alloy, the processing rate decreases significantly. Next, the composition of the TiAl-based alloy was changed, S816 was used as the sheath material, and the rolling temperature was 1100°C. The results are shown in Table 2 below.

【表】 圧下率及び加工率は表1に示した同じものを示
す。 表2の結果が示すように、TiAl単相(Ti−37
重量%Al)あるいはTi3AlとTiAlの2相(Ti−
34重量%Al)からなる金属間化合物TiAl基合金
においては、いずれもほぼ等しい加工率で加工し
得られる。 発明の効果 本発明の方法によると、成型加工が困難である
金属間化合物TiAl基合金を従来法における大型
で高価な恒温鍛造機を必要とせず、該合金をシー
ス材で密封する工程の追加だけで、通常の加熱加
工機を用いて通常の加工工程を施すことにより容
易に加工し得られる。また、シース材を特定する
ことにより、加工率も高く品質が優れ、且つ凹凸
のない成型材が得られる優れた効果を有する。 しかも、シース材は再生使用することができ、
かつ、装置も特別なものを必要としないことによ
り、経済的に有利に製造し得られるので、軽量耐
熱構造用材料としての実用化が促進されるものと
考えられる。
[Table] The rolling reduction rate and processing rate are the same as shown in Table 1. As shown in the results in Table 2, TiAl single phase (Ti−37
wt%Al) or two phases of Ti3Al and TiAl (Ti−
In the intermetallic compound TiAl-based alloy consisting of 34 wt% Al), both can be processed at approximately the same processing rate. Effects of the Invention According to the method of the present invention, there is no need for the large and expensive constant temperature forging machine used in the conventional method for processing TiAl-based alloys, which are intermetallic compounds that are difficult to form, and only the step of sealing the alloy with a sheath material is added. It can be easily processed by performing normal processing steps using a normal heating processing machine. In addition, by specifying the sheath material, it is possible to obtain a molded material with a high processing rate, excellent quality, and no irregularities. Moreover, the sheath material can be recycled and used.
In addition, since no special equipment is required, it can be manufactured economically and advantageously, and it is believed that its practical use as a lightweight heat-resistant structural material will be promoted.

Claims (1)

【特許請求の範囲】[Claims] 1 主成分であるチタンとアルミニウムの重量比
が、74〜56:26〜44である金属間化合物TiAl基
合金を成型する方法において、シース材として前
記TiAl基合金の1000℃以上における高温変形抵
抗に近い高温変形抵抗を持つNi系、Co系または
Fe−Ni系の耐熱合金を用い、該シース材で前記
TiAl基合金を封入した後、1000℃以上で熱間加
工機でシース加工することを特徴とする金属間化
合物TiAl基合金の成型法。
1. In a method of molding an intermetallic compound TiAl-based alloy in which the weight ratio of the main components titanium and aluminum is 74-56:26-44, the high-temperature deformation resistance of the TiAl-based alloy at 1000°C or higher is used as a sheath material. Ni-based, Co-based or
Using a Fe-Ni-based heat-resistant alloy, the sheath material
A method for forming an intermetallic compound TiAl-based alloy, which is characterized by enclosing the TiAl-based alloy and then sheathing it using a hot processing machine at 1000°C or higher.
JP5343985A 1985-03-19 1985-03-19 Forming method for intermetallic compound tial-base alloy Granted JPS61213361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5343985A JPS61213361A (en) 1985-03-19 1985-03-19 Forming method for intermetallic compound tial-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5343985A JPS61213361A (en) 1985-03-19 1985-03-19 Forming method for intermetallic compound tial-base alloy

Publications (2)

Publication Number Publication Date
JPS61213361A JPS61213361A (en) 1986-09-22
JPS636625B2 true JPS636625B2 (en) 1988-02-10

Family

ID=12942880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5343985A Granted JPS61213361A (en) 1985-03-19 1985-03-19 Forming method for intermetallic compound tial-base alloy

Country Status (1)

Country Link
JP (1) JPS61213361A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586023B2 (en) * 1987-01-08 1997-02-26 日本鋼管株式会社 Method for producing TiA1-based heat-resistant alloy
US5028277A (en) * 1989-03-02 1991-07-02 Nippon Steel Corporation Continuous thin sheet of TiAl intermetallic compound and process for producing same
JPH0741304B2 (en) * 1990-03-13 1995-05-10 株式会社神戸製鋼所 Method for hot extrusion of high Al content Ti alloy
US5370839A (en) * 1991-07-05 1994-12-06 Nippon Steel Corporation Tial-based intermetallic compound alloys having superplasticity
CN107675027B (en) * 2017-10-09 2019-08-30 安阳工学院 It is a kind of using Mo-Cr-O platelike crystal as the preparation method of the TiAl based self-lubricating material of solid lubricating phase

Also Published As

Publication number Publication date
JPS61213361A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
US4110131A (en) Method for powder-metallurgic production of a workpiece from a high temperature alloy
US3950166A (en) Process for producing a sintered article of a titanium alloy
JP2635804B2 (en) Gamma-titanium-aluminum alloy modified with carbon, chromium and niobium
JPS636625B2 (en)
US3666436A (en) Cermet-type alloy and method of making same
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
Imgram et al. Tensile properties of binary titanium-zirconium and titanium-hafnium alloys
JPH03174938A (en) Method for hot forging ni base super heat-resistant alloy
CN109504874B (en) Ti3Preparation method of Al alloy bolt
US3019102A (en) Copper-zirconium-hafnium alloys
JP2728305B2 (en) Hot working method of intermetallic compound TiA ▲ -based alloy
US4808225A (en) Method for producing an alloy product of improved ductility from metal powder
JP3057662B2 (en) Wax material
JP3328557B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JPH0364436A (en) Manufacture of high purity ni material
US4820354A (en) Method for producing a workpiece from a corrosion- and oxidation-resistant Ni/Al/Si/B alloy
JPH0466630A (en) Ti-al intermetallic compound excellent in hot workability
JPH11293433A (en) Treatment of titanium-aluminum reformed by chromium and niobium
KR900006657B1 (en) Extruding method of nicuel-titanum alloy by pre-heated
IE41814B1 (en) Aluminium based alloy
JPS63213632A (en) Super plasticity heat resisting ni based alloy for forging and its production
JPH0432137B2 (en)
JPS59110492A (en) Laminate of brazing material for simultaneous carburizing and brazing and its production
JP2004532173A (en) Method for producing superconducting material composed of MgB2
JPH0243351A (en) Method for hot-working tini-based shape memory alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term